
Sorting and Some Algorithm
Principles

CS 4102, Algorithms
Prof. Floryan and Prof. Horton

Spring 2021

1

Topics

2

Topics in first part of this slide-deck:

3

} Readings: CLRS, Chapter 2
} Goals for this lecture:

} Review the sorting problem and some “basic” algorithms,
while using this to review (or introduce) some principles of
algorithm analysis

} Topics:
} The sorting problem
} Insertion Sort

} Including a lower-bounds proof

} Mergesort
} Including an overview of Divide and Conquer

Sorting Introduction

4

Sorting a Sequence: Defining the Problem

5

} The problem:
} Given a sequence of items a0 … an

reorder it into a permutation a’0 … a’n
such that a’i <= a’i+1 for all pairs

} Specifically, this is sorting in non-descending order…

} We’ll mostly focus on a restricted form of this problem:
“Sorting using comparison of keys”
} The basic operation we’ll count in our analysis will be a

comparison of two items’ key-values. Why?
} General: can sort anything
} Controls decisions, so total operations often proportional
} Can be an expensive operation (e.g. when keys are large strings)

Some Observations

6

} We assume non-descending order for simplicity
} Our analysis results apply for other orderings
} You know a comparison-function can be used in practice

(e.g. Java’s Comparable interface)
} In analyzing a problem and algorithms that solve it, sometimes

it’s important to define constraints like the basic operation
} Example: binary search is an optimal algorithm for searching

using key comparisons, but hashing can be faster in practice.
} Swapping items is often expensive

} We can apply same techniques to count swapping, as a separate
analysis

Sorting: More Terminology

7

} Comparison Sorts: only compare keys and move items
} Adjacent Sort: Algorithms that sort by only swapping

adjacent elements
} e.g., bubble sort and insertion sort
} ...these are a subset of comparison sorts.

} Stable Sort: A sorting algorithm is stable
} when two items x and y occur in the relative order x,y in the original

list AND x==y, then x and y appear in the same relative order x,y in
the final sorted list.

} Why would we want this?

} In-Place Sort: the algorithm uses at most Θ(1) extra space
} e.g., allocating another array of size Θ(n) is NOT allowed.

Why Do We Study Sorting?

8

} An important problem, often needed
} Often users want items in some order
} Required to make many other algorithms work well.

} Example: To use binary search, sequence must be sorted first. The
search algorithm is optimal and requires q(log n) comparisons.

} And, for the study of algorithms…
} A history of solutions
} Illustrates various design strategies and data structures
} Illustrates analysis methods
} Illustrates how we prove something about optimality for this

problem

Insertion Sort

9

Insertion Sort

10

} The strategy:
1. First section of list is sorted (say i-1 items)
2. Increase this partial solution by…
3. Shifting down next item beyond sorted section (i.e. the ith item)

down to its proper place in sorted section. (Must shift items
up to make room.)

4. Since one item alone is already sorted, we can put steps 1-3 in
a loop going from the 2nd to the last item.

} Note: Example of general strategy:
Extend a partial solution by increasing its size by one.
Some call this: decrease and conquer

Insertion Sort: Pseudocode

An Aside:
Proving it right with Loop Invariants

} An important technique to prove algorithm correctness.
(See CLRS or even Wikipedia.)

} Properties that hold true at these points:
} Prior to first iteration (initialization)
} If true before an iteration, then true after that iteration

(maintenance)
} When loop ends, properties still hold and tell us something

useful about correctness (termination)

} Loop invariant for Insertion Sort:
} For the for-loop governed by index j, the values

A[1..j-1] are the elements originally stored in the sub-list but in
sorted order

Properties of Insertion Sort
} We could have talked about bubble sort, selection sort,…
} Why Insertion Sort here?

} Easy to code
} In-place
} What’s it like if the list is sorted?

} Or almost sorted?

} Fine for small inputs. Why?
} Is it stable? Why?

Insertion Sort: Analysis

} Worst-Case:
} Average Behavior

} Average number of comparisons in inner-loop?

} So for the jth element, we do roughly j/2 comparisons

} To calculate A(n), we note j goes from 2 to n

} Best-case behavior? One comparison each time

W (n) = (j −1) = n(n−1) / 2 =Θ(n2
j=2

n

∑)

1
j

i + 1
j
(j −1) =

i=1

j−1

∑ j
2
+
1
2
−
1
j

B(n) = 1= n−1
j=2

n

∑

A(n) = j
2
+
1
2
−
1
j

"

#
$

%

&
'=

n2

4
+
3n
4
−1− 1

jj=2

n

∑ ≈
n2

4j=2

n

∑

Lower Bounds Proof for
Adjacent Sorts

15

Insertion Sort: Best of a breed?
} We know that I.S. is one of many quadratic sort

algorithms, and that log-linear sorts (i.e.Q(n lg n)) do
exist

} But, can we learn something about I.S. that tells us what it
is about I.S. that “keeps it” in the slower class?
} Yes, by a lower-bounds argument for adjacent sort algorithms
} This is our first example about you how to make lower-bounds

arguments about a problem
} E.g.“it’s impossible for any algorithm to solve this problem in better

than….”

