Quicksort Lower Bounds for Comparison Sorts

CS 4102, Algorithms
Prof. Floryan and Prof. Horton
Spring 2021

Quicksort and Partition

Readings:
CLRS Chapter 7 (not 7.4.2)

Quicksort: Introduction

- Developed by C.A.R. (Tony) Hoare (a Turing Award winner) http://www.wikipedia.org/wiki/C._A._R._Hoare
- Published in 1962
- Classic divide and conquer, but...
- Mergesort does no comparisons to divide, but a lot to combine results (i.e. the merge) at each step
- Quicksort does a lot of work to divide, but has nothing to do after the recursive calls. No work to combine.
b If we're using arrays. Linked lists? Interesting to think about this!
- Dividing done with algorithm often called partition
- Sometimes called split. Several variations.

Quicksort's Strategy

- Called on subsection of array from first to last
, Like mergesort
- First, choose some element in the array to be the pivot element
- Any element! Doesn't matter for correctness.
* Often the first item. For us, the last. Or, we often move some element into the last position (to get better efficiency)
- Second, call partition, which does two things:
- Puts the pivot in its proper place, i.e. where it will be in the correctly sorted sequence
* All elements below the pivot are less-than the pivot, and all elements above the pivot are greater-than
- Third, use quicksort recursively on both sub-lists

Quicksort is Divide and Conquer

- Divide: select pivot element $p, \operatorname{Partition}(p)$
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Contrast to mergesort, where divide is simple and combine is work

Quicksort's Strategy (a picture)

- Use last element as pivot (or pick one and move it there)

- After call to partition...

$<=$ pivot (unsorted)	pivot	$>$ pivot (unsorted)
first	split point	last

- Now sort two parts recursively and we're done!

<= pivot (sorted)	pivot	$>$ pivot (sorted)
first	split point	last

- Note that splitPoint may be anywhere in first..last
- Note our assumption that all keys are distinct

Quicksort Code

Input Parameters: list, first, last
Output Parameters: list
def quicksort(list, first, last):
if first < last:
$q=$ partition(list, first, last)
quicksort(list, first, q-1)
quicksort(list, q+1, last)
return

Partition Does the Dirty Work

- Partition rearranges elements
- How? How many comparisons? How many swaps?
- How? Two well-known algorithms
- In this chapter of CLRS, Lomuto's algorithm
- In the exercises, the original: Hoare's algorithm.
(Page 185. Look at on your own.)
- Important:
- Both are in-place!
- Both are linear.

Strategy for Lomuto's Partition

- Invariant: At any point:
- i indexes the right-most element <= pivot
- j-1 indexes the right-most element > pivot

- Strategy:
- Look at next item a[j]
- If that item > pivot, all is well!
- If that item < pivot, increment i and then swap items at positions i and j
- When done, swap pivot with item at position $i+1$
- Number of comparisons: n-1

Efficiency of Quicksort

- Partition divides into two sub-lists, perhaps unequal size
- Depends on value of pivot element
- Recurrence for Quicksort
$T(n)=$ partition-cost +
T (size of 1st section) $+T$ (size of $2 n d$ section)
- If divides equally, $T(n)=2 T(n / 2)+n-1$
- Just like mergesort
- Solve by substitution or master theorem
$T(n) \in \Theta(n \lg n)$
- This is the best-case. But...

Worst Case of Quicksort

- What if divides in most unequal fashion possible?
- One subsection has size 0 , other has size $n-1$
- $T(n)=T(0)+T(n-1)+n-1$
- What if this happens every time we call partition recursively?

$$
W(n)=\sum_{k=2}^{n}(k-1) \in \Theta\left(n^{2}\right)
$$

- Uh oh. Same as insertion sort.

> "Sorry Prof. Hoare - we have to take back that Turing Award now!"

Quicksort's Average Case

- Good if it divides equally, bad if most unequal.
- Remember: when subproblems size 0 and $n-1$
- Can worst-case happen? Sure! Many cases. One is when elements already sorted. Last element is max, pivot around that. Next pivot is $2^{\text {nd }}$ max...
- What's the average?
- Much closer to the best case
- A bad-split then a good-split is closer to best-case (pp. 176-178)
- To prove $A(n)$, fun with recurrences!
- The result: If all permutations are equal, then

$$
A(n) \cong 1.386 n \lg n(\text { for large } n)
$$

- So very fast on average.
- And, we can take simple steps to avoid the worst case!

Avoiding Quicksort's Worst Case

- Make sure we don't pivot around max or min
- Find a better choice and swap it with last element
- Then partition as before
- Recall we get best case if divides equally
- Could find median. But this costs $\Theta(\mathrm{n})$. Instead...
, Choose a random element between first and last and swap it with the last element
* Or, estimate the median by using the "median-of-three" method
- Pick 3 elements (say, first, middle and last)
- Choose median of these and swap with last. (Cost?)
- If sorted, then this chooses real median. Best case!

Tuning Quicksort's Performance

- In practice quicksort runs fast
- $A(n)$ is log-linear, and the "constants" are smaller than mergesort and heapsort
- Often used in software libraries
- So worth tuning it to squeeze the most out of it

Always do something to avoid worst-case

- Sort small sub-lists with (say) insertion sort
- For small inputs, insertion sort is fine
- No recursion, function calls
- Variation: don't sort small sections at all. After quicksort is done, sort entire array with insertion sort
- It's efficient on almost-sorted arrays!

