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DFS

CLRS Section 22.3 on DFS
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Readings

• CLRS:
– Section 22.3 on DFS
– Later/eventually:
• Section 22.4 on Topological Sort
• Section 22.5 on Strongly Connected Components
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DFS: the Strategy in Words
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• Depth-first search: Strategy
– Go as deep as can visiting un-visited nodes
• Choose any un-visited vertex when you have a choice

– When stuck at a dead-end, backtrack as little as 
possible
• Back up to where you could go to another unvisited 

vertex
– Then continue to go on from that point
– Eventually you’ll return to where you started
• Reach all vertices?  Maybe, maybe not



Observations about the DFS Strategy
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• Note: we must keep track of what nodes we’ve visited
• DFS traverses a subset of E (the set of edges)
– Creates a tree, rooted at the starting point: the Depth-first Search Tree (DFS tree)
– Each node in the DFS tree has a distance from the start.  (We often don’t care 

about this, but we could.)
• At any point, all nodes are either:
– Un-discovered
– Finished (you backed up from it), or
– Discovered (i.e. visited) but not finished

• On the path from the current node back to the root
• We might back up to it

– (Later we’ll call these states: white, black and gray respectively)



DFS Strategy 1: Use a stack
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• Maintain a Stack (Let’s call it S)

• Start at some node ‘s’ (push ‘s’ to S and mark as visited)
• While S not empty

– Pop a node ‘n’ from S
– Process ‘n’ if necessary (depending on problem you are solving)
– For each non-visited neighbor of ‘n’

• Mark neighbor as visited
• Push neighbor onto S

– Repeat

• Sound familiar? Same as BFS but uses stack instead of queue!
• Or we can implement recursively (see next slide)



DFS Strategy #2
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• Use a recursive function to “visit” each node
– Need a non-recursive function to initialize and make first call

• Before we look at this code… Important!
– Best to think of DFS is a strategy as well as a single, particular bit of 

pseudo-code
– We often add things to DFS code to solve problems

• Code shown next is very minimal

– ”Swiss Army Knife” of graph algorithms?



DFS Strategy 2: Recursion
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def dfs(graph, start): //Main loop, inits and calls 
visited = {}
dfs_recurse(graph, start, visited)

def dfs_recurse(graph, curnode, visited): //sometimes called dfs_visit()
visited[curnode] = True
alist = graph.get_adjlist(curnode) //get the neighbors of curnode
for v in alist:

if v not in visited:
print("  dfs traversing edge:", curnode, v)
dfs_recurse(graph, v, visited)

# end for-all adjacent vertices
return



depth-first search, example
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• Let’s start at V0



DFS to Process all Vertices in a Graph
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• Purpose: do all required initializations, then call dfs_recurse() as many times as needed to 
visit all nodes.
– May create a DFS forest.

• Can be used to count connected components
– Could remember which nodes are in each connected component

def dfs_sweep(graph, start):
visited = {}

# loop repeats DFS on every unvisited node
for v in graph:

if v not in visited:
dfs_recurse(graph, v, visited)



Using DFS to Find if a Graphic is Acyclic

11

• Does a graph have a cycle?
– DFS is great for this
– But, slightly harder if graph is undirected

• Use DFS tree: classify edges and nodes as you process them
– Nodes:
• White: unvisited
• Black: done with it, backed up from it (never to return)
• Gray: Have reached it; exploring its adjacent nodes; but not done with it



CLRS’s DFS Algorithm (non-recursive part)

DFS(G)
1 for each vertex u in G.V
2     u.color = WHITE
3     u.π = NIL
4 time = 0
5 for each vertex u in G.V
6     if u.color == WHITE  // if unseen
7         DFS-VISIT(G, u)  // explore paths out of u

// we called this dfs_sweep() earlier



CLRS’s DFS Algorithm (recursive part)
DFS-VISIT(G, u)
1   time = time + 1  // white vertex u has just been discovered
2   u.d = time  // discovery time of u
3   u.color = GRAY  // mark as seen
4   for each v in G.Adj[u]  // explore edge (u, v)
5       if v.color == WHITE   // if unseen
6           v.π = u
7           DFS-VISIT(G, v)  // explore paths out of v (i.e., go “deeper”)
8   u.color = BLACK  // u is finished
9   time = time + 1
10 u.f = time  // finish time of u

// we called this dfs_recurse() earlier 



Depth-first search tree
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• As DFS traverses a digraph, edges classified as:
– tree edge, back edge, descendant edge, or cross edge
– If graph undirected, do we have all 4 types?



