NP-Completeness

CS 4102: Algorithms
Fall 2021
Mark Floryan and Tom Horton

Topics

Why Study NP-Completeness

- All semester, we've studied finding algorithms to solve problems using various tools.
- Sometimes we instead need to prove that a problem is extremely hard, so as not to waste time on it!
- NP-Complete Problems are hard
- Let's go over a few of them quickly
- Let's show how to prove a new problem is NP-Complete

NP-Completeness

Quick Background!

- $\underline{\boldsymbol{P}}$: Set of problems solved in polynomial time (e.g., sorting a list)
- NP: Set of problems that can be:
- 1) Solved in non-deterministic polynomial time
- 2) Verified in polynomial time
- NP-Hard: Set of problems that are as hard as (or harder) than the hardest problems in NP
- NP-Complete: Set of problems that are both NP and NP-Hard (i.e., the equally hardest problems in NP)

NP-Completeness

- So...a problem is NP-Complete if you can do the following:
- 1) Show how to verify it in polynomial time
- Given a solution to the problem, verify it is correct
- That algorithm's runtime needs to be a polynomial (usually easy)
- 2) Show the problem is NP-Hard (harder than a known NP-C Problem)
- Take a currently known NP-C problem (let's call it A)
- Show that $A \leq_{p} X$ //where X is your problem
- Why? If A is NP-Hard, then: any NP problem $\leq_{p} A$
- Transitivity: any NP problem $\leq_{p} A \leq_{p} X$
- So X satisfies definition of NP-Hard

"Consequences" of NP-Completeness

- NP-Complete is the set of "hardest" problems in NP, with these important properties:
- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
- Or, prove an exponential lower-bound for any single NP-hard problem, then every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich \& famous!

$A \leq_{p} B$ and B in P

Problem we don't

 know how to solve

Problem we do know how to solve

B
Using any Algorithm for \boldsymbol{B}

$A \leq_{p} B$ and we prove A not in P

Problem we don't know how to solve
 lower bound for problem A, what does that tell us about solving B ?

Problem we do know how to solve

B

Using any Algorithm for \boldsymbol{B}

Solution for \boldsymbol{B}

But You Need One NP-Hard First. . .

- If you have one NP-Hard problem, you can use the technique just described to prove other problems are NP-Hard and NP-c
- We need an NP-C problem to start this off
- The definition of NP-Hard was created to prove a point
- There might be problems that are at least as hard as "anything" (i.e. all NP problems)
- Are there really NP-complete problems?
- Cook-Levin Theorem: The satisfiability problem (SAT) is NP-Complete.
- Stephen Cook proved this "directly", from first principles, in 1971
- Proven independently by Leonid Levin (USSR)
- Showed that any problem that meets the definition of NP can be transformed in polynomial time to a CNF formula.
- Proof outside the scope of this course (lucky you)

More About The SAT Problem

- The first problem to be proved NP-Complete was satisfiability (SAT):
- Given a Boolean expression on n variables, can we assign values such that the expression is TRUE?
- Ex: $\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}$
- You might imagine that lots of decision problems could be expressed as a complex logical expression
- And Cook and Levin proved you were right!
- Proved the general result that any NP problem can be expressed this way

Conjunctive Normal Form (CNF)

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
- Literal: an occurrence of a Boolean or its negation
- A Boolean formula is in conjunctive normal form, or CNF, if it is an AND of clauses, each of which is an OR of literals
- Ex: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5}\right)$
- 3-CNF: each clause has exactly 3 distinct literals
- Ex: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5} \vee x_{3} \vee x_{4}\right)$
- Notice: true if at least one literal in each clause is true
- Note: Arbitrary SAT expressions can be translated into CNF forms by introducing intermediate variables etc.

The 3-CNF Problem

- Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF Problem) is NP-Complete
- Proof: Also done by Cook ("part 2" of Cook's theorem)
- But it's not that hard to show SAT $\leq_{p} 3-C N F$
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others
- Thus by proving 3-CNF is NP-Complete we can prove many seemingly unrelated problems are NP-Complete

Joining the Club

- Given one NP-c problem, others can join the club
- Prove that SAT reduces to another problem, and so on...

- Membership in NP-c grows...
- Classic textbook: Garey, M. and D. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness, 1979.

