Recurrence Relations

CS 4102: Algorithms
Fall 2021
Mark Floryan and Tom Horton

Recurrence Relations

Solving Recurrence Relations

- Several (four) methods for solving:
- Directly Solve
- Substitution method
- In short, guess the runtime and solve by induction
- Recurrence trees
- We won't see this in great detail, but a graphical view of the recurrence
- Sometimes a picture is worth 2^{10} words!
"Master" theorem
- Easy to find Order-Class for a number of common cases
- Different variations are called different things, depending on the source

Directly Solving (or Iteration Method)

Directly Solve (unrolling the recurrence)

- For Mergesort:

$$
T(n)=2 * T(n / 2)+n
$$

- Do it on board \rightarrow

Another Example!!

- Consider:
- $\mathrm{T}(\mathrm{n})=3 * T(n / 4)+n$

Unroll the recurrence

- $T(n)=3 * T(n / 4)+n$
- $T(n)=3 *[3 * T(n / 16)+n / 4]+n$

$$
=9 T(n / 16)+(7 / 4) n
$$

- $T(n)=9 T(n / 16)+(7 / 4) n$
- $T(n)=9[3 T(n / 64)+n / 16]+(7 / 4) n$
- $T(n)=27 * T(n / 64)+9 n / 16+7 n / 4$
- $T(n)=27 * T(n / 64)+37 n / 16$
- $T(n)=3^{d} * T\left(n / 4^{d}\right)+n * \sum(3 / 4)^{d-1}$ ثsum from 1 to d

Unroll the recurrence

- $T(n)=3^{d} * T\left(n / 4^{d}\right)+n * \sum(3 / 4)^{d-1}$
- We hit base case when:
- $n /\left(4^{\mathrm{d}}\right)=1$
($n=4^{d}$
$\mathrm{d}=\log _{4}(\mathrm{n}) \quad / /$ seem familiar??

Unroll the recurrence

- $T(n)=3^{d} * T\left(n / 4^{d}\right)+n * \sum(3 / 4)^{d}$
- Let's do one term at a time.
- $3^{\mathrm{d}} * \mathrm{~T}\left(\mathrm{n} / 4^{\mathrm{d}}\right)$
- $3^{\log 4(n)} * T(I)$
- $3^{\log 4(n)}=n^{\log 4(3)}$
//huh? this is a log rule

Unroll the recurrence

- $T(n)=3^{d} * T\left(n /\left(4^{d}\right)\right)+n * \sum(3 / 4)^{d-1}$
- Let's do one term at a time.
- $\mathrm{n} * \sum(3 / 4)^{\mathrm{d}-\mathrm{I}} \quad / /$ note summation part approaches 4 as d grows
- $\mathrm{n} * \sum(3 / 4)^{\mathrm{d}-\mathrm{I}}<=4 * \mathrm{n}=\Theta(\mathrm{n})$

Unroll the recurrence

- $T(n)=3^{d} * T\left(n / 4^{d}\right)+n * \sum(3 / 4)^{d}$
- $T(n)=3^{\log 4(n)}+\Theta(n)$
- $T(n)=n^{\log 4(3)}+\Theta(n) \quad / / l o g$ rules
- $T(n)=o(n)+\Theta(n)$
- $T(n)=\Theta(n)$

Substitution Method

Iteration or Substitution Method

- Strategy

- I. Consider Mergesort Recurrence
- $T(n)=2 * T(n / 2)+n$
- 2. Guess the solution
- Let's go with $n * \log (\mathrm{n}) * *$ Remember logs are all base 2 (usually)
- 3. Inductively Prove that recurrence is in proper order class
- For $n * \log (n)$, we need to prove that $T(n)<=c^{*} n^{*} \log (n)$
- For some ' c ' constant and for all $\mathrm{n}>=\mathrm{n} 0$
- Remember, we get to choose the ' c ' and ' $n 0$ ' values
- Do it on board \rightarrow

Substitution Method: Subtleties

- Consider:

$$
\mathrm{T}(\mathrm{n})=2 * \mathrm{~T}(\mathrm{n} / 2)+1
$$

$$
T(1)=1
$$

- Let's make our guess:
, We are thinking $O(n)$
- Try to prove:
- $\mathrm{T}(\mathrm{n})<=c^{*} \mathrm{n}$
- What happens? How do we fix this issue?
- On board \rightarrow

