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Why Study NP-Completeness

• All semester, we’ve studied finding algorithms to solve 
problems using various tools.

• Sometimes we instead need to prove that a problem is 
extremely hard, so as not to waste time on it!
– NP-Complete Problems are hard
– Let’s go over a few of them quickly
– Let’s show how to prove a new problem is NP-Complete
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NP-Completeness
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Quick Background!

• P: Set of problems solved in polynomial time 
(e.g., sorting a list)

• NP: Set of problems that can be:
– 1) Solved in non-deterministic polynomial time
– 2) Verified in polynomial time

• NP-Hard: Set of problems that are as hard as 
(or harder) than the hardest problems in NP

• NP-Complete: Set of problems that are both 
NP and NP-Hard (i.e., the equally hardest 
problems in NP)



NP-Completeness
• So…a problem is NP-Complete if you can do the following:

• 1) Show how to verify it in polynomial time
– Given a solution to the problem, verify it is correct
– That algorithm’s runtime needs to be a polynomial (usually easy)

• 2) Show the problem is NP-Hard (harder than a known NP-C Problem)
– Take a currently known NP-C problem (let’s call it A)
– Show that 𝐴 ≤! 𝑋 //where X is your problem
– Why?  If 𝐴 is NP-Hard, then: any NP problem ≤! 𝐴
– Transitivity: any NP problem ≤! 𝐴 ≤! 𝑋
– So 𝑋 satisfies definition of NP-Hard



“Consequences” of NP-Completeness

• NP-Complete is the set of “hardest” problems in NP, with these 
important properties:
– If any one NP-Complete problem can be solved in polynomial time…
– …then every  NP-Complete problem can be solved in polynomial time…
– …and in fact every problem in NP can be solved in polynomial time (which 

would show P = NP)
– Or, prove an exponential lower-bound for any single NP-hard problem, 

then every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in O(n100) time, you've
proved that P = NP.  Retire rich & famous!



𝐴 ≤! 𝐵 and B in P
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Problem we don’t
know how to solve

Problem we do know
how to solve

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction
Map Instances of problem 
𝑨 to Instances of 𝑩

Using any Algorithm for 𝑩

Map Solutions of problem 
𝑩 to Solutions of 𝑨

𝑅𝐵

If a polynomial
algorithm exists
to solve B, what

does that tell
us about A?

𝐵

𝑅𝐴



𝐴 ≤! 𝐵 and we prove A not in P

9

Problem we don’t
know how to solve

Problem we do know
how to solve

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction
Map Instances of problem 
𝑨 to Instances of 𝑩

Using any Algorithm for 𝑩

Map Solutions of problem 
𝑩 to Solutions of 𝑨

𝑅𝐵

If we prove an
exponential
lower bound

for problem A, 
what does that 

tell us about
solving B?

𝐵

𝑅𝐴



But You Need One NP-Hard First…
• If you have one NP-Hard problem, you can use the technique just 

described to prove other problems are NP-Hard and NP-c
– We need an NP-C problem to start this off

• The definition of NP-Hard was created to prove a point
– There might be problems that are at least as hard as “anything” (i.e. all NP 

problems)
• Are there really NP-complete problems?
• Cook-Levin Theorem:  The satisfiability problem (SAT) is NP-Complete.

• Stephen Cook proved this “directly”, from first principles, in 1971
• Proven independently by Leonid Levin (USSR)
• Showed that any problem that meets the definition of NP can be transformed in polynomial 

time to a CNF formula.
• Proof outside the scope of this course (lucky you)



More About The SAT Problem

• The first problem to be proved NP-Complete was satisfiability (SAT):
– Given a Boolean expression on n variables, can we assign values such that the 

expression is TRUE?
– Ex: ((x1®x2) Ú ¬((¬x1« x3) Ú x4)) Ù¬x2

• You might imagine that lots of decision problems could be expressed as 
a complex logical expression
– And Cook and Levin proved you were right!
– Proved the general result that any NP problem can be expressed this way



Conjunctive Normal Form (CNF)

• Even if the form of the Boolean expression is simplified, the 
problem may be NP-Complete
– Literal: an occurrence of a Boolean or its negation
– A Boolean formula is in conjunctive normal form, or CNF, if it is an AND 

of clauses, each of which is an OR of literals
• Ex: (x1 Ú ¬x2) Ù (¬x1 Ú x3 Ú x4) Ù (¬x5)

– 3-CNF: each clause has exactly 3 distinct literals
• Ex: (x1 Ú ¬x2 Ú ¬x3) Ù (¬x1 Ú x3 Ú x4) Ù (¬x5 Ú x3 Ú x4)
• Notice: true if at least one literal in each clause is true

– Note: Arbitrary SAT expressions can be translated into CNF forms by 
introducing intermediate variables etc.



