Quicksort Lower Bounds for Comparison Sorts

CS 4102, Algorithms Prof. Floryan and Prof. Horton Spring 2021

Quicksort and Partition

Readings: CLRS Chapter 7 (not 7.4.2)

Quicksort: Introduction

- Developed by C.A.R. (Tony) Hoare (a Turing Award winner) <u>http://www.wikipedia.org/wiki/C._A._R._Hoare</u>
 - Published in 1962

Classic divide and conquer, but...

- Mergesort does no comparisons to divide, but a lot to combine results (i.e. the merge) at each step
- Quicksort does a lot of work to divide, but has nothing to do after the recursive calls. No work to combine.
 - If we're using arrays. Linked lists? Interesting to think about this!
- Dividing done with algorithm often called *partition*
 - Sometimes called *split*. Several variations.

Quicksort's Strategy

- Called on subsection of array from *first* to *last*
 - Like mergesort
- First, choose some element in the array to be the *pivot* element
 - Any element! Doesn't matter for <u>correctness</u>.
 - Often the first item. For us, the last. Or, we often move some element into the last position (to get better <u>efficiency</u>)
- Second, call *partition*, which does two things:
 - Puts the pivot in its proper place, i.e. where it will be in the correctly sorted sequence
 - All elements below the pivot are less-than the pivot, and all elements above the pivot are greater-than
- Third, use quicksort recursively on both sub-lists

Quicksort is Divide and Conquer

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Contrast to mergesort,

where divide is simple and combine is work

Quicksort's Strategy (a picture)

Use last element as pivot (or pick one and move it there)

	pivot
first	last

After call to partition...

<= pivot (unsorted)	pivot	> pivot (unsorted)
first	split point	last
	,	1 I

Now sort two parts recursively and we're done!

<= pivot (sorted)	pivot	> pivot (sorted)
first	split point	last

- Note that splitPoint may be anywhere in *first..last*
- Note our assumption that all keys are distinct

Quicksort Code

Input Parameters: *list, first, last* Output Parameters: *list*

def quicksort(list, first, last):
 if first < last:
 q = partition(list, first, last)
 quicksort(list, first, q-1)
 quicksort(list, q+1, last)
 return</pre>

Partition Does the Dirty Work

- Partition rearranges elements
 - How? How many comparisons? How many swaps?
- How? Two well-known algorithms
 - In this chapter of CLRS, Lomuto's algorithm
 - In the exercises, the original: Hoare's algorithm.
 (Page 185. Look at on your own.)
 - Important:
 - Both are in-place!
 - Both are linear.

Strategy for Lomuto's Partition

- Invariant: At any point:
 - *i* indexes the right-most element <= *pivot*
 - *j*-1 indexes the right-most element > *pivot*

Note: book uses *p* and *r* for what we called *first* and *last* in earlier slides

Strategy:

- Look at next item a[j]
- If that item > pivot, all is well!
- If that item < pivot, increment i and then swap items at positions i and j</p>
- When done, swap pivot with item at position *i*+1
- Number of comparisons: n-1

Efficiency of Quicksort

- Partition divides into two sub-lists, perhaps unequal size
 - Depends on value of pivot element
- Recurrence for Quicksort

T(n) = partition-cost +

T(size of 1st section) + T(size of 2nd section)

- If divides equally, T(n) = 2 T(n/2) + n-1
 - Just like mergesort
 - Solve by substitution or master theorem $T(n) \in \Theta(n \lg n)$
- This is the best-case. But...

Worst Case of Quicksort

- What if divides in most unequal fashion possible?
 - One subsection has size 0, other has size n-1
 - ▶ T(n) = T(0) + T(n-1) + n-1
 - What if this happens every time we call partition recursively?

$$W(n) = \sum_{k=2}^{n} (k-1) \in \Theta(n^2)$$

- Uh oh. Same as insertion sort.
 - Sorry Prof. Hoare we have to take back that Turing Award now!"

Quicksort's Average Case

• Good if it divides <u>equally</u>, bad if <u>most unequal</u>.

- Remember: when subproblems size 0 and n-1
- Can worst-case happen?
 Sure! Many cases. One is when elements already sorted. Last element is max, pivot around that. Next pivot is 2nd max...

What's the average?

- Much closer to the best case
- A bad-split then a good-split is closer to best-case (pp. 176-178)
- To prove A(n), fun with recurrences!
- The result: If all permutations are equal, then $A(n) \cong 1.386$ n lg n (for large n)
- So very fast on average.
- And, we can take simple steps to avoid the worst case!

Avoiding Quicksort's Worst Case

- Make sure we don't pivot around max or min
 - Find a better choice and swap it with last element
 - Then partition as before
- Recall we get best case if divides equally
 - Could find median. But this costs $\Theta(n)$. Instead...
 - Choose a random element between first and last and swap it with the last element
 - Or, estimate the median by using the "median-of-three" method
 - Pick 3 elements (say, first, middle and last)
 - Choose median of these and swap with last. (Cost?)
 - If sorted, then this chooses real median. Best case!

