Graphs — Basic Review and BFS

Tom Horton, Mark Floryan
CLRS Chapter 22.1 and 22.2

Graphs Review

Problems: e.g. Binary relation

» X is a proper factor of y

Definition: Directed graph

» Directed Graph
A directed graph, or digraph, is a pair
G = (V,E)
whereV is a set whose elements are called vertices, and
E is a set of ordered pairs of elements of V.

Vertices are often also called nodes.
Elements of E are called edges, or directed edges, or arcs.
For directed edge (v, w) in E, v is its tail and w its head;

(v, w) is represented in the diagrams as the arrow, v -> w.

In text we simple write vw.

Definition: Undirected graph

» Undirected Graph
A undirected graph is a pair
G = (V,E)
whereV is a set whose elements are called vertices, and
E is a set of unordered pairs of distinct elements of V.

Vertices are often also called nodes.
Elements of E are called edges, or undirected edges.

Each edge may be considered as a subset of V containing two elements,
{v, w} denotes an undirected edge

In diagrams this edge is the line v---w.

In text we simple write vw, or wv

vw is said to be incident upon the vertices v and w

Terms You Should Know

Vertex (plural vertices) or Node
Edge (sometimes referred to as an arc)
Note the meaning of incident
» Degree of a vertex: how many adjacent vertices
Digraph: in-degree (num. of incoming edges) vs. out-degree
» Graphs can be:
Directed or undirected
Weighted or not weighted

weights can be reals, integers, etc.
weight also known as: cost, length, distance, capacity,...

» Undirected graphs:
Normally an edge can’t connect a vertex to itself
» A directed graph (also known as a digraph)
“Originating” node is the head, the target the tail
An edge may connect a vertex to itself

v v

Terms You Should Know or Learn Now

» Size of graph? Two measures:
Number of nodes. Usually V’
Number of edges: usually ‘E’

» Dense graph: many edges

Maximally dense?
Undirected: each node connects to all others, so
e = v(v-1)/2
Called a complete graph
Directed: e = v(v-1) why?
» Sparse graph: fewer edges
Could be zero edges...

Terms You Should Know or Learn Now

» Path vs. simple path
One vertex is reachable from another vertex
» A connected graph
undirected graph, where each vertex is reachable from all others

» A strongly connected digraph:

direction affects this!

node u may be reachable from v, but not v from u
Strongly connected means both directions

» Connected components for undirected graphs

Terms You Should Know or Learn Now
» Cycle

Directed graph: non-empty path with same starting and ending node
An edge may appear more than once (but why?)

Simple cycle: no node repeated except start and end
Undirected graph: same idea

If an edge appears more than once (l.e. non-simple) then we traverse it in the same direction
» Acyclic: no-cycles
» A connected, acyclic undirected graph: free tree
If we specificy a root, it’s a rooted tree
Acyclic but not connected?! a undirected forest

» Directed acyclic graph: a DAG

Selt-test: Understand these Terms?

Subgraph

Symmetric digraph
complete graph

Adjacency relation

Path, simple path, reachable
Connected, Strongly Connected
Cycle, simple cycle

acyclic

undirected forest

free tree, undirected tree
rooted tree

vV VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VY

Connected component

10

Definitions: Weighted Graph

» A weighted graph is a triple (V, E,W)
where (V, E) is a graph (directed or undirected) and
W is a function
from E into R,

the reals (integer
or rationals).

For an edge e,
W(e) is called
the weight of e.

11

Graph Representations using Data Structures

» Adjacency Matrix Representation
Let G = (V,E),n = |V|[,m = |E,V = {vl, V2, ..., vn)

G can be represented by an n x n matrix

®_

()

12 (a) An undirected graph (b) Its adjacency matrix

Array of Adjacency Lists Representation

13

-~

o>

(a) An undirected graph

adjVertices

H

t9

[9%)

L

]

(&

@

QOO =~0
OQQm~==Q~
O e QD e O e o
O'—CO——-'O
O~-000Q0C0
- Q= 0O 0
O=0QQ0CQC0

(b) Its adjacency matrix

2 -~ 3 nii
l T eS— 3 —e— 4 nil
! ———JL-—- > 4! 4
2 | i 3 ~ 6 | nil
6 | nil

i3 —— 4 —f s
6 nit

ntl

nil

Adjacency Matrix for weight digraph

/ozs.owoooom

14

29

(a) A weighted digraph

3.0

o0

0 100 140 o o
@ () o o |60
60 I80 0 o0 oo

o o o0 () oo

o0

o o 320420 0 (4.

=) 00 00 oo “()

(b) Its adjacency matrix

0

J

Array of Adjacency Lists Representation

0O 250 oo) oo oo o

oo 0 10.0 14.0 oo oo > \
5.0 oo 0 oo s 16.0 ==
oo 6.0 8.0 0© oo oo oo

oo oo oo oo o) oo oo
oo oo o= 32.0 42.0 0 14.0
sl S5 S S = 11.0 O

(a) A weighted digraph (b) Its adjacency matrix
adjinfo
1 'L_ 3 | =om | mm |
= BE | 10.0] —J'——-l 4 lléLOLnill
> T [551 3—{ s [eo] =] from -> to, weight

W

b
|
N

[60 [F—{ 5 [50] ni]

oY e N N B
7 -1 6 | 11.0 | nil |

15 (c) Its adjacency-list structure

W

[42.0] —JL——-L7 | 130] nit |

16

Breadth-First Search

Traversing Graphs

» “Traversing” means processing each vertex edge in some organized fashion by
following edges between vertices
We speak of visiting a vertex. Might do something while there.
» Recall traversal of binary trees:
Several strategies: In-order, pre-order, post-order
Traversal strategy implies an order of visits
We used recursion to describe and implement these
» Graphs can be used to model interesting, complex relationships
Often traversal used just to process the set of vertices or edges

