
Recurrence Relations

CS 4102: Algorithms
Fall 2021

Mark Floryan and Tom Horton

1

Recurrence Relations

2

Solving Recurrence Relations

3

} Several (four) methods for solving:
} Directly Solve
} Substitution method

} In short, guess the runtime and solve by induction

} Recurrence trees
} We won’t see this in great detail, but a graphical view of the
recurrence

} Sometimes a picture is worth 210 words!

} “Master” theorem
} Easy to find Order-Class for a number of common cases
} Different variations are called different things, depending on the
source

Directly Solving (or Iteration
Method)

4

Directly Solve (unrolling the recurrence)

5

} For Mergesort:

} T(n) = 2*T(n/2) + n

} Do it on board à

Another Example!!

6

} Consider:
} T(n) = 3*T(n/4) + n

Unroll the recurrence

7

} T(n) = 3*T(n/4) + n
} T(n) = 3*[3*T(n/16)+n/4] + n
} = 9T(n/16) + (7/4)n

} T(n) = 9T(n/16) + (7/4)n
} T(n) = 9[3T(n/64) + n/16] + (7/4)n
} T(n) = 27*T(n/64) + 9n/16 + 7n/4
} T(n) = 27*T(n/64) + 37n/16 //Pattern??

} T(n) = 3d * T(n/4d) + n * ∑(3/4)d-1 ßsum from 1 to d

Unroll the recurrence

8

} T(n) = 3d * T(n/4d) + n * ∑(3/4)d-1

} We hit base case when:
} n/(4d) = 1
} n = 4d

} d = log4(n) //seem familiar??

Unroll the recurrence

9

} T(n) = 3d *T(n/4d) + n * ∑(3/4)d

} Let’s do one term at a time.
} 3d * T(n/4d)
} 3log4(n) * T(1)
} 3log4(n) = nlog4(3) //huh? this is a log rule

Unroll the recurrence

10

} T(n) = 3d * T(n/(4d)) + n * ∑(3/4)d-1

} Let’s do one term at a time.
} n * ∑(3/4)d-1 //note summation part approaches 4 as d grows
} n * ∑(3/4)d-1 <= 4*n = Q(n)

Unroll the recurrence

11

} T(n) = 3d * T(n/4d) + n * ∑(3/4)d

} T(n) = 3log4(n) + Q(n)
} T(n) = nlog4(3) + Q(n) //log rules

} T(n) = o(n) + Q(n)

} T(n) = Q(n)

Substitution Method

12

Iteration or Substitution Method

13

} Strategy
} 1. Consider Mergesort Recurrence

} T(n) = 2*T(n/2) + n

} 2. Guess the solution
} Let’s go with n*log(n) **Remember logs are all base 2 (usually)

} 3. Inductively Prove that recurrence is in proper order class
} For n*log(n), we need to prove thatT(n) <= c*n*log(n)
} For some ‘c’ constant and for all n >= n0
} Remember, we get to choose the ‘c’ and ‘n0’ values

} Do it on board à

Substitution Method: Subtleties

14

} Consider:
} T(n) = 2*T(n/2) + 1 T(1)=1

} Let’s make our guess:
} We are thinking O(n)

} Try to prove:
} T(n) <= c*n

} What happens? How do we fix this issue?
} On board à

Substitution Method: Subtleties

15

} Consider:
} T(n) = 2*T(n/2) + 1

Substitution Method: Subtleties

16

} Summary of the problem / issue:
} T(n) = 2*T(n/2) + 1
} T(n) <= 2(c*(n/2)) + 1
} T(n) <= c*n + 1

} What is the issue here?
} c*n + 1 is TOO LARGE.
} Need to prove exact form of inductive hypothesis

Substitution Method: Subtleties

17

} Here is how we fix the issue. Subtract lower order term.
} Inductive Hypothesis:

} T(n) <= c*n – d //d is a constant term. Note c*n-d <= c*n

} Fix:
} T(n) = 2*T(n/2) + 1
} T(n) <= 2(c*(n/2) - d) + 1
} T(n) <= c*n -2d + 1 <= c*n - d //as long as d >= 1

Substitution Method: Another Pitfall

18

} Consider Mergesort recurrence again:
} T(n) = 2*T(n/2) + n

} Let’s make our guess:
} We are thinking O(n) ß Note that this is INCORRECT!

} Try to prove:
} T(n) <= c*n

} What happens?
} On board à

Substitution Method: Another Pitfall

19

} Consider Mergesort recurrence again:
} T(n) = 2*T(n/2) + n

Substitution Method: Pitfall Example

20

} Attempt to prove:
} T(n) = 2*T(n/2) + n
} T(n) <= 2*(c*n/2) + n
} T(n) <= c*n + n

} Again, need to prove EXACT form of inductive
hypothesis.

