NP-Completeness

CS 4102: Algorithms

Fall 2021

Mark Floryan and Tom Horton

Topics

Why Study NP-Completeness

- All semester, we've studied *finding algorithms* to solve problems using various tools.
- Sometimes we instead need to prove that a problem is <u>extremely hard</u>, so as not to waste time on it!
 - NP-Complete Problems are hard
 - Let's go over a few of them quickly
 - Let's show how to prove a new problem is NP-Complete

NP-Completeness

Quick Background!

- <u>P</u>: Set of problems solved in polynomial time (e.g., sorting a list)
- **NP**: Set of problems that can be:
 - 1) Solved in non-deterministic polynomial time
 - 2) Verified in polynomial time
- <u>NP-Hard</u>: Set of problems that are as hard as (or harder) than the hardest problems in NP
- <u>NP-Complete</u>: Set of problems that are both NP and NP-Hard (i.e., the equally hardest problems in NP)

NP-Completeness

- So...a problem is NP-Complete if you can do the following:
- 1) Show how to verify it in polynomial time
 - Given a solution to the problem, verify it is correct
 - That algorithm's runtime needs to be a polynomial (usually easy)
- 2) Show the problem is NP-Hard (harder than a known NP-C Problem)
 - Take a currently known NP-C problem (let's call it A)
 - Show that $A \leq_p X$ //where X is your problem
 - Why? If A is NP-Hard, then: any NP problem $\leq_p A$
 - Transitivity: any NP problem $\leq_p A \leq_p X$
 - So X satisfies definition of NP-Hard

"Consequences" of NP-Completeness

- NP-Complete is the set of "hardest" problems in NP, with these important properties:
 - If any one NP-Complete problem can be solved in polynomial time...
 - ...then every NP-Complete problem can be solved in polynomial time...
 - ...and in fact every problem in NP can be solved in polynomial time (which would show P = NP)
 - Or, prove an exponential lower-bound for any single NP-hard problem, then every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in $O(n^{100})$ time, you've proved that $\mathbf{P} = \mathbf{NP}$. Retire rich & famous!

$A \leq_{p} B$ and B in P

Problem we <u>don't</u> know how to solve

Solution for *A*

Problem we <u>do</u> know how to solve

Solution for **B**

If a polynomial algorithm exists to solve B, what does that tell us about A?

$A \leq_{p} B$ and we prove A <u>not</u> in P

Problem we <u>don't</u> know how to solve

If we prove an exponential lower bound for problem A, what does that tell us about solving B?

Solution for *A*

Problem we <u>do</u> know how to solve

Using any Algorithm for **B**

Solution for **B**

But You Need One NP-Hard First...

- If you have one NP-Hard problem, you can use the technique just described to prove other problems are NP-Hard and NP-c
 - We need an NP-C problem to start this off
- The definition of NP-Hard was created to prove a point
 - There might be problems that are at least as hard as "anything" (i.e. all NP problems)
- Are there really NP-complete problems?
- Cook-Levin Theorem: The satisfiability problem (SAT) is NP-Complete.
 - Stephen Cook proved this "directly", from first principles, in 1971
 - Proven independently by Leonid Levin (USSR)
 - Showed that any problem that meets the definition of NP can be transformed in polynomial time to a CNF formula.
 - Proof outside the scope of this course (lucky you)

More About The SAT Problem

- The first problem to be proved NP-Complete was satisfiability (SAT):
 - Given a Boolean expression on n variables, can we assign values such that the expression is TRUE?
 - Ex: $((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$
- You might imagine that lots of decision problems could be expressed as a complex logical expression
 - And Cook and Levin proved you were right!
 - Proved the general result that any NP problem can be expressed this way

Conjunctive Normal Form (CNF)

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
 - Literal: an occurrence of a Boolean or its negation
 - A Boolean formula is in conjunctive normal form, or CNF, if it is an AND of clauses, each of which is an OR of literals
 - Ex: $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3 \vee x_4) \wedge (\neg x_5)$
 - 3-CNF: each clause has exactly 3 distinct literals
 - Ex: $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_3 \vee x_4) \wedge (\neg x_5 \vee x_3 \vee x_4)$
 - Notice: true if at least one literal in each clause is true
 - Note: Arbitrary SAT expressions can be translated into CNF forms by introducing intermediate variables etc.