Using Non-Tree Edges to Identify Cycles
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• From the previous graph, note that:
• Back edges (indicates a cycle)
– dfs_recurse() sees a vertex that is gray
– This back edge goes back up the DFS tree to a vertex that is on the path 

from the current node to the root
• Cross Edges and Descendant Edges (not cycles)
– dfs_recurse() sees a vertex that is black
– Descendant edge: connects current node to a descendant in the DFS tree
– Cross edge: connects current node to a node in another subtree – not a 

descendant of current node



Non-tree Edges in DFS
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• Question 1: Finding back edges for an undirected graph is not quite this simple:
– The parent node of the current node is gray
– Not a cycle, is it?  It’s the same edge you just traversed
– Question: how would you modify our code to recognize this?

• Question 2:
– In digraph, how could you modify the code to distinguish cross edges from descendant 

edges?
– Need to record the “time” at which a node was discovered (set to “gray”) and finished 

(set to “black”)
– Also, have a “time counter”, say, ctr

• Set d[v] = ctr++ as discovery time
• Set f[v] = ctr++ as finish time



Time Complexity of DFS
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• For a digraph having V vertices and E edges
– Each edge is processed once in the while loop of dfs_recurse() for a cost of 
q(E)
• Think about adjacency list data structure.
• Traverse each list exactly once. (Never back up)
• There are a total of 2*E nodes in all the lists

– The non-recursive dfs_sweep() algorithm will do q(V) work even if there 
are no edges in the graph

– Thus over all time-complexity is q(V+E)
• Remember: this means the larger of the two values
• Note: This is considered “linear” for graphs since there are two size parameters for 

graphs.
– Extra space is used for color array.

• Space complexity is q(V)



depth-first search, example
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• Let’s start at V0



DFS Examples

• Source vertex: 1

• Source vertex: s



Properties of DFS Search, DFS Trees

• “Parentheses Structure”.  See pp. 606-609



Properties of DFS Search, DFS Trees

• Edge Classification.  See pp. 606-609



Topological Sorting

Readings:  CLRS 22.4
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Topological Sort
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• Given a directed acyclic graph, construct a 
linear ordering of the vertices such that if 
there is an edge from u to v, then u appears 
before v in the ordering.

• One valid topological sort is:
V1  V6  V8  V3  V2  V7  V4  V5



Topological Sort

24

• What are allowable 
orderings I can take all 
these CS classes?
– Note there are many 

possible orderings
– Unlike sorting a list



Getting Dressed

Underwear Socks

ShoesPants

Belt

Shirt
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Tie

Jacket



Topologically sorted vertices appear in reverse order of their finish times!

We Can Use DFS and Finish Times

This is the same graph 
with a different layout.



Topological Sort Algorithm

DFS(G)
0 toposort-list = [ ] // empty list
1 for each vertex u in G.V
2       u.color = WHITE
3       u.π = NIL
4 time = 0
5 for each vertex u in G.V
6       if u.color == WHITE  // if unseen
7 DFS-VISIT(G, u)  // explore paths out of u
8 // toposort-list contains the result

• Strategy: modify the two DFS functions so that they order nodes 
by finish-time in reverse order.  This slide:  DFS “Sweep”.