Reductions to Prove NP-C

- Next:
- A tour of how to prove some problems are NP-C
- 3-SAT is a good starting point!
- k-Clique (We will probably only have time for this one)
- k-Independent Set
- k-Vertex Cover

Reminder about 3-SAT

- Shown to be NP-hard by Cook
- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), is there an assignment of true/false to each variable to make the formula true (i.e., satisfy the formula)?

- Next example: k-Clique
- Let's show that k-Clique is NP-Complete!

k-Clique Problem

- Clique: A complete subgraph
- \boldsymbol{k}-Clique problem: given a graph G and a number k, is there a clique of size k ?

k-Clique is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We will show 3 -SAT $\leq_{p} k$-clique

k-Clique is in NP

- Show: For any graph G :
- There is a short certificate ("solution") that G has a k-clique
- The certificate can be checked efficiently (in polynomial time)

Graph G

Suppose $k=4$
Certificate for $\boldsymbol{G}: S=\{B, D, E, F\}$
(nodes in the k-clique)
Checking the certificate:

- Check that $|S|=k$

$$
O(k)=O(|V|)
$$

- Check that every pair of nodes in S share an edge

$$
O\left(k^{2}\right)=O\left(|V|^{2}\right)
$$

Total time: $O\left(|V|^{2}\right)=\operatorname{poly}(|V|+|E|)$

k-Clique is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We will show 3 -SAT $\leq_{p} k$-clique

3 -SAT $\leq_{p} \boldsymbol{k}$-Clique

3-SAT
$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge$ $(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

$$
\begin{aligned}
& x=\text { true } \\
& y=\text { false } \\
& z=\text { false } \\
& u=\text { true }
\end{aligned}
$$

k-clique

polynomial-time reduction

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

(also do this for the other clauses, omitted due to clutter)

For each clause, introduce a node for each of its three variables
Add an edge from each node to all non-contradictory nodes in the other clauses (i.e., to all nodes that is not the negation of its own variable)

Let $k=$ number of clauses
Claim. There is a k-clique in this graph if and only if there is a satisfying assignment

3 -SAT $\leq_{p} \boldsymbol{k}$-Clique

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

Suppose there is a k-clique in this graph

- There are no edges between nodes for variables in the same clause, so k clique must contain one node from each clause
- Nodes in clique cannot contain variable and its negation
- Nodes in clique must then correspond to a satisfying assignment

3 -SAT $\leq_{p} \boldsymbol{k}$-Clique

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

$$
\begin{aligned}
& x=\text { true } \\
& y=\text { false } \\
& z=\text { false } \\
& u=\text { true }
\end{aligned}
$$

Suppose there is a satisfying assignment to the formula

- For each clause, choose one node whose value is true
- There are k clauses, so this yields a collection of k nodes
- Since the assignment is consistent, there is an edge between every pair of nodes, so this constitutes a k-clique

3 -SAT $\leq_{p} \boldsymbol{k}$-Clique

3-SAT
$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge$ $(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

$$
\begin{aligned}
& x=\text { true } \\
& y=\text { false } \\
& z=\text { false } \\
& u=\text { true }
\end{aligned}
$$

k-clique

polynomial-time reduction

k-Clique is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We will show 3 -SAT $\leq_{p} k$-clique

END HERE

More below if you are interested

k-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard

- Show 3-SAT $\leq_{p} k$-Independent Set

k-Independent Set is in NP

- Show: For any graph G :
- There is a short certificate ("solution" for search problem) that G has a k-independent set
- The certificate can be checked efficiently (in polynomial time)

A-B

Total time: $O(|E|+|V|)=\operatorname{poly}(|V|+|E|)$

k-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard

- Show 3-SAT $\leq_{p} k$-Independent Set

3-SAT $\leq_{p} \boldsymbol{k}$-Independent Set

3 -SAT $\leq_{p} \boldsymbol{k}$-Independent Set

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

For each clause, construct a triangle graph with its three variables as nodes Add an edge between each node and its negation

Let $k=$ number of clauses
Claim. There is a k-independent set in this graph if and only if there is a satisfying assignment

3 -SAT $\leq_{p} \boldsymbol{k}$-Independent Set

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

$$
\begin{aligned}
& x=\text { true } \\
& y=\text { false } \\
& z=\text { false } \\
& u=\text { true }
\end{aligned}
$$

Suppose there is a k-independent set S in this graph G

- By construction of G, at most one node from each triangle is in S
- Since $|S|=k$ and there are k triangles, each triangle contributes one node
- If a variable x is selected in one triangle, then \bar{x} is never selected in another triangle (since each variable is connected to its negation)
- There are no contradicting assignments, so can set variable chosen in each triangle to "true"; satisfying assignment by construction

