Fall 2021
Mark Floryan and Tom Horton

Why Stuady NP-Completeness

* All semester, we've studied finding algorithms to solve
problems using various tools.

* Sometimes we instead need to prove that a problem is
extremely hard, so as not to waste time on it!

— NP-Complete Problems are hard

— Let’s go over a few of them quickly
— Let’s show how to prove a new problem is NP-Complete

Quick Background!

P: Set of problems solved in polynomial time O P
(e.g., sorting a list) NP-Hard Problem

* NP: Set of problems that can be:
— 1) Solved in non-deterministic polynomial time
— 2) Verified in polynomial time

Example: Vertex Cover
Problem

NP-Complete

* NP-Hard: Set of problems that are as hard as

(or harder) than the hardest problems in NP Example: Shortest Path

Problem

 NP-Complete: Set of problems that are both
NP and NP-Hard (i.e., the equally hardest
problems in NP)

This diagram assumes that P = NP

NP-Completeness

* So...a problem is NP-Complete if you can do the following:

e 1) Show how to verify it in polynomial time
— Given a solution to the problem, verify it is correct
— That algorithm’s runtime needs to be a polynomial (usually easy)

e 2) Show the problem is NP-Hard (harder than a known NP-C Problem)
— Take a currently known NP-C problem (let’s call it A)
— Show that A <, X //where X is your problem
— Why? If A is NP-Hard, then: any NP problem <, A
— Transitivity: any NP problem <, A <,, X
— So X satisfies definition of NP-Hard

“Consequences” of NP-Completeness

« NP-Complete is the set of “hardest™ problems in NP, with these
important properties:
— If any one NP-Complete problem can be solved in polynomial time...
— ...then every NP-Complete problem can be solved in polynomial time...

— ...and in fact every problem in NP can be solved in polynomial time (which
would show P = NP)

— Or, prove an exponential lower-bound for any sing/le NP-hard problem,
then every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in O(7%) time, you've
proved that P = NP. Retire rich & famous!

ASpBanolBinP

Problem we don’t
know how to solve

Solution for 4

R,

Reduction

Map Instances of problem
A to Instances of B

Map Solutions of problem
B to Solutions of A

Problem we do know
how to solve

N

(
B

\/

Using any Algorithm for B

: /I‘f/a\polynomial\

Solution for B | algorithm exists
to solve B, what

does that tell
RB . us about A? -

8

A <, B and we prove A not in P

Problem we don’t

know how to solve

/If we pro%

exponential

lower bound
for problem A,
what does that

tell us about

k solving B? j

Solution for 4

R,

Reduction

Map Instances of problem
A to Instances of B

Map Solutions of problem
B to Solutions of A

N

(
B

\/

Problem we do know
how to solve

Using any Algorithm for B

U

Solution for B

Rp

But You Need One NP-Hard First. ..

* If you have one NP-Hard problem, you can use the technique just
described to prove other problems are NP-Hard and NP-c

— We need an NP-C problem to start this off

* The definition of NP-Hard was created to prove a point

— There might be problems that are at least as hard as “anything” (i.e. all NP
problems)

* Are there really NP-complete problems?

* Cook-Levin Theorem: The satisfiability problem (SAT) is NP-Complete.
* Stephen Cook proved this “directly”, from first principles, in 1971
* Proven independently by Leonid Levin (USSR)

e Showed that any problem that meets the definition of NP can be transformed in polynomial
time to a CNF formula.

* Proof outside the scope of this course (lucky you)

More About The SAT Problem

* The first problem to be proved NP-Complete was satisfiability (SAT):

— Given a Boolean expression on n variables, can we assign values such that the
expression is TRUE?

— Ex: ((x; =x5) v =((—x; > x3) v X,)) A—x,

* You might imagine that lots of decision problems could be expressed as
a complex logical expression
— And Cook and Levin proved you were right!
— Proved the general result that any NP problem can be expressed this way

Conjunctive Normal Form (CNF)

* Even if the form of the Boolean expression is simplified, the
problem may be NP-Complete

— Literal: an occurrence of a Boolean or its negation

— A Boolean formula is in conjunctive normal form, or CNF, if it is an AND
of clauses, each of which is an OR of literals
o Ex:(X; VX)) A (%] V X3V Xy) A (—Xs)
— 3-CNF: each clause has exactly 3 distinct literals
o Ex:(X; V=X,V —X3) A (X1 V X3V Xg) A (X5 V X3V Xy)
* Notice: true if at least one literal in each clause is true

— Note: Arbitrary SAT expressions can be translated into CNF forms by
introducing intermediate variables etc.

The 3-CNF Problem

 Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF
Problem) is NP-Complete

— Proof: Also done by Cook (“part 2” of Cook’s theorem)
— But it’s not that hard to show SAT <, 3-CNF

* The reason we care about the 3-CNF problem is that it is
relatively easy to reduce to others

— Thus by proving 3-CNF is NP-Complete we can prove many seemingly
unrelated problems are NP-Complete

Joining the Club

* Given one NP-c problem, others can join the club
— Prove that SAT reduces to another problem, and so on...

