Graphs - Basic Review and BFS

Tom Horton, Mark Floryan
CLRS Chapter 22.1 and 22.2

Graphs Review

Problems: e.g. Binary relation

- x is a proper factor of y

Definition: Directed graph

- Directed Graph

- A directed graph, or digraph, is a pair
- $G=(V, E)$
- where V is a set whose elements are called vertices, and
- E is a set of ordered pairs of elements of V .
- Vertices are often also called nodes.
, Elements of E are called edges, or directed edges, or arcs.
- For directed edge (v, w) in E, v is its tail and w its head;
v (v, w) is represented in the diagrams as the arrow, $\mathrm{v}->\mathrm{w}$.
- In text we simple write vw .

Definition: Undirected graph

- Undirected Graph
- A undirected graph is a pair
- $G=(V, E)$
b where V is a set whose elements are called vertices, and
- E is a set of unordered pairs of distinct elements of V .
- Vertices are often also called nodes.
, Elements of E are called edges, or undirected edges.
- Each edge may be considered as a subset of V containing two elements,
- $\{v, w\}$ denotes an undirected edge
- In diagrams this edge is the line v---w.
- In text we simple write vw , or wv
- vw is said to be incident upon the vertices v and w

Terms You Should Know

- Vertex (plural vertices) or Node
- Edge (sometimes referred to as an arc)
, Note the meaning of incident
- Degree of a vertex: how many adjacent vertices
- Digraph: in-degree (num. of incoming edges) vs. out-degree
- Graphs can be:
, Directed or undirected
- Weighted or not weighted
b weights can be reals, integers, etc.
b weight also known as: cost, length, distance, capacity,...
- Undirected graphs:
- Normally an edge can't connect a vertex to itself
- A directed graph (also known as a digraph)
" "Originating" node is the head, the target the tail
- An edge may connect a vertex to itself

Terms You Should Know or Learn Now

- Size of graph? Two measures:
- Number of nodes. Usually 'V'
- Number of edges: usually 'E’
- Dense graph: many edges
- Maximally dense?
- Undirected: each node connects to all others, so $\mathrm{e}=\mathrm{v}(\mathrm{v}-\mathrm{I}) / 2$
Called a complete graph
- Directed: e $=v(v-I) \quad$ why?
- Sparse graph: fewer edges
- Could be zero edges...

Terms You Should Know or Learn Now

- Path vs. simple path
- One vertex is reachable from another vertex
- A connected graph
- undirected graph, where each vertex is reachable from all others
- A strongly connected digraph:
- direction affects this!
v node u may be reachable from v , but not v from u
- Strongly connected means both directions
- Connected components for undirected graphs

Terms You Should Know or Learn Now

- Cycle
- Directed graph: non-empty path with same starting and ending node
- An edge may appear more than once (but why?)
, Simple cycle: no node repeated except start and end
- Undirected graph: same idea
- If an edge appears more than once (l.e. non-simple) then we traverse it in the same direction
- Acyclic: no-cycles
- A connected, acyclic undirected graph: free tree
- If we specificy a root, it's a rooted tree
- Acyclic but not connected? a undirected forest
- Directed acyclic graph: a DAG

Self-test: Understand these Terms?

- Subgraph
- Symmetric digraph
- complete graph
- Adjacency relation
- Path, simple path, reachable
- Connected, Strongly Connected
- Cycle, simple cycle
- acyclic
- undirected forest
- free tree, undirected tree
- rooted tree
- Connected component

Definitions: Weighted Graph

- A weighted graph is a triple (V, E, W)
* where (V, E) is a graph (directed or undirected) and
, W is a function from E into R, the reals (integer or rationals).
- For an edge e, $\mathrm{W}(\mathrm{e})$ is called the weight of e.

