
Recursion

CS 2110: Software Development Methods
April 8, 2019

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
1

http://goo.gl/npFQUD

Concurrency and Locking

Reviewing Friday’s In-Class Activity

3

Recursion

https://www.xkcd.com/688/

4

Recursive Mindset

• Recursion breaks a difficult problem into one or more simpler
versions of itself

5

Recursive Mindset

Remember Binary Search? Quickly turn to page 394 (without magic)

When do we stop? How would we formalize this in pseudocode? 6

Recursive Mindset

Recursive Binary Search: Quickly turn to page 394 (without magic)
find(page_number,book):

page = flip to middle
if page == page_number

return found
if page_number is before page

return find(page_number, first half)
if page_number is after page

return find(page_number, second half)

7

Definition (Don’t Write This One Down!)

Recursion

8

Definition (Don’t Write This One Down!)

Recursion
• see recursion.

8

Definition (Don’t Write This One Down!)

Recursion
• see recursion.

8

Recursion

• Recursion breaks a difficult problem into one or more simpler
versions of itself

• A definition is recursive if it is defined in terms of itself
• Questions to ask yourself:

• How can we reduce the problem into smaller version of the same
problem?

• How does each call make the problem smaller?
• What is the base case?
• Will we always reach the base case?

9

Example: Factorial

n!

• Solve by multiplying two numbers

10

Example: Factorial

n! = n× (n− 1)× (n− 2)× · · ·× 2× 1

• Solve by multiplying two numbers

10

Example: Factorial

n! = n× (n− 1)!

• Solve by multiplying two numbers

10

Example: Factorial

n! = n× (n− 1)!

• Solve by multiplying two numbers

10

Example: Factorial

n! = n× (n− 1)!

n (n− 1)!

n!

11

Example: Factorial

6 5!

6!

12

Example: Factorial

6

5 4!

6!

13

Example: Factorial

6!

6

5

4

3

2

1 0!

14

Definitions

Base case
The case for which the solution can be stated nonrecursively

Recursive case
The case for which the solution is expressed in terms of a smaller
version of itself

15

Definitions

Base case
The case for which the solution can be stated nonrecursively

Recursive case
The case for which the solution is expressed in terms of a smaller
version of itself

15

Example: Factorial

n! = n× (n− 1)!

• Base case:
• Recursive case:

16

Example: Factorial

n! = n× (n− 1)!

• Base case: n = 0 ⇒ 0! = 1
• Recursive case:

16

Example: Factorial

n! = n× (n− 1)!

• Base case: n = 0 ⇒ 0! = 1
• Recursive case: n > 0 ⇒ n! = n× (n− 1)!

16

Example: Factorial

n! = n× (n− 1)!

• Base case: n = 0 ⇒ 0! = 1
• Recursive case: n > 0 ⇒ n! = n× (n− 1)!

Advice: always put the base case first!

16

Translate to Code

Base case: n = 0 ⇒ 0! = 1

if (n == 0)
return 1;

Magic box (recursive case): n! = n× (n− 1)!

return n * factorial(n-1);

17

Translate to Code

Base case: n = 0 ⇒ 0! = 1

if (n == 0)
return 1;

Magic box (recursive case): n! = n× (n− 1)!

return n * factorial(n-1);

17

Translate to Code

Base case: n = 0 ⇒ 0! = 1

if (n == 0)
return 1;

Magic box (recursive case): n! = n× (n− 1)!

return n * factorial(n-1);

17

Translate to Code

Base case: n = 0 ⇒ 0! = 1

if (n == 0)
return 1;

Magic box (recursive case): n! = n× (n− 1)!

return n * factorial(n-1);

17

Translate to Code

public int factorial(int n) {
// base case (always first)
if (n == 0)

return 1;

// recursive case
return n * factorial(n-1);

}

18

Recursion can be tricky!

Always need to stop at a base case

18

Translate to Code

public int factorial(int n) {
// base case (always first)
if (n == 0)

return 1;

// recursive case
return n * factorial(n-1);

}

19

Translate to Code

public int factorial(int n) {
// base case (always first)
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

20

Recursion vs. Iteration

Recursion
public int factorial(int n) {

// base case
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

Iteration

21

Recursion vs. Iteration

Recursion
public int factorial(int n) {

// base case
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

Iteration
public int factorial(int n) {

int fact_n = 1;

for (int i = 1; i <= n; i++){
fact_n = fact_n * i;

}
return fact_n;

}

22

Recursion vs. Iteration

Recursion
public int factorial(int n) {

// base case
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

Build solution from top down

Iteration
public int factorial(int n) {

int fact_n = 1;

for (int i = 1; i <= n; i++){
fact_n = fact_n * i;

}
return fact_n;

}

Build solution from bottom up

22

Views of Recursion

• Recursive definition: definition in terms of itself, such as
n! = n× (n− 1)!

• Recursive procedure: a procedure that calls itself
ex: factorial(int n)

• Recursive data structure: a data structure that contains a
pointer to an instance of itself:
public class ListNode {

Object nodeItem;
ListNode next, previous;
...

