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Topics in this slide-deck:

» Motivating Problem: Minimum Spanning Trees
This is a graph problem, and you’ve seen it

» One solution
Kruskal’s Algorithm (Uses a find-union structure)

» Define and design the find-union to support Kruskal’s Algorithm
Will require some clever implementation details



Minimum Spanning Trees



Spanning Tree

» A spanning tree of a graph G is a subgraph of G that contains every vertex in
G and is also a tree (i.e., it has no cycles)

All connected graphs have spanning tree(s)
All spanning trees have the same number of nodes (all of them)

You can construct a spanning tree by arbitrarily remove edges from cycles



Spanning Tree: Example

» Original Graph:

» Possible spanning trees:
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Minimum Spanning Tree

» Just constructing any spanning tree is simple

» Suppose edges have costs!

Cost of building tracks between two stations
Length of wire between boxes in a house

» Each spanning tree has a different total cost (sum of edges included in tree)

» The Minimum Spanning Tree is the spanning tree with lowest overall cost



Minimum Spanning Tree

» Given a connected and undirected graph G=(V, E)

» Find a graph G’ = (V, E’) such that:
E’ is a subset of E
IE] = [V]- 1|
G’ is connected (assuming G was connected)

Sum of cost of edges in E’ is minimum

» G’ is then the minimum spanning tree
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Kruskal’s Algorithm



Kruskal’s MST Algorithm

» Prim’s approach:
Build one tree. Make the one tree bigger and as good as it can be.

» Kruskal’s approach
Choose the best edge possible: smallest weight
Not one tree — maintain a forest!

Each edge added will connect two trees.
Can’t form a cycle in a tree!

After adding n-| edges, you have one tree, the MST
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Kruskal’s MST Algorithm

» ldea: Grow a forest out of edges that do not create a cycle. Pick an edge with
the smallest weight.

G=(V,E)
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Kruskal code

void Graph: :kruskal () {
int edgesAccepted = 0;
DisjSet s (NUM VERTICES) ;

while (edgesAccepted < NUM VERTICES - 1) {
e = smallest weight edge not deleted yet;

// edge e = (u, v)

|E| heap ops

if (uset != wvset) {
edgesAccepted++;

s.unionSets (uset, wvset);
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Runtime of Kruskal’s

» Every edge is placed on priority queue once and removed once
O(E *log(E)) = O(E *log(V))

» For each edge you do 2 set finds and one set union.
Let f(V) be time of find, and u(V) be time of union.

0 (E+ (2f(V) +u()))
If find and union are linear time, then G)(E x* (2V + V)) =0(E=«V) =03

» Overall: O(E xlog(V) + E V) = O(E * V) = O(V3) //Assumes find and union linear time
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Strategy for Kruskal’s

» EL = sorted set of edges ascending by weight

» Foreach edge e in EL
T1 = tree for head(e)
T2 = tree for tail(e)
If (T1!=T2)
add e to the output (the MST)
Combine trees T| and T2

» Seems simple, no?
But, how do you keep track of what trees a node is in?
Trees are sets. Need to findset(v) and “union” two sets
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Find-Union Data Structure



Union/Find and Disjoint Sets

» Needs to support the following operations
void makeSet(int n) //lconstruct n independent sets
int findSet(int i) //given i, which set does i belong to!?

void union(int i, int j) //merge sets containing i and |
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Union/Find and Disjoint Sets

» Needs to support the following operations

void makeSet(int n) //lconstruct n independent sets

» Solution:

Store as array of size n. Each location stores label for that set.
of 6
0 I 2 3 4 5 6 /
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Union/Find and Disjoint Sets

» Needs to support the following operations
int findSet(int i) //given i, which set does i belong to?

» Solution: Trace around array until we find place where index
and contents match

Start at index i and repeat:
If a[i] == i then return i
Else set i = aJi]

of 2l fe s el
0 I 2 3 4 5 6 7
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Union/Find and Disjoint Sets

» Needs to support the following operations
void union(int i, int j) //merge sets i and j

» Solution: find label for each set (call find() method), then
set one label to point to other

Labell = find(i); Label2 = find(j)
a[Labell] = Label2 //OR a[Label2] = Labell

of 2 g3 fels el
0 I 2 3 4 5 6 7
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Union/Find and Disjoint Sets

» Example:
merge(4,5)
merge(6,7)
merge(l,2)
merge(5,6)
find(1); find(4); find(6)

of 2l fe s el
0 I 2 3 4 5 6 7
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Union/Find and Disjoint Sets

» Time-complexity if where n is size of array!?

» makeSet()

Linear: just create array and fill it with values

» find()

Linear if have to trace a long way to get to label

Constant if lucky and label given as input

» union()
Constant to change the label BUT...

Could be linear to find the two labels first.
24



Optimization 1: Union by rank
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Optimization 1:

» Easy to implement!!
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Union by rank

MAKE-SET(x)

L Xp=x%
2 x.rank = 0

UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

1 if x.rank > y.rank

2 yip =%

3 elsex.p=1y

4 if x.rank == y.rank

9 y.rank = y.rank + 1



Optimization 2: Path Compression

(b)
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Optimization 2: Path Compression

» Also easy to implement

FIND-SET(x)

I itx = x.p
2 x.p = FIND-SET(x.p)
3 return x.p
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Complexity for Kruskal’s

» Union-by-rank and path compression yields m operations in @(m * a(n))

where a(n) aVERY slowly growing function. (See textbook for details)

m is the number of times you run the operation. So constant time, for each operation

» So Kruskal’s overall:
O(E *log(V) + E *1) = O(E xlog(V)) /Inow the heap is slowest part
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Summary
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What did we learn?

» Minimum Spanning Trees

Review!

» Kruskal’s Algorithm
Review again!

» Find-union
How to implement

How to optimize

How it affects runtime of Kruskal’s algorithm.
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