SAT 3-CNF-SAT | » SUBSET-SUM |
| CLIQUE [—| VERTEX-| | HAM- TSP
COVER |~ '|CYCLE

— Membership in NP-c grows...

— Classic textbook: Garey, M. and D. Johnson,
Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

Reductions 1o Prove NP-C

* Next:
— A tour of how to prove some problems are NP-C

— 3-SAT is a good starting point!
— k-Cliqgue (We will probably only have time for this one)

— k-Independent Set
— k-Vertex Cover

15

Reminder apout 3-SAT

* Shown to be NP-hard by Cook

* Given a 3-CNF formula (logical AND of clauses, each an OR of
3 variables), is there an assignment of true/false to each
variable to make the formula true (i.e., satisfy the formula)?

(xVYyVZ)AXVYVY)AUVYVI)ANEZVIVU)A(XVYVZ)

v \'I‘/'
Clause x = true

Variables y = false

z = false

u = frue
16

* Next example: k-Cligue

* Let’s show that k-Clique is NP-Complete!

k-Clique Problem

&y
o

* Clique: A complete subgraph

* k-Clique problem: given a
graph G and a number k, is
there a clique of size k?

18

k-Cligue 1s NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 3-SAT <, k-clique

19

k-Cligue 1s In NP

* Show: For any graph G
— There is a short certificate (“solution”) that G has a k-clique

— The certificate can be checked efficiently (in polynomial time)
Suppose k = 4

Certificatefor G: S = {B,D,E,F}
(nodes in the k-clique)

Checking the certificate:

e Checkthat|S| =k O(k) =0(|V])
* Check that every pair of nodes in S share
an edge 0(k?) = 0(|V|?)

Total time: O(|V|*) = poly(|V| + |E]) 20

k-Cligue 1s NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 3-SAT <, k-clique

21

3-SAT <, k-Clique

3-SAT k-clique

Map instances of problem

GCVYVAGVTVY)AQY YV Z)A A to instances of B

ZVXVU)AHEVYVZ)

polynomial time

Map solutions of problem

X = true B to solutions of 4
y = false

z = false polynomial time
u = true

polynomial-time reduction

22

3-SAT <, k-Clique

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

(also do this for the other clauses,
omitted due to clutter)

v |
For each clause, introduce a node for each of its three variables

Add an edge from each node to all non-contradictory nodes in the other clauses (i.e.,
to all nodes that is not the negation of its own variable)

Let kK = number of clauses
Claim. There is a k-clique in this graph if and only if there is a
satisfying assignment 23

3-SAT <, k-Clique

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

Suppose there is a k-cligue in this graph

* There are no edges between nodes for variables in the same clause, so k-
cligue must contain one node from each clause

Nodes in clique cannot contain variable and its negation

Nodes in cligue must then correspond to a satisfying assignment

24

3-SAT <, k-Clique

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

x = true
y = false
z = false
u = true

Suppose there is a satisfying assignment to the formula
* For each clause, choose one node whose value is true
* There are k clauses, so this yields a collection of k nodes
* Since the assignment is consistent, there is an edge between every pair of
nodes, so this constitutes a k-clique

25

3-SAT

(xVyVZ)AXVYVY)AUVYVZ)A
ZVXVU)AHEVYVZ)

x = true
y = false
z = false
u = true

3-SAT <, k-Clique

Map instances of problem
A to instances of B

polynomial time

Map solutions of problem
B to solutions of A

polynomial time

polynomial-time reduction

k-cligue

26

k-Cligue 1s NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 3-SAT <,, k-clique

27

k-Independent Set iIs NP-Complete

1. Show that it belongs to NP

2. Show it is NP-Hard
— Show 3-SAT <,, k-Independent Set

29

k-Independent Set is in NP

 Show: For any graph G:

— There is a short certificate (“solution” for search problem) that G has
a k-independent set

— The certificate can be checked efficiently (in polynomial time)

O0—0 Certificate for G: S = {A,C,E, G, H,]}
(nodes in the k-independent set)

Checking the certificate:

e Checkthat|S| =k O(k) =0(|V])
* Check that every edge is incident on at
most one node in S o(lV| + |E]

Graph G Total time: O(|E| + |V|) = poly(|V| + |E|) .

k-Independent Set iIs NP-Complete

1. Show that it belongs to NP &

2. Show it is NP-Hard
— Show 3-SAT <,, k-Independent Set

31

3-SAl <, k-Independent Set

3-SAT k-independent set

Map instances of problem *—o
(xVYyV2AGEVIVY)A@UVyV2Z) A to instances of B

polynomial time

Map solutions of problem

X = true B to solutions of 4 -
y = false

z = false polynomial time

u = true

polynomial-time reduction

32

3-SAl <, k-Independent Set

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

For each clause, construct a triangle graph with its three variables as nodes
Add an edge between each node and its negation

