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Quicksort and Partition

Readings:
CLRS Chapter 7 (not 7.4.2)
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Quicksort: Introduction

} Developed by C.A.R. (Tony) Hoare (a Turing Award winner)
http://www.wikipedia.org/wiki/C._A._R._Hoare

} Published in 1962
} Classic divide and conquer, but…

} Mergesort does no comparisons to divide, but a lot to combine 
results (i.e. the merge) at each step

} Quicksort does a lot of work to divide, but has nothing to do 
after the recursive calls.  No work to combine.
} If we’re using arrays. Linked lists? Interesting to think about this!

} Dividing done with algorithm often called partition
} Sometimes called split.  Several variations.

http://www.wikipedia.org/wiki/C._A._R._Hoare


Quicksort’s Strategy

} Called on subsection of array from first to last
} Like mergesort

} First, choose some element in the array to be the pivot
element
} Any element!  Doesn't matter for correctness.
} Often the first item. For us, the last.  Or, we often move some element 

into the last position (to get better efficiency)

} Second, call partition, which does two things:
} Puts the pivot in its proper place, i.e. where it will be in the correctly 

sorted sequence
} All elements below the pivot are less-than the pivot, and all elements 

above the pivot are greater-than 

} Third, use quicksort recursively on both sub-lists



Quicksort is Divide and Conquer

} Divide: select pivot element 𝑝, Partition(𝑝)
} Conquer: recursively sort left and right sublists
} Combine: Nothing!

Contrast to mergesort,
where divide is simple and combine is work



} Use last element as pivot (or pick one and move it there)

} After call to partition…

} Now sort two parts recursively and we’re done!

} Note that splitPoint may be anywhere in first..last
} Note our assumption that all keys are distinct

Quicksort’s Strategy (a picture)

pivot
first last

pivot<= pivot (unsorted) > pivot (unsorted)
first lastsplit 

point

pivot<= pivot (sorted) > pivot (sorted)

first lastsplit 
point



Quicksort Code

Input Parameters: list, first, last
Output Parameters: list

def quicksort(list, first, last):
if first < last:

q = partition(list, first, last)
quicksort(list, first, q-1)
quicksort(list, q+1, last)

return



Partition Does the Dirty Work
} Partition rearranges elements

} How?  How many comparisons?  How many swaps?
} How? Two well-known algorithms

} In this chapter of CLRS, Lomuto’s algorithm
} In the exercises, the original: Hoare’s algorithm.  

(Page 185. Look at on your own.)
} Important:

} Both are in-place!
} Both are linear.



Strategy for Lomuto’s Partition

} Strategy:
} Look at next item a[j]
} If that item > pivot, all is well!
} If that item < pivot, increment i and then swap items at positions i

and j
} When done, swap pivot with item at position i+1

} Number of comparisons:   n-1

• Invariant:  At any point:
• i indexes the right-most element <= pivot
• j-1 indexes the right-most element > pivot

Note: book uses p and r for 
what we called first and last in 
earlier slides



Efficiency of Quicksort
} Partition divides into two sub-lists, perhaps unequal size

} Depends on value of pivot element
} Recurrence for Quicksort

T(n) = partition-cost +
T(size of 1st section) + T(size of 2nd section)

} If divides equally, T(n) = 2 T(n/2) + n-1
} Just like mergesort
} Solve by substitution or master theorem

T(n) Î Q(n lg n )

} This is the best-case.  But…



Worst Case of Quicksort
} What if divides in most unequal fashion possible?

} One subsection has size 0, other has size n-1
} T(n) = T(0) + T(n-1) + n-1
} What if this happens every time we call partition recursively?

} Uh oh.  Same as insertion sort.
} “Sorry Prof. Hoare – we have to take back that Turing 

Award now!”
€ 

W (n) = (k −1)∈Θ(n2
k=2

n

∑ )



Quicksort’s Average Case
} Good if it divides equally, bad if most unequal.

} Remember: when subproblems size 0 and n-1
} Can worst-case happen?

Sure!  Many cases. One is when elements already sorted.  Last element 
is max, pivot around that.  Next pivot is 2nd max…

} What’s the average?
} Much closer to the best case
} A bad-split then a good-split is closer to best-case (pp. 176-178)
} To prove A(n), fun with recurrences!
} The result:  If all permutations are equal, then

A(n) @ 1.386 n lg n (for large n)

} So very fast on average. 
} And, we can take simple steps to avoid the worst case!



Avoiding Quicksort’s Worst Case
} Make sure we don’t pivot around max or min

} Find a better choice and swap it with last element
} Then partition as before

} Recall we get best case if divides equally
} Could find median.  But this costs Q(n).  Instead…
} Choose a random element between first and last and swap it 

with the last element
} Or, estimate the median by using the “median-of-three”

method
} Pick 3 elements (say, first, middle and last)
} Choose median of these and swap with last. (Cost?)
} If sorted, then this chooses real median.  Best case!



Tuning Quicksort’s Performance
} In practice quicksort runs fast

} A(n) is log-linear, and the “constants” are smaller than 
mergesort and heapsort

} Often used in software libraries
} So worth tuning it to squeeze the most out of it
} Always do something to avoid worst-case

} Sort small sub-lists with (say) insertion sort
} For small inputs, insertion sort is fine

} No recursion, function calls

} Variation: don’t sort small sections at all.
After quicksort is done, sort entire array with insertion sort
} It’s efficient on almost-sorted arrays!