Substitution Method: Subtleties

- Consider:
- $T(n)=2 * T(n / 2)+1$

Substitution Method: Subtleties

- Summary of the problem / issue:
- $T(n)=2 * T(n / 2)+1$
- $T(n)<=2\left(c^{*}(n / 2)\right)+1$
- $T(n)<=c^{*} n+1$
- What is the issue here?
- $c^{*} n+1$ is TOO LARGE.
- Need to prove exact form of inductive hypothesis

Substitution Method: Subtleties

- Here is how we fix the issue. Subtract lower order term.
- Inductive Hypothesis:
* $\mathrm{T}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{n}-\mathrm{d} \quad / / \mathrm{d}$ is a constant term. Note $\mathrm{c}^{*} \mathrm{n}-\mathrm{d}<=\mathrm{c}^{*} \mathrm{n}$
- Fix:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2 * T(n / 2)+1 \\
& T(n)<=2\left(c^{*}(n / 2)-d\right)+1 \\
& T(n)<=c^{*} n-2 d+1<=c^{*} n-d
\end{aligned}
$$

Substitution Method: Another Pitfall

- Consider Mergesort recurrence again:
- $\mathrm{T}(\mathrm{n})=2 * T(\mathrm{n} / 2)+\mathrm{n}$
- Let's make our guess:
, We are thinking $\mathrm{O}(\mathrm{n}) \leftarrow$ Note that this is INCORRECT!
- Try to prove:
- $\mathrm{T}(\mathrm{n})<=c^{*} \mathrm{n}$
- What happens?
- On board \rightarrow

Substitution Method: Another Pitfall

- Consider Mergesort recurrence again:

$$
\text { , } \mathrm{T}(\mathrm{n})=2 * T(\mathrm{n} / 2)+\mathrm{n}
$$

Substitution Method: Pitfall Example

- Attempt to prove:
, $T(n)=2 * T(n / 2)+n$
- $T(n)<=2 *\left(c^{*} n / 2\right)+n$
- $\mathrm{T}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{n}+\mathrm{n}$
- Again, need to prove EXACT form of inductive hypothesis.
- Subtracting off a lower order term won't help.
- Why?

Recursion Tree Method

Recursion Tree Method

- Evaluate: $T(n)=2 * T(n / 2)+n$
b Work copy: $T(k)=T(k / 2)+T(k / 2)+k$
- For $\mathrm{k}=\mathrm{n} / 2, \mathrm{~T}(\mathrm{n} / 2)=\mathrm{T}(\mathrm{n} / 4)+\mathrm{T}(\mathrm{n} / 4)+(\mathrm{n} / 2)$
- [size| non-recursive cost]

Recursion Tree: Total Cost

- To evaluate the total cost of the recursion tree
- sum all the non-recursive costs of all nodes
> = Sum (rowSum(cost of all nodes at the same depth))
- Determine the maximum depth of the recursion tree:
- For our example, at tree depth d the size parameter is $n /\left(2^{d}\right)$
- the size parameter converging to base case, i.e. case I
- such that, $\mathrm{n} /\left(2^{\mathrm{d}}\right)=\mathrm{I}$,
b $d=\lg (n)$
, The rowSum for each row is n
- Therefore, the total cost, $T(n)=n \lg (n)$

The Master Theorem

The Master Theorem

- Given: a divide and conquer algorithm
- An algorithm that divides the problem of size n into a subproblems, each of size n / b
- Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function $f(n)$
- Then, the Master Theorem gives us a cookbook for the algorithm's running time
- Some textbooks has a simpler version they call the "Main Recurrence Theorem"
- We'll splits it into individual parts

The Master Theorem (from Cormen)

- If $T(n)=a T(n / b)+f(n)$
v then let $\mathrm{k}=\lg \mathrm{a} / \lg \mathrm{b}=\log _{\mathrm{b}}(\mathrm{a})($ critical exponent)
- Then three common cases:
- If $f(n) \in O\left(n^{k-\varepsilon}\right)$ for some positive ε, then $T(n) \in \Theta\left(n^{k}\right)$
- If $f(n) \in \Theta\left(n^{k}\right)$ then $T(n) \in \Theta(f(n) \log (n))=\Theta\left(n^{k} \log (n)\right)$
- If $\mathrm{f}(\mathrm{n}) \in \Omega\left(\mathrm{n}^{\mathrm{k}+\varepsilon}\right)$ for some positive ε, and
a $f(n / b) \leq c f(n)$ for some $c<1$ and sufficiently large n, then $T(n) \in \Theta(f(n))$
- Note: none of these cases may apply

