Recurrence Relations

CS 4102: Algorithms
Fall 2021
Mark Floryan and Tom Horton

Recurrence Relations

Solving Recurrence Relations

» Several (four) methods for solving:
Directly Solve
Substitution method

In short, guess the runtime and solve by induction

Recurrence trees

We won'’t see this in great detail, but a graphical view of the
recurrence

Sometimes a picture is worth 2! words!
“Master” theorem

Easy to find Order-Class for a number of common cases

Different variations are called different things, depending on the
source

Directly Solving (or Iteration
Method)

Directly Solve (unrolling the recurrence)

» For Mergesort:
T(n) = 2*T(n/2) + n

Do it on board =2

Another Example!!

» Consider:
T(n) = 3*T(n/4) + n

Unroll the recurrence
T(n) = 3*T(n/4) + n

T(n) = 3*[3*T(n/16)+n/4] + n
> = 9T(n/16) + (7/4)n

v Vv

T(n) = 9T(n/16) + (7/4)n

T(n) = 9[3T(n/64) + n/16] + (7/4)n
T(n) = 27*T(n/64) + 9n/16 + 7n/4
T(n) = 27*T(n/64) + 37n/16

v Vv VvV Vv

» T(n) = 3¢ *T(n/4) + n * 3 (3/4)!

//Pattern??

&sum from | to d

Unroll the recurrence

» T(n) = 3¢ *T(n/4) + n * 3 (3/4)!

» We hit base case when:
n/(49) = |
n = 4d

d = log,(n) //seem familiar??

Unroll the recurrence

» T(n) = 39 *T(n/49) + n * > (3/4)°

» Let’s do one term at a time.
» 39 *T(n/49)
) 3Iog4(n) *T(')

p 3log#n) = plogd(3) //huh? this is a log rule

Unroll the recurrence

b T(n) = 3¢ *T(n/(4%)) + n * 3 (3/4)%!

» Let’s do one term at a time.
n* > (3/4)¢! /Inote summation part approaches 4 as d grows

n * 3 (3/4)¢! <= 4*n = @(n)

10

Unroll the recurrence

» T(n) = 39*T(n/49) + n *) (3/4)d

» T(n) = 3l°&*) + O(n)
» T(n) =n'°g¥3) + @(n) //log rules

» T(n) = o(n) + O(n)

» T(n) = O(n)

11

12

Substitution Method

[teration or Substitution Method

» Strategy
|. Consider Mergesort Recurrence
T(n) = 2*T(n/2) + n
2. Guess the solution
Let’s go with n*log(n) **Remember logs are all base 2 (usually)

3. Inductively Prove that recurrence is in proper order class
For n*log(n), we need to prove that T(n) <= c*n*log(n)
For some ‘c’ constant and for all n >=n0

Remember, we get to choose the ‘c’ and ‘n0’ values

Do it on board =2

13

Substitution Method: Subtleties
» Consider:

T(n) = 2*T(n/2) + | T(1)=I
» Let’s make our guess:

We are thinking O(n)

» Try to prove:
T(n) <= c*n

» What happens! How do we fix this issue?
» On board =

14

Substitution Method: Subtleties

» Consider:
T(n) = 2*T(n/2) + |

15

Substitution Method: Subtleties

» Summary of the problem / issue:
T(n) = 2*T(n/2) + |
T(n) <= 2(c*(n/2)) + |

T(n) <=c*n + |

» What is the issue here!?

» ¢*n + | isTOO LARGE.
» Need to prove exact form of inductive hypothesis

16

Substitution Method: Subtleties

» Here is how we fix the issue. Subtract lower order term.

» Inductive Hypothesis:

T(n) <=c*n-d //d is a constant term. Note c*n-d <= c*n

» Fix:
T(n) = 2*¥T(n/2) + |
T(n) <= 2(c*(n/2) - d) + |
T(n) <=c*n-2d + | <=c*n -d /las long as d >= |

17

Substitution Method: Another Pitfall
» Consider Mergesort recurrence again:

T(n) = 2*T(n/2) + n
» Let’s make our guess:

We are thinking O(n) € Note that this is INCORRECT!

