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Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
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Concurrency and Locking

Reviewing Friday’s In-Class Activity
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Recursion

https://www.xkcd.com/688/
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Recursive Mindset

• Recursion breaks a difficult problem into one or more simpler
versions of itself

5



Recursive Mindset

Remember Binary Search? Quickly turn to page 394 (without magic)

When do we stop? How would we formalize this in pseudocode? 6



Recursive Mindset

Recursive Binary Search: Quickly turn to page 394 (without magic)
find(page_number,book):

page = flip to middle
if page == page_number

return found
if page_number is before page

return find(page_number, first half)
if page_number is after page

return find(page_number, second half)
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Definition (Don’t Write This One Down!)

Recursion
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Recursion

• Recursion breaks a difficult problem into one or more simpler
versions of itself

• A definition is recursive if it is defined in terms of itself
• Questions to ask yourself:

• How can we reduce the problem into smaller version of the same
problem?

• How does each call make the problem smaller?
• What is the base case?
• Will we always reach the base case?
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Example: Factorial

n!

• Solve by multiplying two numbers
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Example: Factorial

n! = n× (n− 1)× (n− 2)× · · ·× 2× 1

• Solve by multiplying two numbers
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n (n− 1)!

n!
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Example: Factorial

6 5!

6!
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Example: Factorial

6

5 4!

6!
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Example: Factorial

6!

6

5

4

3

2

1 0!
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Definitions

Base case
The case for which the solution can be stated nonrecursively

Recursive case
The case for which the solution is expressed in terms of a smaller
version of itself
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Example: Factorial

n! = n× (n− 1)!

• Base case:
• Recursive case:
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• Base case: n = 0 ⇒ 0! = 1
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Example: Factorial

n! = n× (n− 1)!

• Base case: n = 0 ⇒ 0! = 1
• Recursive case: n > 0 ⇒ n! = n× (n− 1)!

Advice: always put the base case first!
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Translate to Code

Base case: n = 0 ⇒ 0! = 1

if (n == 0)
return 1;

Magic box (recursive case): n! = n× (n− 1)!

return n * factorial(n-1);
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Translate to Code

public int factorial(int n) {
// base case (always first)
if (n == 0)

return 1;

// recursive case
return n * factorial(n-1);

}
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Recursion can be tricky!

Always need to stop at a base case
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Translate to Code

public int factorial(int n) {
// base case (always first)
if (n == 0)

return 1;

// recursive case
return n * factorial(n-1);

}
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Translate to Code

public int factorial(int n) {
// base case (always first)
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

20



Recursion vs. Iteration

Recursion
public int factorial(int n) {

// base case
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

Iteration
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Recursion vs. Iteration

Recursion
public int factorial(int n) {

// base case
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

Iteration
public int factorial(int n) {

int fact_n = 1;

for (int i = 1; i <= n; i++){
fact_n = fact_n * i;

}
return fact_n;

}
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Recursion vs. Iteration

Recursion
public int factorial(int n) {

// base case
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

Build solution from top down

Iteration
public int factorial(int n) {

int fact_n = 1;

for (int i = 1; i <= n; i++){
fact_n = fact_n * i;

}
return fact_n;

}

Build solution from bottom up
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Views of Recursion

• Recursive definition: definition in terms of itself, such as
n! = n× (n− 1)!

• Recursive procedure: a procedure that calls itself
ex: factorial(int n)

• Recursive data structure: a data structure that contains a
pointer to an instance of itself:
public class ListNode {

Object nodeItem;
ListNode next, previous;
...

}
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Example: Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

• fib1 = 1
• fib2 = 1
• fibn = fibn−1 + fibn−2
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Translate to Code

Base case: n <= 2 ⇒ fibn = 1

if (n <= 2)
return 1;

Recursive case: n > 2 ⇒ fibn = fibn−1 + fibn−2

return fibonacci(n-1) + fibonacci(n-2);
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Translate to Code

public int fibonacci(int n) {
// base case (always first)
if (n <= 2)

return 1;

// recursive case
return fibonacci(n-1) + fibonacci(n-2);

}
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Recursion can be tricky!

It may not be the best solution.
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Example: Fibonacci
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Example: Fibonacci
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Example: Fibonacci

Lots of redundant calculations! We should not repeat them!
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Example: Fibonacci

Lots of redundant calculations! We should not repeat them! O(2n)
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Example: Fibonacci

Lots of redundant calculations! We should not repeat them! O(2n)
memoization: remember the things you’ve already calculated
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Example: Iterative Fibonacci

public long fib(int n) {
if ( n < 2 ) return 1; 
long answer;
long prevFib=1, prev2Fib=1; // fib(0) & fib(1)
for (int k = 2; k <= n; k++) {

answer = prevFib + prev2Fib;
prev2Fib = prevFib;
prevFib = answer;

}
return answer;

}
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Recursion vs. Iteration

• Any recursive solution may be written using iteration
• Recursive algorithm may appear simpler, more intuitive

Recursion
• “loop” is stopped by base
case

recurse(int i) {
if (i < 1)

return;
// do something
recurse(i-1);
return;

}

Iteration
• loop condition determines
when to stop

while (i > 0) {
// do something
i--;

}
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Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.
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Other Recursive Examples

• Towers of Hanoi
• Euclid’s Algorithm
• Fractals
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Towers of Hanoi

The objective is to transfer entire tower A to the peg B, moving only
one disk at a time and never moving a larger one onto a smaller
one

• The algorithm to transfer n disks from A to B in general: We
first transfer n− 1 smallest disks to peg C, then move the
largest one to the peg B and finally transfer the n− 1 smallest
back onto largest (peg B)

• The number of necessary moves to transfer n disks can be
found by T(n) = 2n − 1
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Euclid’s Algorithm

Calculating the greatest common divisor (gcd) of two positive
integers is the largest integer that divides evenly into both of them

• E.g. greatest common divisor of 102 and 68 is 34 since both 102
and 68 are multiples of 34, but no integer larger than 34
divides evenly into 102 and 68

• Logic: If p > q, the gcd of p and q is the same as the gcd of q
and p%q (where % is the remainder operator)

• Stop recursion once q becomes zero; at which point return p

34



Summary

• Recursion breaks a difficult problem into one or more simpler
versions of itself

• Recursive definition: A definition in which something is
defined in terms of smaller versions of itself

• Recursive problem can be broken into two parts:
• Base case: The case for which the solution can be stated
nonrecursively

• Recursive case: The case for which the solution is expressed in terms
of a smaller version of itself
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Summary

Recursion is tricky!

• Always put base case first
• Base case should eventually happen given any input
• Recursive solution may not always be the best
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