Quicksort's Space Complexity

- Looks like it's in-place, but there's a recursion stack
- Depends on your definition: some people define in-place to not include stack space used by recursion
b.g. our CLRS algorithms textbook
, Other books and people do "count" this
- How much goes on the stack?
- If most uneven splits, then $\Theta(\mathrm{n})$.
- If splits evenly every time, then Θ ($\lg \mathrm{n})$.
- Ways to reduce stack-space used due to recursion
- Various books cover the details (not ours, though)
- First, remove 2nd recursive call (tail-recursion)
- Second, always do recursive call on smaller section

Summary: Quicksort

- Divide and conquer where divide does the heavy-lifting
- In worst-case, efficiency is $\Theta\left(\mathrm{n}^{2}\right)$
- But it's practical to avoid the worst-case
- On average, efficiency is $\Theta(\mathrm{n} \lg \mathrm{n})$
- Better space-complexity than mergesort.
- In practice, runs fast and widely used
- Many ways to tune its performance
- Various strategies for Partition
- Some work better if duplicate keys
- More details? See Sedgewick’s algorithms textbook
- He's the expert! PhD on this under Donald Knuth

Lower Bounds Proof for Comparison Sorts

Readings: CLRS Section 8.1

Mental Stretch

Show $\log (n!) \in \Theta(n \log n)$

Hint: show $n!\leq n^{n}$
Hint 2 : show $n!\geq\left(\frac{n}{2}\right)^{\frac{n}{2}}$

$\log n!\in O(n \log n)$

$$
\begin{array}{cccc}
n! & =n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1 \\
\| & \wedge & \wedge & \wedge \wedge \\
n^{n}=n \cdot & n & \cdot & n \\
\| & \cdot \ldots \cdot n \cdot n
\end{array}
$$

$$
\begin{aligned}
& n!\leq n^{n} \\
& \Rightarrow \log (n!) \leq \log \left(n^{n}\right) \\
& \Rightarrow \log (n!) \leq n \log n \\
& \Rightarrow \log (n!) \in O(n \log n)
\end{aligned}
$$

$\log n!\in \Omega(n \log n)$

$$
\begin{aligned}
n! & =n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot \frac{n}{2} \cdot\left(\frac{n}{2}-1\right) \cdot \ldots \cdot 2 \cdot 1 \\
& \vee \vee \vee \\
\left(\frac{n}{2}\right)^{\frac{n}{2}} & =\frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} \cdot 1 \\
\hline n! & \geq\left(\frac{n}{2}\right)^{\frac{n}{2}} \\
& \Rightarrow \log (n!) \geq \log \left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right) \\
& \Rightarrow \log (n!) \geq \frac{n}{2} \log \frac{n}{2} \\
& \Rightarrow \log (n!) \in \Omega(n \log n)
\end{aligned}
$$

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than $O(n \log n)$
- Non-existence proof!
- Seems like maybe it would be very hard to do... (?)

Strategy: Decision Tree

- Sorting algorithms use comparisons to determine the order of input elements
- Conceptually possible to draw a tree to illustrate all possible execution paths

One comparison

Strategy: Decision Tree

- Worst case run time is the longest execution path
" i.e., "height" of the decision tree

Lower Bound for Worst Case

- Binary tree property: At level din a binary tree, there are at most 2^{d} nodes (where level of root is 0)
- Also, let's say a tree's height is number of levels minus one
- Height of our decision tree is the $W(n)$ number of comparisons
- Theorem 8.1 (p. 193):
- Let L be the number of leaves in a binary tree and let h be its height. (Book uses lower-case I, not L like we do here.)
- Then $L \leq 2^{h}$. (Number of leaves is no more than 2^{h}.)
- Therefore $h \geq\lceil\lg L\rceil$ (Height is not less than...)
- For a correct sorting algorithm, $L>=n$!
- Therefore

$$
h \geq\lceil\lg L\rceil \geq\lceil\lg n!\rceil
$$

- Thus, for any algorithm that sorts by comparison of keys $W(n)$ is at least $\lceil\lg n!\rceil$

Formula for the Lower Bound

- Earlier we showed this was $\Theta(\mathrm{n} \lg \mathrm{n})$
- Or, we can we lose that factorial in other ways
- Stirling's formula: (n/e) ${ }^{n} \operatorname{sqrt}(2 \pi n)$
* Take the log of this approximation of n ! and you'll see that it's $\Theta(n \lg n)$
> Better to re-write, use integrals, and...
- See a textbook for details (but not ours)
- If you were to do all this, you'd see:

$$
W(n) \geq\lceil\lg n!\rceil \geq\lceil n \lg n-1.443 n\rceil
$$

which is of course $\Theta(\mathrm{n} \lg \mathrm{n})$

- FYI Mergesort is very close to optimal
- But not for all values of n

Summary

- Our lower-bound proof shows any algorithm must be $\Omega(\mathrm{n} \lg \mathrm{n})$ in the worst-case if it works by comparing keys
- Algorithms that only do key-comparisons can sort any data type
- Algorithms that can calculate on their keys can do better
- E.g. counting sort and radix sort for numbers (Ch. 8 of CLRS)
- In the same way that binary search is optimal, but hashing can be faster
- Mergesort and Quicksort are in this order-class
- Mergesort is very close to the L.B. (but not in-place)
- But quicksort will run faster generally
- Why? Constants and lower-order terms are smaller. In other words, the overhead per comparison is less.
- But Quicksort really could be $\Theta\left(n^{2}\right)$ at its worst