Quicksort’s Space Complexity
} Looks like it’s in-place, but there’s a recursion stack

} Depends on your definition: some people define in-place to 
not include stack space used by recursion
} E.g. our CLRS algorithms textbook
} Other books and people do “count” this

} How much goes on the stack?
} If most uneven splits, then Q(n).
} If splits evenly every time, then Q(lg n).

} Ways to reduce stack-space used due to recursion
} Various books cover the details (not ours, though)
} First, remove 2nd recursive call (tail-recursion)
} Second, always do recursive call on smaller section



Summary: Quicksort
} Divide and conquer where divide does the heavy-lifting
} In worst-case, efficiency is Q(n2)

} But it’s practical to avoid the worst-case
} On average, efficiency is Q(n lg n)
} Better space-complexity than mergesort.
} In practice, runs fast and widely used

} Many ways to tune its performance
} Various strategies for Partition

} Some work better if duplicate keys
} More details?  See Sedgewick’s algorithms textbook

} He’s the expert! PhD on this under Donald Knuth



Lower Bounds Proof for 
Comparison Sorts

Readings: CLRS Section 8.1
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Mental Stretch
Show log 𝑛! Î Θ(𝑛 log 𝑛)

Hint: show 𝑛! ≤ 𝑛!

Hint 2: show 𝑛! ≥ !
"

!
"
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log 𝑛!Î 𝑂 𝑛 log 𝑛

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅ 2 ⋅ 1

𝑛! = 𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ … ⋅ 𝑛 ⋅ 𝑛

= < < < <
𝑛! ≤ 𝑛!
⇒ log 𝑛! ≤ log 𝑛!

⇒ log 𝑛! ≤ 𝑛 log 𝑛
⇒ log 𝑛! Î 𝑂(𝑛 log 𝑛)
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log 𝑛!Î Ω 𝑛 log 𝑛
𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅

𝑛
2
⋅
𝑛
2
− 1 ⋅ … ⋅ 2 ⋅ 1

𝑛
2

!
" =

𝑛
2
⋅

𝑛
2

⋅
𝑛
2

⋅ … ⋅
𝑛
2
⋅ 1 ⋅ … ⋅ 1 ⋅ 1

> > > >=
𝑛! ≥

𝑛
2

!
"

⇒ log 𝑛! ≥ log
𝑛
2

!
"

⇒ log 𝑛! ≥
𝑛
2 log

𝑛
2

⇒ log 𝑛! Î Ω(𝑛 log 𝑛)

> =



Worst Case Lower Bounds
} Prove that there is no algorithm which can sort faster 

than 𝑂(𝑛 log 𝑛)
} Non-existence proof!

} Seems like maybe it would be very hard to do… (?)
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Strategy: Decision Tree
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>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …
… … … …

>

<

<

>

<

One comparison
Result of 

comparison

Permutation 
of sorted list

} Sorting algorithms use comparisons to determine the order of input 
elements

} Conceptually possible to draw a tree to illustrate all possible 
execution paths

Possible 
execution path

>



Strategy: Decision Tree
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>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …
… … … …

>

<

<

>

<

One comparison
Result of 

comparison

Permutation 
of sorted list

} Worst case run time is the longest execution path
} i.e., “height” of the decision tree

Possible 
execution path

>

𝑛! possible permutations

log 𝑛!
Î

Θ(𝑛 log 𝑛)



Lower Bound for Worst Case
} Binary tree property:  At level d in a binary tree, there are at 

most 2d nodes (where level of root is 0) 
} Also, let’s say a tree’s height is number of levels minus one

} Height of our decision tree is the W(n) number of comparisons

} Theorem 8.1 (p. 193): 
} Let L be the number of leaves in a binary tree and let h be its height.  

(Book uses lower-case l, not L like we do here.)
} Then              .  (Number of leaves is no more than 2h.)
} Therefore                      (Height is not less than…)
} For a correct sorting algorithm, L >= n! 
} Therefore

} Thus, for any algorithm that sorts by comparison of keys 
W(n) is at least€ 

h ≥ lgL# $

€ 

L ≤ 2h

€ 

h ≥ lgL# $ ≥ lgn!# $

€ 

lgn!" #



Formula for the Lower Bound
} Earlier we showed this was Q(n lg n)
} Or, we can we lose that factorial in other ways

} Stirling’s formula: (n/e)n sqrt(2pn)
} Take the log of this approximation of n! and you’ll see that it’s 
Q(n lg n)

} Better to re-write, use integrals, and…
} See a textbook for details (but not ours)

} If you were to do all this, you’d see:

which is of course Q(n lg n)
} FYI Mergesort is very close to optimal

} But not for all values of n€ 

W (n) ≥ lgn!# $ ≥ n lgn −1.443n# $



Summary
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} Our lower-bound proof shows any algorithm must be
Ω(n lg n) in the worst-case if it works by comparing keys
} Algorithms that only do key-comparisons can sort any data 

type
} Algorithms that can calculate on their keys can do better

} E.g. counting sort and radix sort for numbers (Ch. 8 of CLRS)
} In the same way that binary search is optimal, but hashing can 

be faster
} Mergesort and Quicksort are in this order-class

} Mergesort is very close to the L.B. (but not in-place)
} But quicksort will run faster generally

} Why?  Constants and lower-order terms are smaller.
In other words, the overhead per comparison is less.

} But Quicksort really could be Q(n2) at its worst


