
Using DFS for Topological Sorting and
Strongly Connected Components

CS 4102: Algorithms
Fall 2021

Mark Floryan and Tom Horton

1

DFS

CLRS Section 22.3 on DFS

2

Readings

• CLRS:
– Section 22.3 on DFS
– Later/eventually:
• Section 22.4 on Topological Sort
• Section 22.5 on Strongly Connected Components

3

DFS: the Strategy in Words

4

• Depth-first search: Strategy
– Go as deep as can visiting un-visited nodes
• Choose any un-visited vertex when you have a choice

– When stuck at a dead-end, backtrack as little as
possible
• Back up to where you could go to another unvisited

vertex
– Then continue to go on from that point
– Eventually you’ll return to where you started
• Reach all vertices? Maybe, maybe not

Observations about the DFS Strategy

5

• Note: we must keep track of what nodes we’ve visited
• DFS traverses a subset of E (the set of edges)
– Creates a tree, rooted at the starting point: the Depth-first Search Tree (DFS tree)
– Each node in the DFS tree has a distance from the start. (We often don’t care

about this, but we could.)
• At any point, all nodes are either:
– Un-discovered
– Finished (you backed up from it), or
– Discovered (i.e. visited) but not finished

• On the path from the current node back to the root
• We might back up to it

– (Later we’ll call these states: white, black and gray respectively)

DFS Strategy 1: Use a stack

6

• Maintain a Stack (Let’s call it S)

• Start at some node ‘s’ (push ‘s’ to S and mark as visited)
• While S not empty

– Pop a node ‘n’ from S
– Process ‘n’ if necessary (depending on problem you are solving)
– For each non-visited neighbor of ‘n’

• Mark neighbor as visited
• Push neighbor onto S

– Repeat

• Sound familiar? Same as BFS but uses stack instead of queue!
• Or we can implement recursively (see next slide)

DFS Strategy #2

7

• Use a recursive function to “visit” each node
– Need a non-recursive function to initialize and make first call

• Before we look at this code… Important!
– Best to think of DFS is a strategy as well as a single, particular bit of

pseudo-code
– We often add things to DFS code to solve problems

• Code shown next is very minimal

– ”Swiss Army Knife” of graph algorithms?

DFS Strategy 2: Recursion

8

def dfs(graph, start): //Main loop, inits and calls
visited = {}
dfs_recurse(graph, start, visited)

def dfs_recurse(graph, curnode, visited): //sometimes called dfs_visit()
visited[curnode] = True
alist = graph.get_adjlist(curnode) //get the neighbors of curnode
for v in alist:

if v not in visited:
print(" dfs traversing edge:", curnode, v)
dfs_recurse(graph, v, visited)

end for-all adjacent vertices
return

depth-first search, example

9

• Let’s start at V0

DFS to Process all Vertices in a Graph

10

• Purpose: do all required initializations, then call dfs_recurse() as many times as needed to
visit all nodes.
– May create a DFS forest.

• Can be used to count connected components
– Could remember which nodes are in each connected component

def dfs_sweep(graph, start):
visited = {}

loop repeats DFS on every unvisited node
for v in graph:

if v not in visited:
dfs_recurse(graph, v, visited)

Using DFS to Find if a Graphic is Acyclic

11

• Does a graph have a cycle?
– DFS is great for this
– But, slightly harder if graph is undirected

• Use DFS tree: classify edges and nodes as you process them
– Nodes:
• White: unvisited
• Black: done with it, backed up from it (never to return)
• Gray: Have reached it; exploring its adjacent nodes; but not done with it

CLRS’s DFS Algorithm (non-recursive part)

DFS(G)
1 for each vertex u in G.V
2 u.color = WHITE
3 u.π = NIL
4 time = 0
5 for each vertex u in G.V
6 if u.color == WHITE // if unseen
7 DFS-VISIT(G, u) // explore paths out of u

// we called this dfs_sweep() earlier

CLRS’s DFS Algorithm (recursive part)
DFS-VISIT(G, u)
1 time = time + 1 // white vertex u has just been discovered
2 u.d = time // discovery time of u
3 u.color = GRAY // mark as seen
4 for each v in G.Adj[u] // explore edge (u, v)
5 if v.color == WHITE // if unseen
6 v.π = u
7 DFS-VISIT(G, v) // explore paths out of v (i.e., go “deeper”)
8 u.color = BLACK // u is finished
9 time = time + 1
10 u.f = time // finish time of u

// we called this dfs_recurse() earlier

Depth-first search tree

14

• As DFS traverses a digraph, edges classified as:
– tree edge, back edge, descendant edge, or cross edge
– If graph undirected, do we have all 4 types?

