Kruskal’s MST and Find-Union Data Structure

CS4102
Tom Horton and Mark Floryan

Topics

Topics in this slide-deck:

» Motivating Problem: Minimum Spanning Trees
This is a graph problem, and you’ve seen it

» One solution
Kruskal’s Algorithm (Uses a find-union structure)

» Define and design the find-union to support Kruskal’s Algorithm
Will require some clever implementation details

Minimum Spanning Trees

Spanning Tree

» A spanning tree of a graph G is a subgraph of G that contains every vertex in
G and is also a tree (i.e., it has no cycles)

All connected graphs have spanning tree(s)
All spanning trees have the same number of nodes (all of them)

You can construct a spanning tree by arbitrarily remove edges from cycles

Spanning Tree: Example

» Original Graph:

» Possible spanning trees:

aLiatiatliae

Spanning Tree:

4 Brent

Example (almost)

Golders
Cross Green
Manor
. Ho
Archway
IFinsbury
& o Park
/ Zone 3 ‘
g Arsenal
— Tufnell
Neasden Park
Bt Holloway
Hill Road
il
e & Kentish
Kilb Finchley Belsize Town fed
um Road Park Caledonian
Road
Wt Chalk P Highbury &
Hampstead Siiiss Fenm Islington e
od Cottage

Que
Willesden / Park
Junction fed

Zone 3 ~ Maida
Vale

North
Agton

Warwick

Westbourne
, Park
Royal
Oak
i Ladbroke e
ime /G /

/Bayswater .
Notting | o =

White \ Lancaster
Hill Gate
| City G g Queensway Gate
Shepherd's v
, Holland
Bush Park)
| Shepherd's
Goldhawk Bush % _High Street
\ Road | Kensington Kensington
\ (Olympia) ek
e \ Stamford
Chiswick
Park \ Brook

| Hammersmith

Turnham
Gre Ravenscourt
\ Park

Barons
Court

West
Kensington

Brompton

Fulham
Broadway

Zone 3

St. John's
Wood

=0
loucester Sogth ™ =
Road Kensington

Camden
Town

Mornington
Crescent
King's Cross

Zone 3

Bethnal
o, Green
Oldied
uston {Street
Square
Shreet . _A Shoreditch
Regent's' Goodge » Farringdon el ok
rk Street Chancery “wg Barbican fliiverpool =" Stepney
Tottenham = = S A Street \ AL Whitechapel 5"
\Court Road %, "o Adgate
Bond N SEt e
treet O
Q T Aldgate O, | e
Blackfriars. wer Limehouse
M::E'I'e . liard n - mOn = mem Gateway o= - O
eicester = :
Savare, # ~ Temple House Cannan O d Shadwel
- bankment Tower
Green Park 13 L il London hill
ABridge et / |
Wapping
Knightsbridge /
Hyde Park 4 Rotherhithe
Qcanada
LRI Bermondsey Water
p £
’ JElephant & .
[y
- - astle jod Quays
Sloane
Square
Zone 1 Kennington
o
New Cross
Gate b
(fstockwell
Zones Clapham Zone2
North
Clapham
Common o
Brixton
)
Clapham —
South

West India Quay

Heron
Quays
South
Quay

Mudchute

o
New Cross #ed

Leyton

Crossharbour &
London Arena

Island
Gardens.

Cutty

Sark
EGreenwich feh

Deptford

Bridge

Elverson
Road

O Lewisham e

! Leytonstone

-

Sl
West

Ham fot

Canning
Town

Plaistow.
o

=

Roya
Victor

Minimum Spanning Tree

» Just constructing any spanning tree is simple

» Suppose edges have costs!

Cost of building tracks between two stations
Length of wire between boxes in a house

» Each spanning tree has a different total cost (sum of edges included in tree)

» The Minimum Spanning Tree is the spanning tree with lowest overall cost

Minimum Spanning Tree

» Given a connected and undirected graph G=(V, E)

» Find a graph G’ = (V, E’) such that:
E’ is a subset of E
IE] = [V]- 1|
G’ is connected (assuming G was connected)

Sum of cost of edges in E’ is minimum

» G’ is then the minimum spanning tree

10

Kruskal’s Algorithm

Kruskal’s MST Algorithm

» Prim’s approach:
Build one tree. Make the one tree bigger and as good as it can be.

» Kruskal’s approach
Choose the best edge possible: smallest weight
Not one tree — maintain a forest!

Each edge added will connect two trees.
Can’t form a cycle in a tree!