Sometimes traversal can identify interesting properties of the graph

Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about the
problem-instance that the graph models

17

BFS: Overall Strategy

» Breadth-first search: Strategy
choose a starting vertex, distance d =0
vertices are visited in order of increasing distance from the starting vertex,

examine all edges leading from vertices (at distance d) to adjacent vertices (at distance
d+1)

then, examine all edges leading from vertices at distance d+| to distance d+2, and so
on,

until no new vertex is discovered

18

BFS: Specific Input/Output
» Input:
A graph G

single start vertex s

» Output:
Shortest distance from s to each node in G (distance = number of edges)

Breadth-First Tree of G with root s
Note: The paths in this BFS tree represent the shortest paths from s to each node in G

19

Breadth-first search, quick example

» Let’s start at VO

20

Breadth-first search implementation

BFS(G,s)
1 foreachvertexu € G.V — {s}

2

OO\ B W

11
12
13
14
15
16
17
18

u.color = WHITE
u.d = oo
u.m = NIL
s.color = GRAY
s.d =20
S.7T = NIL
0=290
ENQUEUE(Q, s)
while O # 0
u = DEQUEUE(Q)
for each v € G.Adju]
if v.color == WHITE
v.color = GRAY
v.d = u.d+1
V.T = U
ENQUEUE(Q, v)
u.color = BLACK

» Vertices here have some properties:
color = white/gray/black
d = distance from start node
bi = node through which d is achieved

Breadth-first search: Analysis

» For a digraph havingV vertices and E edges

Each edge is processed once in the while loop for a cost of O(E)

Each vertex is put into the queue once and removed from the queue and processed
once, for a cost O(V)

Total: O(V+E)
Extra space is used for color array and queue, there are 0(V)
» From a tree (breadth-first spanning tree)

the path in the tree from start vertex to any vertex contains the minimum possible
number of edges

» Not all vertices are necessarily reachable from a selected starting vertex

22

Breadth-first search: Some Properties

» Does BFS always compute 06(s,v) correctly, where 6(s,v) is the shortest path
(number of edges) from s to any vertex v?

» Lemma |:

Let G=(V,E) be a directed or undirected graph, and let s € V be an arbitrary
vertex. Then, for any edge (u,v)e E

&(s,v) < &(s,u) + |

23

Breadth-first search: Some Properties

» Lemma 2:

Let G = (V,E) be a directed or undirected graph, and suppose BFS is run on G
from a given source vertex s € I/, Then upon termination, for each vertex v € V,
the value v.d computed by BFS satisfies v.d = §(s, v)

ANMAThis is a weak bound! Just says distance will not be better than best path.

u.d—+1 //By how code updates v.d
§(s,u) + 1 //By inductive hypothesis

v.d

IV |V

8(s,v) . /By Lemma | on previous slide

24

Breadth-first search: Some Properties

» Lemma 3:

Suppose during BFS execution, the Queue contains vertices {v,,v,,....v,} where
v, is at head of queue and v, is at tail of queue.Then:

vp.d <v.d+1 /lall nodes on Q differ by at most 1
vi.d < vjq.d /Inodes on Q are non-decreasing distances

fori=1,2,3,....,n-1

Why!?

25

26

Correctness of BFS

Prootf of Correctness

» Claim:

» Let G=(V,E) be a directed or undirected graph, and suppose that BFS is run on G
from a given source vertex s € V. Then, during its execution, BFS discovers every
vertex v € I/ that is reachable from s, and upon termination v.d = §(s,v) for
allv eV,

27

Prootf of Correctness

» Proof by Contradiction:

» Assume that BFS does NOT work.
» Then...there MUST exist at least one node v such that v.d # 6(s, V)

» There might be more, but let v be such a node with the smallest v.d value
Meaning the "first one” that BFS incorrectly calculates.

This is a good choice because we can assume all nodes with smaller d value were
computed correctly! Nice!

28

Proof of Correctness
» So, this incorrectly calculated node v has the following property:

v.d > 6(s,v)=06(s,u)+1=ud+1

By how we chose
\%

Because of Lemma 2! By definition of
optimal path

29

Prootf of Correctness

v.d > 6(s,v)=06(s,u)+1=ud+1

So...at some point during execution. The node u is popped off the queue and the
edge e=(u,v) is followed and node v is processed. Three cases:

Case |:v is white

Case 2:v is gray
Case 3:vis black

30

Prootf of Correctness

v.d > 6(s,v)=06(s,u)+1=ud+1

Case |:v is white
If v is white, algorithm sets v.d = u.d + 1 (line I5).

Contradiction! above formula shows v.d > u.d + 1

31

Prootf of Correctness

v.d > 6(s,v)=06(s,u)+1=ud+1

Case 2:v is gray

if v is gray, then v is currently on the queue.
v was turned gray by dequeuing some other node w, setting v.d = w.d + 1

Order on queue: w, then u, then v,Lemma 3 gives w.d < u.d < v.d

So:v.d=w.d+1<ud+1
ANContradiction!

32

Prootf of Correctness

v.d > 6(s,v)=06(s,u)+1=ud+1

Case 3:vis black

if v is black, then v was previously on queue ahead of u
queue distance values monotonically increasing,so v.d < u.d (Lemma 3)

Thusv.d <ud<ud+1
ANContradiction!!

33

Prootf of Correctness

Finishing out the proof!

If BFS is wrong then either:

v.d < 6(s,v)
No! By Lemma 2

v.d > 0(s,v)
No! By proof by contradiction / 3 cases

Thus,v.d = 6(s,v)

34