» Try to prove:
T(n) <= c*n

» What happens!
» On board 2

18

Substitution Method: Another Pitfall

» Consider Mergesort recurrence again:
T(n) = 2*T(n/2) + n

19

Substitution Method: Pitfall Example

» Attempt to prove:
T(n) = 2*T(n/2) + n
T(n) <= 2*(c*n/2) + n

T(n) <=c*n +n

» Again, need to prove EXACT form of inductive
hypothesis.

» Subtracting off a lower order term won’t help.
Why!?

20

21

Recursion Tree Method

Recursion Tree Method

» Evaluate: T(n) = 2*T(n/2) + n

Work copy:T(k) =T(k/2) +T(k/2) + k
For k=n/2, T(n/2) =T(n/4) +T(n/4) + (n/2)

» [size| non-recursive cost]

T (n) | n

/

T (n/2) i n/?

/

\

T (n/2)

n/2

=

\

T (n/4)

n/-l

T(n/4)

n/4

T (n/4)

n/4

I (n/4 n /4

22

VAN

/\

7\

AN

Recursion Tree: Total Cost

» To evaluate the total cost of the recursion tree
sum all the non-recursive costs of all nodes
= Sum (rowSum(cost of all nodes at the same depth))
» Determine the maximum depth of the recursion tree:

For our example, at tree depth d the size parameter is n/(29)
the size parameter converging to base case, i.e. case |
such that, n/(29) = |,

d =lg(n)
The rowSum for each row is n

» Therefore, the total cost, T(n) = n Ig(n)

23

24

The Master Theorem

The Master Theorem

» Given: a divide and conquer algorithm

An algorithm that divides the problem of size n into a
subproblems, each of size n/b

Let the cost of each stage (i.e., the work to divide the problem
+ combine solved subproblems) be described by the function

f(n)
» Then, the Master Theorem gives us a cookbook for the
algorithm’s running time

Some textbooks has a simpler version they call the “Main
Recurrence Theorem”

We'll splits it into individual parts

25

The Master Theorem (from Cormen)

» If T(n) =aT(m/b) + f(n)
thenletk =1Iga/lgb =log,(a) (critical exponent)

» Then three common cases:
If f(n) € O(nk¢) for some positive g, then T(n) € A(nk)

If f(n) € ©(n¥) thenT(n) € O(f(n) log(n)) = ®(n* log(n))

If f(n) € Q(n**®) for some positive &, and

a f(n/b) < ¢ f(n) for some ¢ < [and sufficiently large n,
then T(n) € O(f(n))

» Note: none of these cases may apply

26

Using the Master Theorem

» T(n) =9T(n/3) + n
A=9,b=3,f(n) =n

» Master Theorem
k=1Ig9/Ilg3=log:9 =2
Since f(n) = O(n'°&:? - &), where £=1, case | applies:
T(n) € O(nk)

Thus the solution is T(n) = ®(n?) since k=2

27

Problems to Try

» Can you use a theorem on these!?
» Assume T(I) = |

T(n) =T(n/2) +Ign

T(n) =T(n/2) + n

T(n) =2T(n/2) + n (like Mergesort)
T(n) =2T(n/2) + nlgn

28

29

More Master Theorem Examples

Problems to Try

» Let’s try these?

» T(n) =7T(n/3) + n?2
» T(n) =3T(n/3) + n/2
» T(n) =4T(n/2) + n/ log(n)
» T(n) =3T(n/3) + n/ log(n)

30

Problems to Try: Solutions

» T(n) = 7T (2) + n?
k = log4(7) = 1.77
nk — 177

Case 3: n?