Using Non-Tree Edges to Identify Cycles

15

• From the previous graph, note that:
• Back edges (indicates a cycle)
– dfs_recurse() sees a vertex that is gray
– This back edge goes back up the DFS tree to a vertex that is on the path

from the current node to the root
• Cross Edges and Descendant Edges (not cycles)
– dfs_recurse() sees a vertex that is black
– Descendant edge: connects current node to a descendant in the DFS tree
– Cross edge: connects current node to a node in another subtree – not a

descendant of current node

Non-tree Edges in DFS

16

• Question 1: Finding back edges for an undirected graph is not quite this simple:
– The parent node of the current node is gray
– Not a cycle, is it? It’s the same edge you just traversed
– Question: how would you modify our code to recognize this?

• Question 2:
– In digraph, how could you modify the code to distinguish cross edges from descendant

edges?
– Need to record the “time” at which a node was discovered (set to “gray”) and finished

(set to “black”)
– Also, have a “time counter”, say, ctr

• Set d[v] = ctr++ as discovery time
• Set f[v] = ctr++ as finish time

Time Complexity of DFS

17

• For a digraph having V vertices and E edges
– Each edge is processed once in the while loop of dfs_recurse() for a cost of
q(E)
• Think about adjacency list data structure.
• Traverse each list exactly once. (Never back up)
• There are a total of 2*E nodes in all the lists

– The non-recursive dfs_sweep() algorithm will do q(V) work even if there
are no edges in the graph

– Thus over all time-complexity is q(V+E)
• Remember: this means the larger of the two values
• Note: This is considered “linear” for graphs since there are two size parameters for

graphs.
– Extra space is used for color array.

• Space complexity is q(V)

depth-first search, example

18

• Let’s start at V0

DFS Examples

• Source vertex: 1

• Source vertex: s

Properties of DFS Search, DFS Trees

• “Parentheses Structure”. See pp. 606-609

Properties of DFS Search, DFS Trees

• Edge Classification. See pp. 606-609

Topological Sorting

Readings: CLRS 22.4

22

Topological Sort

23

• Given a directed acyclic graph, construct a
linear ordering of the vertices such that if
there is an edge from u to v, then u appears
before v in the ordering.

• One valid topological sort is:
V1 V6 V8 V3 V2 V7 V4 V5

Topological Sort

24

• What are allowable
orderings I can take all
these CS classes?
– Note there are many

possible orderings
– Unlike sorting a list

Getting Dressed

Underwear Socks

ShoesPants

Belt

Shirt

Watch

Tie

Jacket

Topologically sorted vertices appear in reverse order of their finish times!

We Can Use DFS and Finish Times

This is the same graph
with a different layout.

Topological Sort Algorithm

DFS(G)
0 toposort-list = [] // empty list
1 for each vertex u in G.V
2 u.color = WHITE
3 u.π = NIL
4 time = 0
5 for each vertex u in G.V
6 if u.color == WHITE // if unseen
7 DFS-VISIT(G, u) // explore paths out of u
8 // toposort-list contains the result

• Strategy: modify the two DFS functions so that they order nodes
by finish-time in reverse order. This slide: DFS “Sweep”.

