
Fall 2021 – Horton and Floryan

These are Horton’s version of the slides, used in 
his lecture.

Network Flow, Ford-Fulkerson
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In your textbook

• CLRS 26.1 and 26.2
• Includes simple solutions to the following “complications”
– What if (u,v) and (v,u) are in the flow graph?
• Called “Antiparallel” edges – easy to adjust for this, example later

– What if we need >1 source?  >1 sink?
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Flow networks
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• Consider a flow network, which is 
a specialized directed graph with:
– A single source node s
– A single terminus node t
– Capacities on each edge

• That must be integer!

• What is the maximum flow you 
can send from s to t?



Applications
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• Transportation networks
– How many people can be routed?

• Computer networks
• Electrical distribution
• Water distribution

• Note that all these applications 
have multiple sources and 
multiple sinks!
– Whereas the flow networks we 

study do not, yet



Flow Network

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge Capacities 𝑐 𝑒 ∈ Positive whole* numbers
If 𝑢, 𝑣 ∈ 𝐸 then 𝑣, 𝑢 ∉ 𝐸 (Note our example here violates this!)

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡
through a network of pipes with given capacities, what is the 
maximum amount of water which can flow from the faucet to the 
drain?
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Flow Network: Antiparallel Edges

Easy adjustment to remove antiparallel edges and have 
equivalent flow graph:  add intermediate node

(Note: our later examples use graph on the left without this adjustment.)
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• Assignment of values to edges
– 𝑓 𝑒 = 𝑛
– E.g. 𝑛 units of water going through that pipe

• Capacity constraint
– 𝑓 𝑒 ≤ 𝑐(𝑒)
– Flow cannot exceed capacity

• Flow constraint
– ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑣)
– 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = ∑!∈# 𝑓(𝑣, 𝑥)
– 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑣 = ∑!∈# 𝑓(𝑥, 𝑣)
– Water going in must match water coming out

• Flow of 𝐺: |𝑓| = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)
– Net outflow of 𝑠
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Flow/Capacity

3 in example above



Let’s Make Some Rules
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• Source node has NO incoming flow
• Terminal (sink) node has NO outgoing flow

• Internal nodes has net zero flow
– all units of flow going in must be going out as well

• No edge is over capacity

• GOAL: Find the maximum flow that can be “pushed” through the network
– I.e. maximize:      𝑓 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)



How to Solve This? This Greedy doesn’t work
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Greedy doesn’t work
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Greedy doesn’t work
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Greedy doesn’t work

12

10/30

20/20

𝑠 𝑡

10/10 20/20

10/10

Better Solution

Overall Flow: 𝑓 = 30



13



Ford-Fulkerson: Algorithm overview
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• Iterative algorithm: push some flow along some path at each step

• Model or record the residual capacities
– how much capacity is left after taking into account how much flow is going 

through that edge at this time
• Find a path from s to t such that the minimum residual capacity of 

an edge on that path is greater than zero
– Since each value is an integer, it must be 1 or more

• Update the residual capacities after taking into account this new 
flow

• Repeat until no more such paths are found



Algorithm notation
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• f(u,v): the flow on the edge from u to v
• f(v,u): the backflow on the edge from v to u
• c(u,v): the capacity on the edge from u to v
• cf(u,v): the residual capacity on the edge from u to v
• Gf is the graph where the edges weights are the residual 

capacities
– THIS is usually the graph we actually use when running the algorithm 

we are about to see.



Backflow
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• Each edge has forward flow and backflow
– The two must always be “inverses” of each other!
– I.e. they sum to the total capacity for that edge

• This allows for modeling of flow “returning” along a given edge

• One way to think about this:
– How much of the forward flow we could “un-do”



Residual Graph 𝐺!
• Keep track of net available flow along each edge
• “Forward edges”: weight is equal to available flow along that 

edge in the flow graph 
o 𝑤 𝑒 = 𝑐 𝑒 − 𝑓(𝑒)

• “Back edges”: weight is equal to backflow along that edge in 
the flow graph
o 𝑤 𝑒 = 𝑓(𝑒)
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Residual Graphs Example
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Ford-Fulkerson Algorithm
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Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual 
graph 𝐺! (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺!
• While there is an augmenting path 𝑝 in 𝐺!:

• Let 𝑐 = min
",$∈&

𝑐!(𝑢, 𝑣)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺! for the updated flow



Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual 
graph 𝐺! (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
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• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
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Ford-Fulkerson Algorithm
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Ford-Fulkerson approach: take 
any augmenting path
(will revisit this later)



Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual 
graph 𝐺! (using edges of non-zero weight)
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Ford-Fulkerson Algorithm
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(𝑐"(𝑢, 𝑣) is the weight of edge (𝑢, 𝑣)
in the residual network 𝐺")

Ford-Fulkerson approach: take 
any augmenting path
(will revisit this later)



Ford-Fulkerson Algorithm:
Updating Gf
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1. f(u,v) = 0 for all edges (u,v)
2. While there is an “augmenting” path p from s to t in Gf such 

that cf(u,v) > 0 for all edges (u,v) Î p
a. Find cf(p) = min{cf(u,v) | (u,v) Î p}
b. For each edge (u,v) Î p

i. f(u,v) = f(u,v) + cf(p) send flow along the path
ii. f(v,u) = f(v,u) - cf(p) send backflow the other way



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example

35

0/3

2/3

2/3

2/2

𝑠
𝑡

2/2

0/1

0/3
0/2

2/2

2/3

Residual graph 𝐺!

1

1

𝑠
𝑡

3
2
12

1

2

2

2 2
3

2



Ford-Fulkerson Example
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Our example
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Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual 
graph 𝐺! (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺!
• While there is an augmenting path 𝑝 in 𝐺!:

• Let 𝑐 = min
",$∈&

𝑐!(𝑢, 𝑣)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺! for the updated flow

Ford-Fulkerson Algorithm - Runtime
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Time to find an augmenting path:

Number of iterations of While loop:



Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual 
graph 𝐺! (using edges of non-zero weight)
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Ford-Fulkerson Algorithm - Runtime
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Time to find an augmenting path: DFS: Θ(𝑉 + 𝐸)

Number of iterations of While loop: |𝑓|

Θ(𝐸 ⋅ 𝑓 )



What type of search?
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• “While there is an augmenting path 𝑝 in 𝐺:”
– Using a depth-first search is the Ford-Fulkerson algorithm

• Each augmenting path can be found in O(E) time
• And there can be |𝑓| paths
• So the running time is O(𝐸⋅|𝑓|)
• Will not terminate with irrational edge values

– Using a breadth-first search is the Edmonds-Karp algorithm
• Runs in O(V ⋅ E2)

– Total number of augmentations is O(V⋅E)
– And finding each augmentation takes O(E)

• Guaranteed termination with irrational edge values
• Run-time is independent of the maximum flow of the graph