The 3-CNF Problem

- Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF Problem) is NP-Complete
 - Proof: Also done by Cook ("part 2" of Cook's theorem)
 - But it's not that hard to show SAT \leq_p 3-CNF
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others
 - Thus by proving 3-CNF is NP-Complete we can prove many seemingly unrelated problems are NP-Complete

Joining the Club

- Given one NP-c problem, others can join the club
 - Prove that SAT reduces to another problem, and so on...

- Membership in NP-c grows...
- Classic textbook: Garey, M. and D. Johnson,
 Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

Reductions to Prove NP-C

Next:

- A tour of how to prove some problems are NP-C
- 3-SAT is a good starting point!

- -k-Clique (We will probably only have time for this one)
- − *k*-Independent Set
- − *k*-Vertex Cover

Reminder about 3-SAT

- Shown to be NP-hard by Cook
- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), is there an assignment of true/false to each variable to make the formula true (i.e., <u>satisfy</u> the formula)?

• Next example: *k*-Clique

Let's show that k-Clique is NP-Complete!

k-Clique Problem

- Clique: A complete subgraph
- **k-Clique problem:** given a graph *G* and a number *k*, is there a clique of size *k*?

k-Clique is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - − We will show 3-SAT $\leq_p k$ -clique

k-Clique is in NP

- **Show:** For any graph *G*:
 - There is a short certificate ("solution") that G has a k-clique
 - The certificate can be checked efficiently (in polynomial time)

Suppose k = 4

Certificate for $G: S = \{B, D, E, F\}$ (nodes in the k-clique)

Checking the certificate:

- Check that |S| = k O(k) = O(|V|)
- Check that every pair of nodes in S share an edge $O(k^2) = O(|V|^2)$

Total time: $O(|V|^2) = \text{poly}(|V| + |E|)$

k-Clique is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - − We will show 3-SAT $\leq_p k$ -clique

3-SAT

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land$ $(z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

x = true

y = false

z = false

u = true

polynomial-time reduction

k-clique

$$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$

(also do this for the other clauses, omitted due to clutter)

For each clause, introduce a node for each of its three variables

Add an edge from each node to all non-contradictory nodes in the other clauses (i.e., to all nodes that is not the negation of its own variable)

Let k = number of clauses

Claim. There is a k-clique in this graph if and only if there is a satisfying assignment

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

Suppose there is a k-clique in this graph

- There are no edges between nodes for variables in the same clause, so kclique must contain one node from each clause
- Nodes in clique cannot contain variable and its negation
- Nodes in clique must then correspond to a satisfying assignment

$$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$

x = true

y = false

z = false

u = true

Suppose there is a satisfying assignment to the formula

- For each clause, choose one node whose value is true
- There are k clauses, so this yields a collection of k nodes
- Since the assignment is consistent, there is an edge between every pair of nodes, so this constitutes a k-clique

3-SAT

 $(x \lor y \lor z) \land (x \lor \bar{y} \lor y) \land (u \lor y \lor \bar{z}) \land$ $(z \lor \bar{x} \lor u) \land (\bar{x} \lor \bar{y} \lor \bar{z})$

x = true

y = false

z = false

u = true

polynomial-time reduction

k-clique

k-Clique is NP-Complete

1. Show that it belongs to NP

Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- − We will show 3-SAT $\leq_p k$ -clique

END HERE

More below if you are interested

k-Independent Set is NP-Complete

- 1. Show that it belongs to NP
- 2. Show it is NP-Hard
 - Show 3-SAT $\leq_p k$ -Independent Set

k-Independent Set is in NP

- **Show:** For any graph *G*:
 - There is a short **certificate** ("solution" for search problem) that G has a k-independent set
 - The certificate can be checked efficiently (in polynomial time)

Graph G

Certificate for $G: S = \{A, C, E, G, H, J\}$ (nodes in the k-independent set)

Checking the certificate:

- Check that |S| = k O(k) = O(|V|)
- Check that every edge is incident on at most one node in S O(|V| + |E|)

Total time: O(|E| + |V|) = poly(|V| + |E|)

k-Independent Set is NP-Complete

1. Show that it belongs to NP

- 2. Show it is NP-Hard
 - Show 3-SAT $\leq_p k$ -Independent Set

3-SAT $\leq_p k$ -Independent Set

3-SAT

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z})$

x = true

y = false

z = false

u = true

polynomial-time reduction

k-independent set

$3-SAT \leq_p k$ -Independent Set

$$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$

For each clause, construct a <u>triangle graph</u> with its three variables as nodes Add an edge between each node and its negation

Let k = number of clauses

Claim. There is a k-independent set in this graph if and only if there is a satisfying assignment