} Subtracting off a lower order term won’t help.
} Why?

Recursion Tree Method

21

Recursion Tree Method

22

} Evaluate: T(n) = 2*T(n/2) + n
} Work copy:T(k) =T(k/2) +T(k/2) + k
} For k=n/2, T(n/2) =T(n/4) +T(n/4) + (n/2)

} [size| non-recursive cost]

Recursion Tree: Total Cost

23

} To evaluate the total cost of the recursion tree
} sum all the non-recursive costs of all nodes
} = Sum (rowSum(cost of all nodes at the same depth))

} Determine the maximum depth of the recursion tree:
} For our example, at tree depth d the size parameter is n/(2d)
} the size parameter converging to base case, i.e. case 1
} such that, n/(2d) = 1,
} d = lg(n)
} The rowSum for each row is n

} Therefore, the total cost,T(n) = n lg(n)

The Master Theorem

24

The Master Theorem

25

} Given: a divide and conquer algorithm
} An algorithm that divides the problem of size n into a

subproblems, each of size n/b
} Let the cost of each stage (i.e., the work to divide the problem

+ combine solved subproblems) be described by the function
f(n)

} Then, the Master Theorem gives us a cookbook for the
algorithm’s running time
} Some textbooks has a simpler version they call the “Main

Recurrence Theorem”
} We’ll splits it into individual parts

The Master Theorem (from Cormen)

26

} If T(n) = a T(n/b) + f(n)
} then let k = lg a / lg b = logb(a) (critical exponent)

} Then three common cases:
} If f(n) Î O(nk-e) for some positive e, then T(n) Î Q(nk)

} If f(n) Î Q(nk) then T(n) Î Q(f(n) log(n)) = Q(nk log(n))

} If f(n) Î W(nk+e) for some positive e, and
a f(n/b) ≤ c f(n) for some c < 1 and sufficiently large n,
then T(n) Î Q(f(n))

} Note: none of these cases may apply

Using the Master Theorem

27

} T(n) = 9T(n/3) + n
} A = 9, b = 3, f(n) = n

} Master Theorem
} k = lg 9 / lg 3 = log3 9 = 2
} Since f(n) = O(nlog3 9 - e), where e=1, case 1 applies:

T(n) Î Q(nk)
} Thus the solution is T(n) = Q(n2) since k=2

Problems to Try

28

} Can you use a theorem on these?
} Assume T(1) = 1

} T(n) = T(n/2) + lg n
} T(n) = T(n/2) + n
} T(n) = 2T(n/2) + n (like Mergesort)
} T(n) = 2T(n/2) + n lg n

More Master Theorem Examples

29

Problems to Try

30

} Let’s try these?

} T(n) = 7T(n/3) + n^2
} T(n) = 3T(n/3) + n/2
} T(n) = 4T(n/2) + n / log(n)
} T(n) = 3T(n/3) + n / log(n)

Problems to Try: Solutions

31

} 𝑇 𝑛 = 7𝑇 !
"
+ 𝑛#

} 𝑘 = log! 7 = 1.77
} 𝑛" = 𝑛#.%% 𝑓 𝑛 = 𝑛&

} Case 3: 𝑛&

regularity: 7 ∗ 𝑓 '
!
≤ 𝑐 ∗ 𝑛&

7 ∗ '
!

(
≤ 𝑐 ∗ 𝑛&

%
(
𝑛& ≤ 𝑐 ∗ 𝑛&

//YES

Problems to Try: Solutions

32

} 𝑇 𝑛 = 3𝑇 !
"
+ !

#
} 𝑘 = log! 3 = 1

} 𝑛" = 𝑛 𝑓 𝑛 = #
$

} Case 2: nlogn

Problems to Try: Solutions

33

} 𝑇 𝑛 = 4𝑇 !
#
+ !

$%&(!)

} 𝑘 = log# 4 = 2

} 𝑛" = 𝑛$ 𝑓 𝑛 = #
%&'(#)

} Case 1: n^2

Problems to Try: Solutions

34

} 𝑇 𝑛 = 3𝑇 !
"
+ !

$%&(!)
} 𝑘 = log! 3 = 1

} 𝑛" = 𝑛 𝑓 𝑛 = #
%&'(#)

} Case 1 doesn’t apply because f(n) not polynomially smaller
} e.g., n / log(n) !<= n^0.99 for large n

Solutions

Solutions to problems that aren’t directly in the slides above

35

Directly Solve (unrolling the recurrence)

36

} For Mergesort:

} T(n) = 2*T(n/2) + n

} Do it on board à

Directly Solve (unrolling the recurrence)

37

T(n) = 2*T(n/2) + n

T(n) = 2*[2 * T(n/4) + n/2] + n //unroll one level
= 4*T(n/4) + 2n

= 4*[2*T(n/8) + n/4] + 2n //unroll another level
= 8*T(n/8) + 3n

= 8*[2*T(n/16) + n/8] + 3n //one more time
= 16*T(n/16) + 4n

Directly Solve (unrolling the recurrence)

38

T(n) = 4*T(n/4) + 2n
= 8*T(n/8) + 3n
= 16*T(n/16) + 4n
= … //what is the general pattern??