Tuning Quicksort's Performance

In practice quicksort runs fast

- A(n) is log-linear, and the "constants" are smaller than mergesort and heapsort
- Often used in software libraries
- So worth tuning it to squeeze the most out of it
- <u>Always</u> do something to avoid worst-case
- Sort small sub-lists with (say) insertion sort
 - For small inputs, insertion sort is fine
 - No recursion, function calls
 - Variation: don't sort small sections at all.
 After quicksort is done, sort entire array with insertion sort
 - It's efficient on almost-sorted arrays!

Quicksort's Space Complexity

- Looks like it's in-place, but there's a recursion stack
 - Depends on your definition: some people define *in-place* to <u>not</u> include stack space used by recursion
 - E.g. our CLRS algorithms textbook
 - Other books and people do "count" this
 - How much goes on the stack?
 - If most uneven splits, then $\Theta(n)$.
 - If splits evenly every time, then $\Theta(\lg n)$.
- Ways to reduce stack-space used due to recursion
 - Various books cover the details (not ours, though)
 - First, remove 2nd recursive call (tail-recursion)
 - Second, always do recursive call on smaller section

Summary: Quicksort

- Divide and conquer where divide does the heavy-lifting
- In worst-case, efficiency is $\Theta(n^2)$
 - But it's practical to avoid the worst-case
- On average, efficiency is $\Theta(n \lg n)$
- Better space-complexity than mergesort.
- In practice, runs fast and widely used
 - Many ways to tune its performance
- Various strategies for Partition
 - Some work better if duplicate keys
- More details? See Sedgewick's algorithms textbook
 - He's the expert! PhD on this under Donald Knuth

Lower Bounds Proof for Comparison Sorts

Readings: CLRS Section 8.1

Mental Stretch

Show $\log(n!) \in \Theta(n \log n)$

Hint: show $n! \le n^n$ Hint 2: show $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$

$log n! \in O(n \log n)$ $n! = n \cdot (n - 1) \cdot (n - 2) \cdot \dots \cdot 2 \cdot 1$ $\| \land \land \land \land$ $n^{n} = n \cdot n \cdot n \cdot n \cdot \dots \cdot n \cdot n$

$$n! \le n^{n}$$

$$\Rightarrow \log(n!) \le \log(n^{n})$$

$$\Rightarrow \log(n!) \le n \log n$$

$$\Rightarrow \log(n!) \in O(n \log n)$$

$$\log n! \in \Omega(n \log n)$$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2}-1\right) \cdot \dots \cdot 2 \cdot 1$$

$$\vee \quad \vee \quad \vee \quad \parallel \quad \vee \quad \vee \quad \parallel$$

$$\frac{\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot 1 \cdot \dots \cdot 1 \cdot 1$$

$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$$\Rightarrow \log(n!) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$\Rightarrow \log(n!) \ge \frac{n}{2}\log\frac{n}{2}$$

$$\Rightarrow \log(n!) \ge \Omega(n \log n)$$

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than O(n log n)
- Non-existence proof!
 - Seems like maybe it would be very hard to do... (?)

Strategy: Decision Tree

- Sorting algorithms use comparisons to determine the order of input elements
- Conceptually possible to draw a tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

n! possible permutations

Lower Bound for Worst Case

- Binary tree property: At level d in a binary tree, there are at most 2^d nodes (where level of root is 0)
- Also, let's say a tree's height is number of levels minus one
 - Height of our decision tree is the W(n) number of comparisons

• Theorem 8.1 (p. 193):

- Let L be the number of leaves in a binary tree and let h be its height. (Book uses lower-case l, not L like we do here.)
- Then $L \leq 2^{h}$. (Number of leaves is no more than 2^{h} .)
- Therefore $h \ge \lceil \lg L \rceil$ (Height is not less than...)
- ▶ For a correct sorting algorithm, L >= n!
- Therefore

$h \ge \lceil \lg L \rceil \ge \lceil \lg n! \rceil$

• Thus, for any algorithm that sorts by comparison of keys W(n) is at least $\lceil |g n! \rceil$

Formula for the Lower Bound

- Earlier we showed this was $\Theta(n \lg n)$
- Or, we can we lose that factorial in other ways
 - Stirling's formula: $(n/e)^n \operatorname{sqrt}(2\pi n)$
 - Take the log of this approximation of n! and you'll see that it's $\Theta(n \lg n)$
 - Better to re-write, use integrals, and...
 - See a textbook for details (but not ours)
- If you were to do all this, you'd see:

 $W(n) \ge \lceil \lg n! \rceil \ge \lceil n \lg n - 1.443n \rceil$

which is of course $\Theta(n \lg n)$

- FYI Mergesort is very close to optimal
 - But not for all values of n

Summary

- Our lower-bound proof shows any algorithm must be Ω(n lg n) in the worst-case <u>if</u> it works by comparing keys
 - Algorithms that only do key-comparisons can sort any data type
 - Algorithms that can calculate on their keys can do better
 - E.g. counting sort and radix sort for numbers (Ch. 8 of CLRS)
 - In the same way that binary search is optimal, but hashing can be faster
- Mergesort and Quicksort are in this order-class
 - Mergesort is very close to the L.B. (but not in-place)
 - But quicksort will run faster generally
 - Why? Constants and lower-order terms are smaller. In other words, the overhead per comparison is less.
 - But Quicksort really could be $\Theta(n^2)$ at its worst