3-SAT $\leq_{p} k$ -Independent Set

Suppose there is a k-independent set S in this graph G

- By construction of G, at most one node from each triangle is in S
- Since |S| = k and there are k triangles, each triangle contributes one node
- If a variable x is selected in one triangle, then \bar{x} is never selected in another triangle (since each variable is connected to its negation)
- There are no contradicting assignments, so can set variable chosen in each triangle to "true"; satisfying assignment by construction

3-SAT $\leq_p k$ -Independent Set

Suppose there is a satisfying assignment to the formula

- At least one variable in each clause must be true
- Add the node to that variable to the set S
- There are k clauses, so set S has exactly k nodes
- If we use x in any clause, we will never use \bar{x} , so there are no edges among the nodes in S

3-SAT $\leq_p k$ -Independent Set

3-SAT

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z})$

x = true

y = false

z = false

u = true

polynomial-time reduction

k-independent set

k-Independent Set is NP-Complete

1. Show that it belongs to NP

2. Show it is NP-Hard

- Show 3-SAT $\leq_p k$ -independent set

• Next example: *k*-Vertex Cover

- Remember?
 - We did the following reduction in an earlier slide set! k-Independent Set $\leq_p k$ -Vertex Cover
 - We just showed k-Independent Set is NP-C
 - —Therefore.... (you know, right?)

Max Independent Set $\leq_p k$ -Vertex Cover

k-independent set

Reduction

k-Vertex Cover is NP-Complete

1. Show that it belongs to NP

- Given a candidate cover, check that every edge is covered
- 2. Show it is NP-Hard

Show k-independent set ≤_p k-vertex cover

Wrap Up and Reminders

Why Prove NP-Completeness?

- Though nobody has proven that P ≠ NP, if you prove a problem NP-Complete, most people accept that it is probably exponential
- Therefore it can be important for you to prove that a problem is NP-Complete
 - Don't need to try to come up perfect non-exponential algorithm
 - Can instead work on approximation algorithms

What's a poor salesperson to do?

http://xkcd.com/399/

Approximation Algorithms

- Look at first 3 pages of Ch. 35 of CLRS textbook
- Can we find an algorithm for problem A ∈ NP-C that:
 - Runs in polynomial time
 - Gets "near optimal" results
- Prove some bound on the algorithm's correctness in terms of the true optimal result
 - No worse that (some factor) of optimal
 - "It's not always right (best), but it's guaranteed to be this close."

General Comments

- At least 3000 problems have been shown to be NP-Complete
 - That number is from a non-recent report, so we might say that counts is a weak lower-bound on the true number found
 - https://en.wikipedia.org/wiki/List of NP-complete problems including some popular games
- Some reductions are profound, some are comparatively easy, many are easy once the key insight is given

Other NP-Complete Problems

- Hamilton Path/Cycle, Traveling Salesperson
- Subset-sum: Given a set of integers, does there exist a subset that adds up to some target T?
- *0-1 knapsack*: when weights not just integers
- Graph coloring: can a given graph be colored with k colors such that no adjacent vertices are the same color?
- Etc...

Review (Again)

- A problem B is *NP-complete*
 - if it is in NP and it is NP-hard.
- A problem B is NP-hard
 - if every problem in NP is reducible to B.
- A problem A is reducible to a problem B if
 - there exists a polynomial reduction function T such that
 - For every string x,
 - if x is a yes input for A, then T(x) is a yes input for B
 - if x is a no input for A, then T(x) is a no input for B.
 - T can be computed in polynomially bounded time.

"Consequences" of NP-Completeness

- NP-Complete the set of the "hardest" problems in NP, with these important properties:
 - If any one NP-Complete problem can be solved in polynomial time...
 - ...then every NP-Complete problem can be solved in polynomial time...
 - ...and in fact every problem in NP can be solved in polynomial time (which would show P = NP)
 - Or, prove an exponential lower-bound for any single NP-C problem, then every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in $O(n^{100})$ time, you've proved that $\mathbf{P} = \mathbf{NP}$. Retire rich & famous!

What We <u>Don't</u> Know: Open Questions

- Is it **impossible** to solve an NP-c problem in polynomial time?
 - No one has proved an exponential lower bound for any problem in NP.
 - But, most computer scientists <u>believe</u> such a lower bound exists for NP-c problems.
- Are all problems in NP tractable or intractable?
 I.e., does P=NP or not?
 - If someone found a polynomial solution to any NP-c problem, we'd know P = NP.
 - But, most computer scientists <u>believe</u> P≠ NP.