}

23

Example: Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

• fib1 = 1
• fib2 = 1
• fibn = fibn−1 + fibn−2

24

Example: Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

• fib1 = 1
• fib2 = 1
• fibn = fibn−1 + fibn−2

24

Example: Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

• fib1 = 1
• fib2 = 1
• fibn = fibn−1 + fibn−2

Let’s formalize:

• Base case:
• Recursive case:

24

Example: Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

• fib1 = 1
• fib2 = 1
• fibn = fibn−1 + fibn−2

Let’s formalize:

• Base case: n <= 2 ⇒ fibn = 1
• Recursive case:

24

Example: Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

• fib1 = 1
• fib2 = 1
• fibn = fibn−1 + fibn−2

Let’s formalize:

• Base case: n <= 2 ⇒ fibn = 1
• Recursive case: n > 2 ⇒ fibn = fibn−1 + fibn−2

24

Example: Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

• fib1 = 1
• fib2 = 1
• fibn = fibn−1 + fibn−2

Let’s formalize:

• Base case: n <= 2 ⇒ fibn = 1
• Recursive case: n > 2 ⇒ fibn = fibn−1 + fibn−2

24

Translate to Code

Base case: n <= 2 ⇒ fibn = 1

if (n <= 2)
return 1;

Recursive case: n > 2 ⇒ fibn = fibn−1 + fibn−2

return fibonacci(n-1) + fibonacci(n-2);

25

Translate to Code

Base case: n <= 2 ⇒ fibn = 1

if (n <= 2)
return 1;

Recursive case: n > 2 ⇒ fibn = fibn−1 + fibn−2

return fibonacci(n-1) + fibonacci(n-2);

25

Translate to Code

Base case: n <= 2 ⇒ fibn = 1

if (n <= 2)
return 1;

Recursive case: n > 2 ⇒ fibn = fibn−1 + fibn−2

return fibonacci(n-1) + fibonacci(n-2);

25

Translate to Code

Base case: n <= 2 ⇒ fibn = 1

if (n <= 2)
return 1;

Recursive case: n > 2 ⇒ fibn = fibn−1 + fibn−2

return fibonacci(n-1) + fibonacci(n-2);

25

Translate to Code

public int fibonacci(int n) {
// base case (always first)
if (n <= 2)

return 1;

// recursive case
return fibonacci(n-1) + fibonacci(n-2);

}

26

Recursion can be tricky!

It may not be the best solution.

26

Example: Fibonacci

27

Example: Fibonacci

28

Example: Fibonacci

Lots of redundant calculations! We should not repeat them!

28

Example: Fibonacci

Lots of redundant calculations! We should not repeat them! O(2n)

28

Example: Fibonacci

Lots of redundant calculations! We should not repeat them! O(2n)
memoization: remember the things you’ve already calculated

28

Example: Iterative Fibonacci

public long fib(int n) {
if (n < 2) return 1;
long answer;
long prevFib=1, prev2Fib=1; // fib(0) & fib(1)
for (int k = 2; k <= n; k++) {

answer = prevFib + prev2Fib;
prev2Fib = prevFib;
prevFib = answer;

}
return answer;

}

29

Recursion vs. Iteration

• Any recursive solution may be written using iteration
• Recursive algorithm may appear simpler, more intuitive

Recursion
• “loop” is stopped by base
case

recurse(int i) {
if (i < 1)

return;
// do something
recurse(i-1);
return;

}

Iteration
• loop condition determines
when to stop

while (i > 0) {
// do something
i--;

}

30

Recursion vs. Iteration

• Any recursive solution may be written using iteration
• Recursive algorithm may appear simpler, more intuitive

Recursion
• “loop” is stopped by base
case

recurse(int i) {
if (i < 1)

return;
// do something
recurse(i-1);
return;

}

Iteration
• loop condition determines
when to stop

while (i > 0) {
// do something
i--;

}

30

Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
31

http://goo.gl/npFQUD

Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
31

http://goo.gl/npFQUD

Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
31

http://goo.gl/npFQUD

Other Recursive Examples

• Towers of Hanoi
• Euclid’s Algorithm
• Fractals

32

Towers of Hanoi

The objective is to transfer entire tower A to the peg B, moving only
one disk at a time and never moving a larger one onto a smaller
one

• The algorithm to transfer n disks from A to B in general: We
first transfer n− 1 smallest disks to peg C, then move the
largest one to the peg B and finally transfer the n− 1 smallest
back onto largest (peg B)

• The number of necessary moves to transfer n disks can be
found by T(n) = 2n − 1

33

Euclid’s Algorithm

Calculating the greatest common divisor (gcd) of two positive
integers is the largest integer that divides evenly into both of them

• E.g. greatest common divisor of 102 and 68 is 34 since both 102
and 68 are multiples of 34, but no integer larger than 34
divides evenly into 102 and 68

• Logic: If p > q, the gcd of p and q is the same as the gcd of q
and p%q (where % is the remainder operator)

• Stop recursion once q becomes zero; at which point return p

34

Summary

• Recursion breaks a difficult problem into one or more simpler
versions of itself

• Recursive definition: A definition in which something is
defined in terms of smaller versions of itself

• Recursive problem can be broken into two parts:
• Base case: The case for which the solution can be stated
nonrecursively

• Recursive case: The case for which the solution is expressed in terms
of a smaller version of itself

35

Summary

Recursion is tricky!

• Always put base case first
• Base case should eventually happen given any input
• Recursive solution may not always be the best

36