Topological Sort Algorithm

DFS-VISIT(G, u)
1 time = time + 1 // white vertex u has just been discovered
2 u.d = time // discovery time of u
3 u.color = GRAY // mark as seen
4 for each v in G.Adj[u] // explore edge (u, v)
5 if v.color == WHITE // if unseen
6 v.π = u
7 DFS-VISIT(G, v) // explore paths out of v (i.e., go “deeper”)
8 u.color = BLACK // u is finished
9 time = time + 1
10 u.f = time // finish time of u
11 toposort-list.prepend(u)

Forward vs. Reverse

• Topological sort is a type of sort
– Implies an ordering
– Can sort backwards, of course

• Forward topological order
– If edge vw in graph, then topo[v] < topo[w]

• Reverse topological order
– If edge vw in graph, then topo[v] > topo[w]

• And, every directed graph has a transpose, which means… (see next slide)

What’s an Edge Mean?
• What does our graph model?

• Edge uv means do u first, then v. Or, …
• Edge uv means task u depends on v (i.e. v must be done first)

– The latter is called a dependency graph
– “forward in time” vs. “depend on this one”

• Big deal? No, we can order vertices in reverse topological order if
needed

Underwear

Shoes

Pants

Underwear

Shoes

Pants

Strongly Connected Components
in a Digraph

Readings: CLRS 22.5, but you can ignore the
proof-y parts

31

Strongly Connected Components (SCCs)

• In a digraph, Strongly Connected Components (SCCs) are
subgraphs where all vertices in each SCC are reachable from
one another
– Thus vertices in an SCC are on a directed cycle
– Any vertex not on a directed cycle is an SCC all by itself

• Common need: decompose a digraph into its SCCs
– Perhaps then operate on each, combine results based on connections

between SCCs

32

SCC Example

• Example: digraph below has 3 SCCs
– Note here each SCC has a cycle. (Possible to have a single-node SCC.)
– Note connections to other SCCs, but no path leaves a SCC and comes back
– Note there’s a unique set of SCCs for a given digraph

33

Component Graph
• Sometimes for a problem it’s useful to consider digraph G’s

component graph, GSCC

– It’s like we ”collapse” each SCC into one node
– Might need a topological ordering between SCCs

34

How to Decompose Graph into SCCs

• Several algorithms do this using DFS
• We’ll use CLRS’s choice (by Kosaraju and Sharir)
• Algorithm is:

1. Call DFS-sweep(G) to find finishing times u.f for each vertex u in G.
2. Compute GT, the transpose of diagraph G.

(Reminder: transpose means same nodes, edges reversed.)
3. Call DFS-sweep(GT) but do the recursive calls on nodes in the order

of decreasing u.f. (Start with the vertex with largest finish time,…)
4. The DFS forest produced in Step 3 is the set of SCCs

35

Why Do We Care about the Transpose?
• If we call DFS on a node in an SCC, it will visit all nodes in that SCC

– But it could leave the SCC and find other nodes L
– Could we prevent that somehow?

• Note that a digraph and its transpose have the same SCCs
– Maybe we can use the fact that edge-directions are reversed in GT to stop DFS from

leaving an SCC?
– But this depends on the order you choose vertices to do DFS-sweep() in GT

36

Why Do We Care About Finish Times?
• Our algorithm first finds DFS finish times in G
• Then calls recursive DFS in transpose from vertex with largest

finish time (here, B)
– Reversed edges in GT stop it visiting nodes in other SCCs

37

Why Do We Care About Finish Times?
• After recursive DFS in transpose finds SCC containing B,

next DFS will start from C
– Nodes in previously found SCC(s) have been visited
– Reversed edges in GT stop it visiting nodes in SCCs yet to be found

38

Ties to Topological Sorting

• Formal proof of correctness in CLRS, but hopefully from previous slides you’re
convinced it works!

• Note how the use of finish times makes this seem like topological sort. And it is,
if you think of topological ordering for GSCC

– Cycles in G, but no cycles in so we could sort that
– Topological sort controls the order we do things, and DFS finds all the reachable nodes in

an SCC

39

Final Thoughts

• There are many interesting problems involving digraphs and
DAGs

• They can model real-world situations
– Dependencies, network flows, …

• DFS is often a valuable strategy to tackle such problems
– Not interested in back-edges, since DAGs are acyclic
– Ordering, reachability from DFS can be useful

40