The 3-CNF Problem

• Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF 
Problem) is NP-Complete
– Proof: Also done by Cook (“part 2” of Cook’s theorem)
– But it’s not that hard to show SAT £p 3-CNF

• The reason we care about the 3-CNF problem is that it is 
relatively easy to reduce to others 
– Thus by proving 3-CNF is NP-Complete we can prove many seemingly 

unrelated problems are NP-Complete



Joining the Club
• Given one NP-c problem, others can join the club
– Prove that SAT reduces to another problem, and so on…

– Membership in NP-c grows…
– Classic textbook: Garey, M. and D. Johnson,

Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

SAT 3-CNF-SAT

CLIQUE

SUBSET-SUM

VERTEX-
COVER

HAM-
CYCLE

TSP



Reductions to Prove NP-C

• Next:
– A tour of how to prove some problems are NP-C
– 3-SAT is a good starting point!

– 𝑘-Clique (We will probably only have time for this one)
– 𝑘-Independent Set
– 𝑘-Vertex Cover
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Reminder about 3-SAT

• Shown to be NP-hard by Cook
• Given a 3-CNF formula (logical AND of clauses, each an OR of 

3 variables), is there an assignment of true/false to each 
variable to make the formula true (i.e., satisfy the formula)?
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ +𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ +𝑦 ∨ ̅𝑧)

Clause
Variables

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



• Next example:  k-Clique

• Let’s show that k-Clique is NP-Complete!
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𝑘-Clique Problem

• Clique: A complete subgraph 
• 𝒌-Clique problem: given a 

graph 𝐺 and a number 𝑘, is 
there a clique of size 𝑘?
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3-Clique

4-Clique



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤# 𝑘-clique
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𝑘-Clique is in NP
• Show: For any graph 𝐺:

– There is a short certificate (“solution”) that 𝐺 has a 𝑘-clique
– The certificate can be checked efficiently (in polynomial time)

20Graph 𝐺

Certificate for 𝑮: 𝑆 = 𝐵,𝐷, 𝐸, 𝐹
(nodes in the 𝑘-clique)

Checking the certificate:
• Check that 𝑆 = 𝑘
• Check that every pair of nodes in 𝑆 share 

an edge

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑘" = 𝑂( 𝑉 ")

Total time: 𝑂 𝑉 " = poly 𝑉 + 𝐸

G
I

E

D
A

B

F

C

3-Clique

4-Clique

Suppose 𝑘 = 4



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤# 𝑘-clique
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3-SAT ≤𝒑 𝒌-Clique
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-clique3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧
𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ &𝑦 ∨ ̅𝑧)



𝑦 ̅𝑧
𝑧

3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ +𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ +𝑦 ∨ ̅𝑧)

For each clause, introduce a node for each of its three variables
Add an edge from each node to all non-contradictory nodes in the other clauses (i.e., 
to all nodes that is not the negation of its own variable)

Claim. There is a 𝑘-clique in this graph if and only if there is a 
satisfying assignment

Let 𝑘 = number of clauses

𝑥

𝑦

𝑥

𝑢

(also do this for the other clauses, 
omitted due to clutter)

𝑧 𝑥̅ 𝑢

𝑥̅ (𝑦 ̅𝑧

(𝑦 𝑦



3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ +𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ +𝑦 ∨ ̅𝑧)

Suppose there is a 𝑘-clique in this graph
• There are no edges between nodes for variables in the same clause, so 𝑘-

clique must contain one node from each clause
• Nodes in clique cannot contain variable and its negation
• Nodes in clique must then correspond to a satisfying assignment

𝑦 ̅𝑧
𝑧

𝑥

𝑦

𝑥 (𝑦𝑦

𝑢

𝑧 𝑥̅ 𝑢

𝑥̅ (𝑦 ̅𝑧



3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ +𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ +𝑦 ∨ ̅𝑧)

Suppose there is a satisfying assignment to the formula
• For each clause, choose one node whose value is true
• There are 𝑘 clauses, so this yields a collection of 𝑘 nodes
• Since the assignment is consistent, there is an edge between every pair of 

nodes, so this constitutes a 𝑘-clique

𝑦 ̅𝑧
𝑧

𝑥

𝑦

𝑥 (𝑦𝑦

𝑢

𝑧 𝑥̅ 𝑢

𝑥̅ (𝑦 ̅𝑧

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Clique
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-clique3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧
𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ &𝑦 ∨ ̅𝑧)



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤# 𝑘-clique
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END HERE

More below if you are interested
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𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT≤# 𝑘-Independent Set
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𝑘-Independent Set is in NP

• Show: For any graph 𝐺:
– There is a short certificate (“solution” for search problem) that 𝐺 has 

a 𝑘-independent set
– The certificate can be checked efficiently (in polynomial time)
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A B

C D

GF

H
J

K L

E

I

Graph 𝐺

Certificate for 𝑮: 𝑆 = 𝐴, 𝐶, 𝐸, 𝐺, 𝐻, 𝐽
(nodes in the 𝑘-independent set)

Checking the certificate:
• Check that 𝑆 = 𝑘
• Check that every edge is incident on at 

most one node in 𝑆

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑉 + 𝐸

Total time: 𝑂 𝐸 + 𝑉 = poly 𝑉 + 𝐸



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT≤# 𝑘-Independent Set
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3-SAT ≤𝒑 𝒌-Independent Set
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ +𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ +𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

(𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

𝑥̅𝑢

(𝑢

(𝑦̅𝑧

For each clause, construct a triangle graph with its three variables as nodes
Add an edge between each node and its negation

Claim. There is a 𝑘-independent set in this graph if and only if 
there is a satisfying assignment

Let 𝑘 = number of clauses



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ +𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ +𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

(𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

𝑥̅𝑢

(𝑢

(𝑦̅𝑧

Suppose there is a 𝑘-independent set 𝑆 in this graph 𝐺
• By construction of 𝐺, at most one node from each triangle is in 𝑆
• Since 𝑆 = 𝑘 and there are 𝑘 triangles, each triangle contributes one node
• If a variable 𝑥 is selected in one triangle, then 𝑥̅ is never selected in another 

triangle (since each variable is connected to its negation)
• There are no contradicting assignments, so can set variable chosen in each 

triangle to “true”; satisfying assignment by construction

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ +𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ +𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

(𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

𝑥̅𝑢

(𝑢

(𝑦̅𝑧

Suppose there is a satisfying assignment to the formula
• At least one variable in each clause must be true
• Add the node to that variable to the set 𝑆
• There are 𝑘 clauses, so set 𝑆 has exactly 𝑘 nodes
• If we use 𝑥 in any clause, we will never use 𝑥̅, so there are no edges among the 

nodes in 𝑆

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT≤# 𝑘-independent set
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• Next example:  k-Vertex Cover

• Remember?
–We did the following reduction in an earlier slide set!

k-Independent Set ≤L k-Vertex Cover

–We just showed k-Independent Set is NP-C
–Therefore…. (you know, right?)
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Max Independent Set ≤! k-Vertex Cover
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𝑂(1) time

𝑂 𝑉 time

Reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set 𝑘-vertex cover



𝑘-Vertex Cover is NP-Complete
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1. Show that it belongs to NP
– Given a candidate cover, check that every edge is covered

2. Show it is NP-Hard
– Show 𝑘-independent set≤# 𝑘-vertex cover



Wrap Up and Reminders
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Why Prove NP-Completeness?

• Though nobody has proven that P ≠ NP, if you prove a problem 
NP-Complete, most people accept that it is probably exponential

• Therefore it can be important for you to prove that a problem is 
NP-Complete
– Don't need to try to come up perfect non-exponential algorithm
– Can instead work on approximation algorithms



What’s a poor salesperson to do?

http://xkcd.com/399/



Approximation Algorithms

• Look at first 3 pages of Ch. 35 of CLRS textbook
• Can we find an algorithm for problem A Î NP-C that:
– Runs in polynomial time
– Gets “near optimal” results

• Prove some bound on the algorithm’s correctness in terms of the true 
optimal result
– No worse that (some factor) of optimal
– “It’s not always right (best), but it’s guaranteed to be this close.”



General Comments

• At least 3000 problems have been shown to be NP-Complete
– That number is from a non-recent report, so we might say that 

counts is a weak lower-bound on the true number found
– https://en.wikipedia.org/wiki/List_of_NP-complete_problems

including some popular games

• Some reductions are profound, some are comparatively easy, 
many are easy once the key insight is given

https://en.wikipedia.org/wiki/List_of_NP-complete_problems


Other NP-Complete Problems

• Hamilton Path/Cycle, Traveling Salesperson
• Subset-sum: Given a set of integers, does there exist a subset that adds 

up to some target T ?
• 0-1 knapsack: when weights not just integers
• Graph coloring: can a given graph be colored with k colors such that no 

adjacent vertices are the same color?
• Etc… 



Review (Again)

• A problem B is NP-complete
– if it is in NP and it is NP-hard.

• A problem B is NP-hard
– if every problem in NP is reducible to B.

• A problem A is reducible to a problem B if 
– there exists a polynomial reduction function T such that

• For every string x, 
• if x is a yes input for A, then T(x) is a yes input for B
• if x is a no input for A, then T(x) is a no input for B. 
• T can be computed in polynomially bounded time. 



“Consequences” of NP-Completeness

• NP-Complete the set of the“hardest” problems in NP, with these 
important properties:
– If any one NP-Complete problem can be solved in polynomial time…
– …then every  NP-Complete problem can be solved in polynomial time…
– …and in fact every problem in NP can be solved in polynomial time (which 

would show P = NP)
– Or, prove an exponential lower-bound for any single NP-C problem, then 

every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in O(n100) time, you've
proved that P = NP.  Retire rich & famous!



What We Don’t Know: Open Questions

– Is it impossible to solve an NP-c problem in polynomial time?
• No one has proved an exponential lower bound for any problem in NP.
• But, most computer scientists believe such a lower bound exists for 

NP-c problems.

– Are all problems in NP tractable or intractable?
I.e., does P=NP or not?
• If someone found a polynomial solution to any

NP-c problem, we’d know P = NP.
• But, most computer scientists believe P≠ NP.