3 -SAT $\leq_{p} \boldsymbol{k}$-Independent Set

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

$$
\begin{aligned}
& x=\text { true } \\
& y=\text { false } \\
& z=\text { false } \\
& u=\text { true }
\end{aligned}
$$

Suppose there is a satisfying assignment to the formula

- At least one variable in each clause must be true
- Add the node to that variable to the set S
- There are k clauses, so set S has exactly k nodes
- If we use x in any clause, we will never use \bar{x}, so there are no edges among the nodes in S

3 -SAT $\leq_{p} \boldsymbol{k}$-Independent Set

3-SAT
$(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z})$

$$
\begin{aligned}
& x=\text { true } \\
& y=\text { false } \\
& z=\text { false } \\
& u=\text { true }
\end{aligned}
$$

k-independent set

polynomial-time reduction

k-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard

- Show 3-SAT $\leq_{p} k$-independent set
- Next example: k-Vertex Cover
- Remember?
- We did the following reduction in an earlier slide set! k-Independent Set $\leq_{p} k$-Vertex Cover
-We just showed k-Independent Set is NP-C
-Therefore.... (you know, right?)

Max Independent Set $\leq_{p} k$-Vertex Cover

k-independent set

k-vertex cover

Reduction

k-Vertex Cover is NP-Complete

1. Show that it belongs to NP

- Given a candidate cover, check that every edge is covered

2. Show it is NP-Hard

- Show k-independent set $\leq_{p} k$-vertex cover

Wrap Up and Reminders

Why Prove NP-Completeness?

- Though nobody has proven that $\mathbf{P} \neq \mathbf{N} \mathbf{P}$, if you prove a problem NP-Complete, most people accept that it is probably exponential
- Therefore it can be important for you to prove that a problem is NP-Complete
- Don't need to try to come up perfect non-exponential algorithm
- Can instead work on approximation algorithms

What's a poor salesperson to do?

SELUNG ON EBAY: O(1)

STIL WORKING
ON YOUR ROUTE?

http://xkcd.com/399/

Approximation Algorithms

- Look at first 3 pages of Ch. 35 of CLRS textbook
- Can we find an algorithm for problem $A \in \mathbf{N P}-\mathbf{C}$ that:
- Runs in polynomial time
- Gets "near optimal" results
- Prove some bound on the algorithm's correctness in terms of the true optimal result
- No worse that (some factor) of optimal
- "It's not always right (best), but it's guaranteed to be this close."

General Comments

- At least 3000 problems have been shown to be NP-Complete
- That number is from a non-recent report, so we might say that counts is a weak lower-bound on the true number found
- https://en.wikipedia.org/wiki/List of NP-complete problems including some popular games
- Some reductions are profound, some are comparatively easy, many are easy once the key insight is given

Other NP-Complete Problems

- Hamilton Path/Cycle, Traveling Salesperson
- Subset-sum: Given a set of integers, does there exist a subset that adds up to some target T ?
- 0-1 knapsack: when weights not just integers
- Graph coloring: can a given graph be colored with k colors such that no adjacent vertices are the same color?
- Etc...

Review (Again)

- A problem B is NP-complete
- if it is in NP and it is NP -hard.
- A problem B is NP -hard
- if every problem in NP is reducible to \mathbf{B}.
- A problem A is reducible to a problem B if
- there exists a polynomial reduction function T such that
- For every string x,
- if x is a yes input for A, then $T(x)$ is a yes input for B
- if x is a no input for A, then $T(x)$ is a no input for B.
- T can be computed in polynomially bounded time.

"Consequences" of NP-Completeness

- NP-Complete the set of the"hardest" problems in NP, with these important properties:
- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
- Or, prove an exponential lower-bound for any single NP-C problem, then every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich \& famous!

What We Don't Know: Open Questions

- Is it impossible to solve an NP-c problem in polynomial time?
- No one has proved an exponential lower bound for any problem in NP.
- But, most computer scientists believe such a lower bound exists for NP-c problems.
- Are all problems in NP tractable or intractable?
I.e., does $\mathrm{P}=\mathrm{NP}$ or not?
- If someone found a polynomial solution to any NP-c problem, we'd know P = NP.
- But, most computer scientists believe $P \neq N P$.