Using the Master Theorem

- $T(n)=9 T(n / 3)+n$
- $A=9, b=3, f(n)=n$
- Master Theorem
- $\mathrm{k}=\lg 9 / \lg 3=\log _{3} 9=2$
- Since $f(n)=O\left(n^{\log _{3} 9-\varepsilon}\right)$, where $\varepsilon=I$, case I applies:
$T(n) \in \Theta\left(n^{k}\right)$
* Thus the solution is $T(n)=\Theta\left(n^{2}\right)$ since $k=2$

Problems to Try

- Can you use a theorem on these?
- Assume T(I) = I
- $T(n)=T(n / 2)+\lg n$
- $T(n)=T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$ (like Mergesort)
- $T(n)=2 T(n / 2)+n \lg n$

More Master Theorem Examples

Problems to Try

- Let's try these?
- $T(n)=7 T(n / 3)+n^{\wedge} 2$
- $T(n)=3 T(n / 3)+n / 2$
- $T(n)=4 T(n / 2)+n / \log (n)$
- $T(n)=3 T(n / 3)+n / \log (n)$

Problems to Try: Solutions

- $T(n)=7 T\left(\frac{n}{3}\right)+n^{2}$
- $k=\log _{3}(7)=1.77$
, $n^{k}=n^{1.77}$

$$
f(n)=n^{2}
$$

- Case 3: n^{2}
regularity: $7 * f\left(\frac{n}{3}\right) \leq c * n^{2}$

$$
\begin{aligned}
& 7 * \frac{n^{2}}{9} \leq c * n^{2} \\
& \frac{7}{9} n^{2} \leq c * n^{2}
\end{aligned}
$$

Problems to Try: Solutions

$$
\begin{aligned}
& T(n)=3 T\left(\frac{n}{3}\right)+\frac{n}{2} \\
& \\
& \forall k=\log _{3}(3)=1 \\
& n^{k}=n
\end{aligned} f(n)=\frac{n}{2} \quad l \begin{aligned}
& \\
&
\end{aligned}
$$

- Case 2: nlogn

Problems to Try: Solutions

$$
\begin{aligned}
& T(n)=4 T\left(\frac{n}{2}\right)+\frac{n}{\log (n)} \\
& k=\log _{2}(4)=2
\end{aligned}
$$

$$
n^{k}=n^{2} \quad f(n)=\frac{n}{\log (n)}
$$

Case I: $\mathrm{n}^{\wedge} 2$

Problems to Try: Solutions

$$
\begin{aligned}
& T(n)=3 T\left(\frac{n}{3}\right)+\frac{n}{\log (n)} \\
& \quad k=\log _{3}(3)=1 \\
& \quad n^{k}=n \quad f(n)=\frac{n}{\log (n)}
\end{aligned}
$$

- Case I doesn't apply because $f(n)$ not polynomially smaller
> e.g., $n / \log (n)!<=n^{\wedge} 0.99$ for large n

Solutions

Solutions to problems that aren't directly in the slides above

Directly Solve (unrolling the recurrence)

- For Mergesort:
- $T(n)=2 * T(n / 2)+n$
- Do it on board \rightarrow

Directly Solve (unrolling the recurrence)

$$
T(n)=2 * T(n / 2)+n
$$

$$
\begin{aligned}
T(n) & =2 *[2 * T(n / 4)+n / 2]+n \quad \text { //unroll one level } \\
& =4 * T(n / 4)+2 n
\end{aligned}
$$

$$
=4 *[2 * T(n / 8)+n / 4]+2 n \quad / / u n r o l l \text { another level }
$$

$$
=8 * T(n / 8)+3 n
$$

$$
=8 *[2 * T(n / 16)+n / 8]+3 n \quad / / \text { one more time }
$$

$$
=16 * T(n / 16)+4 n
$$

Directly Solve (unrolling the recurrence)

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =4 * T(\mathrm{n} / 4)+2 \mathrm{n} \\
& =8 * T(\mathrm{n} / 8)+3 n \\
& =16 * T(\mathrm{n} / 16)+4 n \\
& =\ldots
\end{aligned}
$$