Topological Sort Algorithm

DFS-VISIT(G, u)
1   time = time + 1  // white vertex u has just been discovered
2   u.d = time  // discovery time of u
3   u.color = GRAY  // mark as seen
4   for each v in G.Adj[u]  // explore edge (u, v)
5       if v.color == WHITE   // if unseen
6           v.π = u
7           DFS-VISIT(G, v)  // explore paths out of v (i.e., go “deeper”)
8   u.color = BLACK  // u is finished
9   time = time + 1
10 u.f = time  // finish time of u
11 toposort-list.prepend(u)



Forward vs. Reverse

• Topological sort is a type of sort
– Implies an ordering
– Can sort backwards, of course

• Forward topological order
– If edge vw in graph, then topo[v] < topo[w]

• Reverse topological order
– If edge vw in graph, then topo[v] > topo[w]

• And, every directed graph has a transpose, which means… (see next slide)



What’s an Edge Mean?
• What does our graph model?

• Edge uv means do u first, then v.  Or, …
• Edge uv means task u depends on v (i.e. v must be done first)

– The latter is called a dependency graph
– “forward in time” vs. “depend on this one”

• Big deal? No, we can order vertices in reverse topological order if 
needed

Underwear

Shoes

Pants

Underwear

Shoes

Pants



Strongly Connected Components
in a Digraph

Readings:  CLRS 22.5, but you can ignore the 
proof-y parts
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Strongly Connected Components (SCCs)

• In a digraph, Strongly Connected Components (SCCs) are 
subgraphs where all vertices in each SCC are reachable from 
one another
– Thus vertices in an SCC are on a directed cycle
– Any vertex not on a directed cycle is an SCC all by itself

• Common need: decompose a digraph into its SCCs
– Perhaps then operate on each, combine results based on connections 

between SCCs
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SCC Example

• Example: digraph below has 3 SCCs
– Note here each SCC has a cycle.  (Possible to have a single-node SCC.)
– Note connections to other SCCs, but no path leaves a SCC and comes back
– Note there’s a unique set of SCCs for a given digraph
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Component Graph
• Sometimes for a problem it’s useful to consider digraph G’s 

component graph, GSCC

– It’s like we ”collapse” each SCC into one node
– Might need a topological ordering between SCCs
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How to Decompose Graph into SCCs

• Several algorithms do this using DFS
• We’ll use CLRS’s choice (by Kosaraju and Sharir)
• Algorithm is:

1. Call DFS-sweep(G) to find finishing times u.f for each vertex u in G.
2. Compute GT, the transpose of diagraph G.

(Reminder: transpose means same nodes, edges reversed.)
3. Call DFS-sweep(GT) but do the recursive calls on nodes in the order 

of decreasing u.f.  (Start with the vertex with largest finish time,…)
4. The DFS forest produced in Step 3 is the set of SCCs
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Why Do We Care about the Transpose?
• If we call DFS on a node in an SCC, it will visit all nodes in that SCC

– But it could leave the SCC and find other nodes L
– Could we prevent that somehow?

• Note that a digraph and its transpose have the same SCCs
– Maybe we can use the fact that edge-directions are reversed in GT to stop DFS from 

leaving an SCC?
– But this depends on the order you choose vertices to do DFS-sweep() in GT
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Why Do We Care About Finish Times?
• Our algorithm first finds DFS finish times in G
• Then calls recursive DFS in transpose from vertex with largest 

finish time (here, B)
– Reversed edges in GT stop it visiting nodes in other SCCs
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Why Do We Care About Finish Times?
• After recursive DFS in transpose finds SCC containing B,

next DFS will start from C
– Nodes in previously found SCC(s) have been visited
– Reversed edges in GT stop it visiting nodes in SCCs yet to be found
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Ties to Topological Sorting

• Formal proof of correctness in CLRS, but hopefully from previous slides you’re 
convinced it works!

• Note how the use of finish times makes this seem like topological sort.  And it is, 
if you think of topological ordering for GSCC

– Cycles in G, but no cycles in so we could sort that
– Topological sort controls the order we do things, and DFS finds all the reachable nodes in 

an SCC
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Final Thoughts

• There are many interesting problems involving digraphs and 
DAGs

• They can model real-world situations
– Dependencies, network flows, …

• DFS is often a valuable strategy to tackle such problems
– Not interested in back-edges, since DAGs are acyclic
– Ordering, reachability from DFS can be useful
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