} We’ll show that sorting a list by only swapping adjacent
elements is Ω(n2) and can never be o(n2)

Removing Inversions
} Define an inversion in a sequence:

A pair of elements that are out of order
} E.g. [2, 4, 1, 5, 3] not sorted and has 4 inversions:

pairs (2,1) (4,1) (4,3) (5,3)
} To sort, we must fix each of these
} What’s the maximum possible number of inversions?

n(n-1)/2 all possible pairs
This really can occur, e.g. [5, 4, 3, 2, 1]

} Insertion sort only swaps adjacent elements
} This can only remove at most one inversion!
} Therefore insertion sort only removes at most one inversion

for each key comparison

Lower-bounds and Insertion Sort
} Theorem

} Any algorithm that sorts by comparison of keys and removes
at most one inversion after each comparison must do at least
n(n-1)/2 comparisons in the worst case.

} Important: we just proved a time-complexity result about
the problem that applies to any algorithm that solves it!
} Lower bounds proofs are about the problem, and can be used

to show an algorithm is optimal (or close to optimal)

} Conclusion: Insertion Sort is optimal for the set of
algorithms that only swap adjacent elements.
} I.e. adjacent sorts

} And, for any algorithm to be o(n2), it must swap elements
that are not adjacent!

Mergesort and
Divide and Conquer

19

Mergesort Overview

20

} General and practical sorting algorithm
} Good example of a divide-and-conquer algorithm

} More on what that means next
} Recursion leads to a more efficient solution in the worst-case

than adjacent sorts
} It’s o(n2) or Θ(n lg n) to be more precise

Divide and Conquer Strategy

21

} A divide-and conquer algorithm usually has the following
structure:

solveProblem(input)
if input is small, then solve directly (brute-force?)
else if input is big

divide problem into n smaller problems
recursively invoke solveProblem() on smaller problems
combine solutions to small problems into bigger solution
return bigger solution

} Note: maybe solve all the smaller problems, or maybe just
some of them.

} Runtime is sum of the times to divide, recursively solve, and
combine

Mergesort and Divide and Conquer

22

} Base case:
} Sublist is size 1. Already sorted!

} Divide:
} Divide list into two sublists of equal size.

} Conquer:
} Call mergesort recursively on each sublist.
} Gives us a sorted left and right sublist.

} Combine:
} Merge the sorted left and right sublists to get one larger

sorted list.

Picture

23

} Note: in this diagram, think of the colored regions being
small values that should get sorted to the front.

Mergesort code

24

} Specification:
} Input: List lst and indexes first, and last, such that all elements

lst[i] are defined for first <= i <= last.
} Output: lst[first], …, lst[last] is sorted rearrangement of the

same elements
def mergesort(lst, first, last):

if first < last:
mid = (first+last) // 2
mergesort(lst, first, mid)
mergesort(lst, mid+1, last)
merge(lst, first, mid, last)

return
} Wait, where’s the actual work happening?
} Why do we need the 2nd and 3rd parameters?

Merge: Pseudocode

25

} Most of the work done in merge
} Comparisons, moves
} Most implementations use a "scratch array”

} An extra array of size n which is then copied back into

} The Problem:
} Given two sorted sequences A and B, merge them to create one sorted

sequence C
} Strategy:
1. C is initially empty.
2. Look at the first (current) items in A and B.
3. The smallest of these should become the first (next) item in C
4. Move that item to the end of C.
5. You need to now compare the next item in that list to the current item in the

other. Essentially, go to Step 2.
6. When you’ve moved all items in one list, move the items in the other to the

end.
} Time complexity of merge is linear, Θ(n)

Mergesort Analysis

26

} What is the runtime T(n)? Add up the costs!
} Divide the list: constant, Θ(1)
} Two recursive sorts: each costs T(n/2)
} Merge: linear, n or close to it, so Θ(n)

} Overall it’s better than adjacent sorts!
T(n) = 2T(n/2) + n Î Θ(n log(n))

} Uhhhhh...why is it that order class?

} Upcoming lectures and Chapter 4 of CLRS is all about
“solving” recurrence relations
} Getting a closed-form solution to a recursive formula

Summary

27

Where we are: We’ve used sorting to…
} See again how to apply ideas of counting operations

} Including: worst, average, best case

} See two different strategies for the same problem
} Insertion sort: “decrease and conquer”
} Mergesort: divide and conquer
} Introduced some new concepts: in-place, stable

} Prove a lower-bound that shows
} One class of algorithms has a lower bound of W(n2)
} To do better, must remove >1 inversion for each comparison

} Reason about algorithms and problems
} Cost measures for an algorithm
} Correctness: loop invariants
} Lower-bound proof for a problem and class of algorithms