Let k = number of clauses

Claim. There is a k-independent set in this graph if and only if
there is a satisfying assignment 33

3-SAl <, k-Independent Set

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

x = true
y = false
z = false
u = true

Suppose there is a k-independent set S in this graph G
* By construction of ¢, at most one node from each triangleisin S

* Since |S| = k and there are k triangles, each triangle contributes one node

* If avariable x is selected in one triangle, then X is never selected in another
triangle (since each variable is connected to its negation)

* There are no contradicting assignments, so can set variable chosen in each
triangle to “true”; satisfying assignment by construction

34

3-SAl <, k-Independent Set

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

x = true
y = false
z = false
u = true

Suppose there is a satisfying assignment to the formula

At least one variable in each clause must be true
Add the node to that variable to the set S
There are k clauses, so set S has exactly k nodes

If we use x in any clause, we will never use X, so there are no edges among the
nodesin S

35

3-SAl <, k-Independent Set

3-SAT k-independent set

Map instances of problem

(xVYyVZIAEVIVY)A@UVyV2Z) A to instances of B w

polynomial time

Map solutions of problem
x = true B to solutions of A

y = false
z = false polynomial time
u = true

polynomial-time reduction

36

k-Independent Set iIs NP-Complete

&
&

1. Show that it belongs to NP

2. Show it is NP-Hard
— Show 3-SAT <,, k-independent set

37

* Next example: k-Vertex Cover

* Remember?
—We did the following reduction in an earlier slide set!

k-Independent Set <y k-Vertex Cover

—We just showed k-Independent Set is NP-C
—Therefore.... (you know, right?)

38

Max Independent Set <, k-Vertex Cover

k-independent set k-vertex cover

Map instances of problem

=
A to instances of B
O(1) time t:}
o—

Map solutions of problem
B to solutions of A

<<: O(|V|) time

Reduction

=
=

39

k-\ertex Cover is NP-Complete

1. Show that it belongs to NP

— Given a candidate cover, check that every edge is covered
2. Show it is NP-Hard

— Show k-independent set <, k-vertex cover

40

Wrap Up and Reminders

Why Prove NP-Completeness?

Though nobody has proven that P # NP, if you prove a problem
NP-Complete, most people accept that it is probably exponential
T
N

nerefore it can be important for you to prove that a problem is
P-Complete

— Don't need to try to come up perfect non-exponential algorithm
— Can instead work on approximation algorithms

VWhat's a poor salesperson to do”

BRUTE-FORCE
SOL.UT1ON:

O(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

\
~
SHUT THE
HEW UR

http://xkcd.com/399/

Approximation Algorthms

* Look at first 3 pages of Ch. 35 of CLRS textbook

* Can we find an algorithm for problem A ¢ NP-C that:
— Runs in polynomial time
— Gets "near optimal” results
* Prove some bound on the algorithm’s correctness in terms of the true
optimal result
— No worse that (some factor) of optimal
— “It’s not always right (best), but it’s guaranteed to be this close.”

(General Comments

* At least 3000 problems have been shown to be NP-Complete

— That number is from a non-recent report, so we might say that
counts is a weak lower-bound on the true number found

— https://en.wikipedia.org/wiki/List of NP-complete problems
including some popular games

* Some reductions are profound, some are comparatively easy,
many are easy once the key insight is given

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Other NP-Complete Problems

* Hamilton Path/Cycle, Traveling Salesperson

* Subset-sum: Given a set of integers, does there exist a subset that adds
up to some target 7°?

* 0-1 knapsack: when weights not just integers

* Graph coloring: can a given graph be colored with k colors such that no
adjacent vertices are the same color?

 Etc...

Review (Again)

* A problem B is NP-complete
— ifitisin NP and it is NP-hard.

 Aproblem B is NP-hard
— if every problem in NP is reducible to B.

A problem Ais reducible to a problem B if

— there exists a polynomial reduction function T such that
* For every string x,
* if xis ayes input for A, then T(x) is a yes input for B
e if xisanoinput for A, then T(x) is a no input for B.
* T can be computed in polynomially bounded time.

“Consequences” of NP-Completeness

« NP-Complete the set of the“hardest” problems in NP, with these
important properties:
— If any one NP-Complete problem can be solved in polynomial time...
— ...then every NP-Complete problem can be solved in polynomial time...

— ...and in fact every problem in NP can be solved in polynomial time (which
would show P = NP)

— Or, prove an exponential lower-bound for any single NP-C problem, then
every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in O(7%) time, you've
proved that P = NP. Retire rich & famous!

What We Don’ t Know: Open Questions

— Is it impossible to solve an NP-c problem in polynomial time?

* No one has proved an exponential lower bound for any problem in NP.

* But, most computer scientists believe such a lower bound exists for
NP-c problems.

— Are all problems in NP tractable or intractable?
l.e., does P=NP or not?

* |f someone found a polynomial solution to any
NP-c problem, we’d know P = NP.

* But, most computer scientists believe P# NP.