31

f(n) =n?

regularity: 7 * f (g) < ¢ *n*

le 2
7*;Sc*n

7
gnZSc*nz

IIYES

Problems to Try: Solutions

» T(n) = 3T % +g
k =log;(3) =1

nk = n Fon) ="

Case 2: nlogn

32

Problems to Try: Solutions

n
log(n)

» T(n) = 4T (5) +
» k =log,(4) =2

nk = n? f(n) = logn(n)

Case |:n\2

33

Problems to Try: Solutions

»TOO—ST() n

log(n)
k =log;(3) =1

n®=n f(n) =

log(n)

Case | doesn’t apply because f(n) not polynomially smaller
e.g., n/log(n) !<=n”0.99 for large n

34

35

Solutions

Solutions to problems that aren’t directly in the slides above

Directly Solve (unrolling the recurrence)

» For Mergesort:
T(n) = 2*T(n/2) + n

Do it on board =2

36

Directly Solve (unrolling the recurrence)
T(n) = 2¥T(n/2) + n

T(n) =2*[2 *T(n/4) + n/2] + n /lunroll one level
= 4*T(n/4) + 2n

= 4*[2*T(n/8) + n/4] + 2n /lunroll another level
= 8*T(n/8) + 3n

= 8*[2*T(n/16) + n/8] + 3n //one more time
= 16*T(n/16) + 4n

37

Directly Solve (unrolling the recurrence)

T(n) = 4*T(n/4) + 2n
= 8*T(n/8) + 3n
= 16*T(n/16) + 4n

= ... //what is the general pattern??

=24 %T (Z—nd) + dn /Iwhere d is depth of recursion

38

Directly Solve (unrolling the recurrence)

T(n) = 2% « T() + dn /Iwhere d is depth of recursion

—d 1 //when do we hit T(1)

2

n =24

d =log,n //recursion ends when d is log(n)

T(n) =24+ T () +dn /isub back in for d

T(n) = 2082 x T (m) + log,(n) *n

T(n) =n*=T(1) +log,(n) *n
T(n) =n+ log,(n) *n = @(nlog(n))

39

[teration or Substitution Method
» T(n) = 2*T(n/2) + n

Guess n*log(n)

» T(n) < c*n=*log,(n)

» Base case (n=2):
T(2) <cx*2=xlog,(2)
2T(N)+2 < c*2 %1
4 < 2c /ltrue if ¢ >=12

40

[teration or Substitution Method
» T(n) = 2*T(n/2) + n

Guess n*log(n)

» T(n) < c*n=*log,(n)

» Inductive Hypothesis:
Assume for all k < n that T (k) < c * k * log, (k)

41

[teration or Substitution Method
» T(n) = 2*T(n/2) + n

Guess n*log(n)

» Inductive Step:
T(n) =2*T(§)+n
T(n) < 2*(c*§*log2(g))+n
T(n) < cn* (log,(n) —log,(2)) +n
T(n) <cnx*(log,(n)—1)+n
T(n) <c*n=x*log,(n) —cn+n < cx*nx*log,(n)
llifc >= 1

42

Problems to Try

» Can you use a theorem on these!?
» Assume T(I) = |

T(n) =T(n/2) +Ign

T(n) =T(n/2) + n

T(n) =2T(n/2) + n (like Mergesort)
T(n) =2T(n/2) + nlgn

43

Problems to Try

» T(n) =T (g) + lg(n)
k =log,(1) =0

n’ =1 f(n) =1g(n)
» Case 3 does not apply!

b T(n)=T(§)+n
k =log,(1) =0
n? = f(n) =n

Case 3:T(n) = 0(n) 1 * (g) <c*n /IYES

44

Problems to Try

» T(n) = 2T (%) + n (like Mergesort)

k =log,(2) =1
nt f(n)=n

Case 2: T(n) = 0(nlog(n))

» T(n) = 2T (%) + nlog(n)

k=1
n' f(n) = nlog(n)
nlog(n) = c * nl*e /INO! not polynomially smaller!

Master theorem cannot be used

45