= 2* ∗ 𝑇 #
$!

+ 𝑑𝑛 //where d is depth of recursion

Directly Solve (unrolling the recurrence)

39

T(n) = 2* ∗ 𝑇 #
$!

+ 𝑑𝑛 //where d is depth of recursion

#
$!
= 1 //when do we hit T(1)

𝑛 = 2*

𝑑 = log$ 𝑛 //recursion ends when d is log(n)

T(n) = 2* ∗ 𝑇 #
$!

+ 𝑑𝑛 //sub back in for d

T(n) = 2%&'"(#) ∗ 𝑇 #
$#$%" & + log$ 𝑛 ∗ 𝑛

T(n) = 𝑛 ∗ 𝑇 1 + log$ 𝑛 ∗ 𝑛
T(n) = 𝒏 + 𝒍𝒐𝒈𝟐 𝒏 ∗𝒏 = 𝜣(𝒏𝒍𝒐𝒈 𝒏)

Iteration or Substitution Method

40

} T(n) = 2*T(n/2) + n
} Guess n*log(n)

} 𝑇 𝑛 ≤ 𝑐 ∗ 𝑛 ∗ log#(𝑛)

} Base case (n=2):
} 𝑇 2 ≤ 𝑐 ∗ 2 ∗ log$ 2
} 2*T(1)+2 ≤ 𝑐 ∗ 2 ∗ 1
} 4 ≤ 2𝑐 //true if c >= 2

Iteration or Substitution Method

41

} T(n) = 2*T(n/2) + n
} Guess n*log(n)

} 𝑇 𝑛 ≤ 𝑐 ∗ 𝑛 ∗ log#(𝑛)

} Inductive Hypothesis:
} Assume for all 𝑘 < 𝑛 that 𝑇 𝑘 ≤ 𝑐 ∗ 𝑘 ∗ log$(𝑘)

Iteration or Substitution Method

42

} T(n) = 2*T(n/2) + n
} Guess n*log(n)

} Inductive Step:

} 𝑇 𝑛 = 2 ∗ 𝑇 #
$
+ 𝑛

} 𝑇 𝑛 ≤ 2 ∗ (𝑐 ∗ #
$
∗ log$(

#
$
)) + 𝑛

} 𝑇 𝑛 ≤ 𝑐𝑛 ∗ log$ 𝑛 − log$ 2 + 𝑛
} 𝑇 𝑛 ≤ 𝑐𝑛 ∗ log$ 𝑛 − 1 + 𝑛
} 𝑇 𝑛 ≤ 𝑐 ∗ 𝑛 ∗ 𝑙𝑜𝑔$ 𝑛 − 𝑐𝑛 + 𝑛 ≤ 𝐜 ∗ 𝐧 ∗ 𝐥𝐨𝐠𝟐(𝐧)

//if c >= 1

Problems to Try

43

} Can you use a theorem on these?
} Assume T(1) = 1

} T(n) = T(n/2) + lg n
} T(n) = T(n/2) + n
} T(n) = 2T(n/2) + n (like Mergesort)
} T(n) = 2T(n/2) + n lg n

Problems to Try

44

} 𝑇 𝑛 = 𝑇 !
#
+ lg(𝑛)

} 𝑘 = log$ 1 = 0
} 𝑛, = 1 𝑓 𝑛 = lg(𝑛)

} Case 3 does not apply!

} 𝑇 𝑛 = 𝑇 !
#
+ 𝑛

} 𝑘 = log$ 1 = 0
} 𝑛, = 1 𝑓 𝑛 = 𝑛

} Case 3:𝑇 𝑛 = Θ(𝑛) 1 ∗ #
$
≤ 𝑐 ∗ 𝑛 //YES

Problems to Try

45

} 𝑇 𝑛 = 2𝑇 !
#
+ 𝑛 (like Mergesort)

} 𝑘 = log$ 2 = 1
} 𝑛- 𝑓 𝑛 = 𝑛

} Case 2: 𝑇 𝑛 = Θ(𝑛𝑙𝑜𝑔 𝑛)

} 𝑇 𝑛 = 2𝑇 !
#
+ 𝑛𝑙𝑜𝑔(𝑛)

} k = 1
} 𝑛- 𝑓 𝑛 = 𝑛𝑙𝑜𝑔(𝑛)
} 𝑛𝑙𝑜𝑔 𝑛 ≥ 𝑐 ∗ 𝑛-./ //NO! not polynomially smaller!
} Master theorem cannot be used