Graph Representations using Data Structures

- Adjacency Matrix Representation
- Let $G=(V, E), n=|V|, m=|E|, V=\{v \mid, v 2, \ldots, v n)$
- G can be represented by an $\mathrm{n} \times \mathrm{n}$ matrix

12

(b) Its adjacency matrix

Array of Adjacency Lists Representation

(a) An undirected graph (b) Its adjacency matrix
adjVertices

Adjacency Matrix for weight digraph

$$
\left(\begin{array}{ccccccc}
0 & 25.0 & \infty & \infty & \infty & \infty & \infty \\
\infty & 0 & 10.0 & 14.0 & \infty & \infty & \infty \\
5.0 & \infty & 0 & \infty & \infty & 16.0 & \infty \\
\infty & 6.0 & 18.0 & 0 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 32.0 & 42.0 & 0 & 14.0 \\
\infty & \infty & \infty & \infty & \infty & 11.0 & 0
\end{array}\right)
$$

(a) A weighted digraph
(b) Its adjacency matrix

Array of Adjacency Lists Representation

(a) A weighted digraph

$$
\left(\begin{array}{ccccccc}
0 & 25.0 & \infty & \infty & \infty & \infty & \infty \\
\infty & 0 & 10.0 & 14.0 & \infty & \infty & \infty \\
5.0 & \infty & 0 & \infty & \infty & 16.0 & \infty \\
\infty & 6.0 & 18.0 & 0 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 32.0 & 42.0 & 0 & 1+.0 \\
\infty & \infty & \infty & \infty & \infty & 11.0 & 0
\end{array}\right)
$$

(b) Its adjacency matrix

Breadth-First Search

Traversing Graphs

" "Traversing" means processing each vertex edge in some organized fashion by following edges between vertices
, We speak of visiting a vertex. Might do something while there.

- Recall traversal of binary trees:
- Several strategies: In-order, pre-order, post-order
- Traversal strategy implies an order of visits
- We used recursion to describe and implement these
- Graphs can be used to model interesting, complex relationships
- Often traversal used just to process the set of vertices or edges
- Sometimes traversal can identify interesting properties of the graph
- Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about the problem-instance that the graph models

BFS: Overall Strategy

- Breadth-first search: Strategy
- choose a starting vertex, distance $\mathrm{d}=0$
- vertices are visited in order of increasing distance from the starting vertex,
- examine all edges leading from vertices (at distance d) to adjacent vertices (at distance d+I)
- then, examine all edges leading from vertices at distance $d+I$ to distance $d+2$, and so on,
- until no new vertex is discovered

BFS: Specific Input/Output

- Input:
- A graph $\underline{\mathbf{G}}$
- single start vertex s
- Output:
- Shortest distance from \underline{s} to each node in $\underline{\underline{G}}$ (distance = number of edges)
- Breadth-First Tree of \underline{G} with root \underline{s}
- Note:The paths in this BFS tree represent the shortest paths from s to each node in G

Breadth-first search, quick example

- Let's start atV0

Breadth-first search implementation

```
\(\operatorname{BFS}(G, s)\)
    for each vertex \(u \in G . V-\{s\}\)
    u.color \(=\) WHITE
    \(u . d=\infty\)
    \(u . \pi=\mathrm{NIL}\)
s.color \(=\) GRAY
s. \(d=0\)
\(s . \pi=\) NIL
\(Q=\emptyset\)
EnQueue \((Q, s)\)
while \(Q \neq \emptyset\)
    \(u=\operatorname{DEQUEUE}(Q)\)
    for each \(v \in G . \operatorname{Adj}[u]\)
        if \(v\). color \(==\) WHITE
            \(\nu\). color \(=\) GRAY
            \(\nu . d=u . d+1\)
            \(\nu . \pi=u\)
            EnQueue \((Q, v)\)
    u.color \(=\) BLACK
```

- Vertices here have some properties:
- color = white/gray/black
- d = distance from start node
- pi $=$ node through which d is achieved

Breadth-first search: Analysis

- For a digraph having \vee vertices and E edges
, Each edge is processed once in the while loop for a cost of $\theta(E)$
b Each vertex is put into the queue once and removed from the queue and processed once, for a cost $\theta(\mathrm{V})$
, Total: $\theta(\mathrm{V}+\mathrm{E})$
- Extra space is used for color array and queue, there are $\theta(\mathrm{V})$
- From a tree (breadth-first spanning tree)
> the path in the tree from start vertex to any vertex contains the minimum possible number of edges
- Not all vertices are necessarily reachable from a selected starting vertex

Breadth-first search: Some Properties

- Does BFS always compute $\delta(\mathrm{s}, \mathrm{v})$ correctly, where $\delta(\mathrm{s}, \mathrm{v})$ is the shortest path (number of edges) from s to any vertex v ?
- Lemma I:

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a directed or undirected graph, and let $s \in \mathrm{~V}$ be an arbitrary vertex. Then, for any edge $(u, v) \in E$

$$
\delta(\mathrm{s}, \mathrm{v}) \leq \delta(\mathrm{s}, \mathrm{u})+\mathrm{l}
$$

Breadth-first search: Some Properties

- Lemma 2 :

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a directed or undirected graph, and suppose BFS is run on G from a given source vertex $s \in V$, Then upon termination, for each vertex $v \in V$, the value $v . d$ computed by BFS satisfies $v . d \geq \delta(s, v)$
^^^^This is a weak bound! Just says distance will not be better than best path.

$$
\begin{aligned}
\text { v.d } & =u . d+1 & & \text { //By how code updates v.d } \\
& \geq \delta(s, u)+1 & & \text { //By inductive hypothesis } \\
& \geq \delta(s, v) . & & \text { //By Lemma I on previous slide }
\end{aligned}
$$

Breadth-first search: Some Properties

- Lemma 3:

Suppose during BFS execution, the Queue contains vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{\mathrm{n}}\right\}$ where v_{1} is at head of queue and v_{n} is at tail of queue. Then:

$$
\begin{aligned}
& v_{n} \cdot d \leq v_{1} \cdot d+1 \\
& v_{i} \cdot d \leq v_{i+1} \cdot d
\end{aligned}
$$

//all nodes on Q differ by at most 1
//nodes on Q are non-decreasing distances
for $i=I, 2,3, \ldots, n-I$

Why?

Correctness of BFS

Proof of Correctness

- Claim:
- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then, during its execution, BFS discovers every vertex $v \in V$ that is reachable from s , and upon termination $v . d=\delta(s, v)$ for all $v \in V$.

Proof of Correctness

- Proof by Contradiction:
- Assume that BFS does NOT work.
- Then...there MUST exist at least one node v such that $v . d \neq \delta(s, v)$
- There might be more, but let v be such a node with the smallest v.d value - Meaning the "first one" that BFS incorrectly calculates.
* This is a good choice because we can assume all nodes with smaller d value were computed correctly! Nice!

Proof of Correctness

- So, this incorrectly calculated node v has the following property:

$$
v \cdot d>\delta(s, v)=\delta(s, u)+1=u \cdot d+1
$$

Because of Lemma 2!

By definition of optimal path

By how we chose
v

Proof of Correctness

$$
v . d>\delta(s, v)=\delta(s, u)+1=u \cdot d+1
$$

So...at some point during execution. The node u is popped off the queue and the edge $e=(u, v)$ is followed and node v is processed. Three cases:

Case I:v is white
Case 2: v is gray
Case 3: v is black

Proof of Correctness

$$
v . d>\delta(s, v)=\delta(s, u)+1=u . d+1
$$

Case I:v is white

If v is white, algorithm sets $v \cdot d=u \cdot d+1$ (line I5).
Contradiction! above formula shows $v . d>u . d+1$

Proof of Correctness

$$
v \cdot d>\delta(s, v)=\delta(s, u)+1=u \cdot d+1
$$

Case $2: v$ is gray

if v is gray, then v is currently on the queue. v was turned gray by dequeuing some other node w , setting $v . d=w . d+1$ Order on queue: w , then u , then v , Lemma 3 gives $w . d \leq u$. $d \leq v$. d So: $v . d=w . d+1 \leq u . d+1$
${ }^{\wedge \wedge}$ Contradiction!

Proof of Correctness

$$
v . d>\delta(s, v)=\delta(s, u)+1=u \cdot d+1
$$

Case 3: v is black
if v is black, then v was previously on queue ahead of u queue distance values monotonically increasing, so $v . d \leq u . d$ (Lemma 3) Thus $v . d \leq u . d<u . d+1$
^^Contradiction!!

Proof of Correctness

Finishing out the proof!

If BFS is wrong then either:

$$
\begin{gathered}
v . d<\delta(s, v) \\
\text { No! By Lemma } 2
\end{gathered}
$$

$$
v . d>\delta(s, v)
$$

No! By proof by contradiction / 3 cases

Thus, $v . d=\delta(s, v)$