$=2^{d} * T\left(\frac{n}{2^{d}}\right)+d n \quad / /$ where d is depth of recursion

Directly Solve (unrolling the recurrence)

$$
\mathrm{T}(\mathrm{n})=2^{d} * T\left(\frac{n}{2^{d}}\right)+d n \quad / / \text { where } \mathrm{d} \text { is depth of recursion }
$$

$\frac{n}{2^{d}}=1 \quad / /$ when do we hit $\mathrm{T}(\mathrm{I})$
$n=2^{d}$
$d=\log _{2} n$
//recursion ends when d is $\log (\mathrm{n})$
$\mathrm{T}(\mathrm{n})=2^{d} * T\left(\frac{n}{2^{d}}\right)+d n \quad$ //sub back in for d
$T(n)=2^{\log _{2}(n)} * T\left(\frac{n}{2^{\log _{2}(n)}}\right)+\log _{2}(n) * n$
$T(n)=n * T(1)+\log _{2}(n) * n$
$\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{n}+\boldsymbol{l o g}_{\mathbf{2}}(\boldsymbol{n}) * \boldsymbol{n}=\boldsymbol{\Theta}(\boldsymbol{n l o g}(\boldsymbol{n}))$

Iteration or Substitution Method

- $T(n)=2 * T(n / 2)+n$
- Guess $n * \log (n)$
- $T(n) \leq c * n * \log _{2}(n)$
- Base case ($\mathrm{n}=2$):
- $T(2) \leq c * 2 * \log _{2}(2)$
- $2 * \mathrm{~T}(\mathrm{I})+2 \leq c * 2 * 1$
- $4 \leq 2 c$
//true if $\mathrm{c}>=2$

Iteration or Substitution Method

- $T(n)=2 * T(n / 2)+n$
- Guess $\mathrm{n}^{*} \log (\mathrm{n})$
- $T(n) \leq c * n * \log _{2}(n)$
- Inductive Hypothesis:
- Assume for all $k<n$ that $T(k) \leq c * k * \log _{2}(k)$

Iteration or Substitution Method

- $T(n)=2 * T(n / 2)+n$
- Guess $n * \log (n)$
- Inductive Step:

```
- \(T(n)=2 * T\left(\frac{n}{2}\right)+n\)
- \(T(n) \leq 2 *\left(c * \frac{n}{2} * \log _{2}\left(\frac{n}{2}\right)\right)+n\)
- \(T(n) \leq c n *\left(\log _{2}(n)-\log _{2}(2)\right)+n\)
- \(T(n) \leq c n *\left(\log _{2}(n)-1\right)+n\)
b \(T(n) \leq c * n * \log _{2}(n)-c n+n \leq \mathbf{c} * \mathbf{n} * \log _{2}(\mathbf{n})\)
                                    /lif c >= I
```


Problems to Try

- Can you use a theorem on these?
- Assume T(I) = I
- $T(n)=T(n / 2)+\lg n$
- $T(n)=T(n / 2)+n$
- $T(n)=2 T(n / 2)+n$ (like Mergesort)
- $T(n)=2 T(n / 2)+n \lg n$

Problems to Try

- $T(n)=T\left(\frac{n}{2}\right)+\lg (n)$
- $k=\log _{2}(1)=0$
$n^{0}=1$
Case 3 does not apply!

$$
\begin{aligned}
& T(n)=T\left(\frac{n}{2}\right)+n \\
& \text { - } k=\log _{2}(1)=0 \\
& \text { - } n^{0}=1 \\
& f(n)=n
\end{aligned}
$$

- Case 3:T(n) $=\Theta(n)$
$1 *\left(\frac{n}{2}\right) \leq c * n \quad / / Y E S$

Problems to Try

- $T(n)=2 T\left(\frac{n}{2}\right)+n$ (like Mergesort)
- $k=\log _{2}(2)=1$
- n^{1}

$$
f(n)=n
$$

- Case 2: $T(n)=\Theta(n \log (n))$
- $T(n)=2 T\left(\frac{n}{2}\right)+n \log (n)$
- $\mathrm{k}=\mathrm{l}$
- n^{1}
$f(n)=n \log (n)$
- $n \log (n) \geq c * n^{1+\epsilon} \quad / /$ NO! not polynomially smaller!
- Master theorem cannot be used