After adding n-| edges, you have one tree, the MST

11

Kruskal’s MST Algorithm

» ldea: Grow a forest out of edges that do not create a cycle. Pick an edge with
the smallest weight.

G=(V,E)

__—

./'V

—
— /

12

MST

(V9]

[\

MST

(\ 9]

[\

Kruskal code

void Graph: :kruskal () {
int edgesAccepted = 0;
DisjSet s (NUM VERTICES) ;

while (edgesAccepted < NUM VERTICES - 1) {
e = smallest weight edge not deleted yet;

// edge e = (u, v)

|E| heap ops

if (uset != wvset) {
edgesAccepted++;

s.unionSets (uset, wvset);

15

™~

|V| unions

Runtime of Kruskal’s

» Every edge is placed on priority queue once and removed once
O(E *log(E)) = O(E *log(V))

» For each edge you do 2 set finds and one set union.
Let f(V) be time of find, and u(V) be time of union.

0 (E+ (2f(V) +u()))
If find and union are linear time, then G)(E x* (2V + V)) =0(E=«V) =03

» Overall: O(E xlog(V) + E V) = O(E * V) = O(V3) //Assumes find and union linear time

16

Strategy for Kruskal’s

» EL = sorted set of edges ascending by weight

» Foreach edge e in EL
T1 = tree for head(e)
T2 = tree for tail(e)
If (T1!=T2)
add e to the output (the MST)
Combine trees T| and T2

» Seems simple, no?
But, how do you keep track of what trees a node is in?
Trees are sets. Need to findset(v) and “union” two sets

17

18

Find-Union Data Structure

Union/Find and Disjoint Sets

» Needs to support the following operations
void makeSet(int n) //lconstruct n independent sets
int findSet(int i) //given i, which set does i belong to!?

void union(int i, int j) //merge sets containing i and |

19

Union/Find and Disjoint Sets

» Needs to support the following operations

void makeSet(int n) //lconstruct n independent sets

» Solution:

Store as array of size n. Each location stores label for that set.
of 6
0 I 2 3 4 5 6 /

20

Union/Find and Disjoint Sets

» Needs to support the following operations
int findSet(int i) //given i, which set does i belong to?

» Solution: Trace around array until we find place where index
and contents match

Start at index i and repeat:
If a[i] == i then return i
Else set i = aJi]

of 2l fe s el
0 I 2 3 4 5 6 7

21

Union/Find and Disjoint Sets

» Needs to support the following operations
void union(int i, int j) //merge sets i and j

» Solution: find label for each set (call find() method), then
set one label to point to other

Labell = find(i); Label2 = find(j)
a[Labell] = Label2 //OR a[Label2] = Labell

of 2 g3 fels el
0 I 2 3 4 5 6 7

22

Union/Find and Disjoint Sets

» Example:
merge(4,5)
merge(6,7)
merge(l,2)
merge(5,6)
find(1); find(4); find(6)

of 2l fe s el
0 I 2 3 4 5 6 7

23

Union/Find and Disjoint Sets

» Time-complexity if where n is size of array!?

» makeSet()

Linear: just create array and fill it with values

» find()

Linear if have to trace a long way to get to label

Constant if lucky and label given as input

» union()
Constant to change the label BUT...

Could be linear to find the two labels first.
24

Optimization 1: Union by rank

() ® ()
(e & &
®» @ (&) (e @
O (& ®» @© @

(a) (b)

25

Optimization 1:

» Easy to implement!!

26

Union by rank

MAKE-SET(x)

L Xp=x%
2 x.rank = 0

UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

1 if x.rank > y.rank

2 yip =%

3 elsex.p=1y

4 if x.rank == y.rank

9 y.rank = y.rank + 1

Optimization 2: Path Compression

(b)

27

Optimization 2: Path Compression

» Also easy to implement

FIND-SET(x)

I itx = x.p
2 x.p = FIND-SET(x.p)
3 return x.p

28

Complexity for Kruskal’s

» Union-by-rank and path compression yields m operations in @(m * a(n))

where a(n) aVERY slowly growing function. (See textbook for details)

m is the number of times you run the operation. So constant time, for each operation

» So Kruskal’s overall:
O(E *log(V) + E *1) = O(E xlog(V)) /Inow the heap is slowest part

29

Summary

30

What did we learn?

» Minimum Spanning Trees

Review!

» Kruskal’s Algorithm
Review again!

» Find-union
How to implement

How to optimize

How it affects runtime of Kruskal’s algorithm.

31

