
Fall 2021 – Horton and Floryan

These are Horton’s version of the slides, used in
his lecture.

Network Flow, Ford-Fulkerson

1

In your textbook

• CLRS 26.1 and 26.2
• Includes simple solutions to the following “complications”
– What if (u,v) and (v,u) are in the flow graph?
• Called “Antiparallel” edges – easy to adjust for this, example later

– What if we need >1 source? >1 sink?

2

Flow networks

3

• Consider a flow network, which is
a specialized directed graph with:
– A single source node s
– A single terminus node t
– Capacities on each edge

• That must be integer!

• What is the maximum flow you
can send from s to t?

Applications

4

• Transportation networks
– How many people can be routed?

• Computer networks
• Electrical distribution
• Water distribution

• Note that all these applications
have multiple sources and
multiple sinks!
– Whereas the flow networks we

study do not, yet

Flow Network

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge Capacities 𝑐 𝑒 ∈ Positive whole* numbers
If 𝑢, 𝑣 ∈ 𝐸 then 𝑣, 𝑢 ∉ 𝐸 (Note our example here violates this!)

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡
through a network of pipes with given capacities, what is the
maximum amount of water which can flow from the faucet to the
drain?

5

3

3

3

2

𝑠
𝑡

2

1 3 2

2

3

Flow Network: Antiparallel Edges

Easy adjustment to remove antiparallel edges and have
equivalent flow graph: add intermediate node

(Note: our later examples use graph on the left without this adjustment.)

6

3

3

3

2

𝑠
𝑡

2

1 3 2

2

3

3

3

3

2

𝑠
𝑡

2

1 3

2

2

3

2

1/3

1/3

2/3

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

1/2

2/3
Flow

• Assignment of values to edges
– 𝑓 𝑒 = 𝑛
– E.g. 𝑛 units of water going through that pipe

• Capacity constraint
– 𝑓 𝑒 ≤ 𝑐(𝑒)
– Flow cannot exceed capacity

• Flow constraint
– ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑣)
– 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = ∑!∈# 𝑓(𝑣, 𝑥)
– 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑣 = ∑!∈# 𝑓(𝑥, 𝑣)
– Water going in must match water coming out

• Flow of 𝐺: |𝑓| = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)
– Net outflow of 𝑠

7

Flow/Capacity

3 in example above

Let’s Make Some Rules

8

• Source node has NO incoming flow
• Terminal (sink) node has NO outgoing flow

• Internal nodes has net zero flow
– all units of flow going in must be going out as well

• No edge is over capacity

• GOAL: Find the maximum flow that can be “pushed” through the network
– I.e. maximize: 𝑓 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)

How to Solve This? This Greedy doesn’t work

9

30

20

𝑠 𝑡

10
20

10

Saturate Highest Capacity Path First

Greedy doesn’t work

10

30

20

𝑠 𝑡

10
20

10

Saturate Highest Capacity Path First

Greedy doesn’t work

11

20/30

20/20

𝑠 𝑡

0/10 20/20

0/10

Saturate Highest Capacity Path First

Overall Flow: 𝑓 = 20

Greedy doesn’t work

12

10/30

20/20

𝑠 𝑡

10/10 20/20

10/10

Better Solution

Overall Flow: 𝑓 = 30

13

Ford-Fulkerson: Algorithm overview

14

• Iterative algorithm: push some flow along some path at each step

• Model or record the residual capacities
– how much capacity is left after taking into account how much flow is going

through that edge at this time
• Find a path from s to t such that the minimum residual capacity of

an edge on that path is greater than zero
– Since each value is an integer, it must be 1 or more

• Update the residual capacities after taking into account this new
flow

• Repeat until no more such paths are found

Algorithm notation

15

• f(u,v): the flow on the edge from u to v
• f(v,u): the backflow on the edge from v to u
• c(u,v): the capacity on the edge from u to v
• cf(u,v): the residual capacity on the edge from u to v
• Gf is the graph where the edges weights are the residual

capacities
– THIS is usually the graph we actually use when running the algorithm

we are about to see.

Backflow

16

• Each edge has forward flow and backflow
– The two must always be “inverses” of each other!
– I.e. they sum to the total capacity for that edge

• This allows for modeling of flow “returning” along a given edge

• One way to think about this:
– How much of the forward flow we could “un-do”

Residual Graph 𝐺!
• Keep track of net available flow along each edge
• “Forward edges”: weight is equal to available flow along that

edge in the flow graph
o 𝑤 𝑒 = 𝑐 𝑒 − 𝑓(𝑒)

• “Back edges”: weight is equal to backflow along that edge in
the flow graph
o 𝑤 𝑒 = 𝑓(𝑒)

17

1/3

1/3

2/3

𝑠

a

b

𝑡2/2

2/2

1/1

2/3 1/2

1/2

2/3
𝑠

a

b

𝑡2

2

1
2

0

0

0 2 3

1

1

Flow Graph 𝑮
1 2

2

1

2

1

Residual Graph 𝑮𝒇

1

Flow I could add

Flow I could remove

Residual Graphs Example

18

20/30

20/20

𝑠 𝑡

0/10 20/20

0/10

Flow Graph

𝑠 𝑡

Residual Graph

10

0

0

10

10

20
0

200

20

10/30

20/20

𝑠 𝑡

10/10 20/20

10/10

𝑠 𝑡

0

0

0

0

20
10

2010

1020

Ford-Fulkerson Algorithm

19

Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual
graph 𝐺! (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺!
• While there is an augmenting path 𝑝 in 𝐺!:

• Let 𝑐 = min
",$∈&

𝑐!(𝑢, 𝑣)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺! for the updated flow

Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual
graph 𝐺! (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺!
• While there is an augmenting path 𝑝 in 𝐺!:

• Let 𝑐 = min
",$∈&

𝑐!(𝑢, 𝑣)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺! for the updated flow

Ford-Fulkerson Algorithm

20

Ford-Fulkerson approach: take
any augmenting path
(will revisit this later)

Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual
graph 𝐺! (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺!
• While there is an augmenting path 𝑝 in 𝐺!:

• Let 𝑐 = min
",$∈&

𝑐!(𝑢, 𝑣)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺! for the updated flow

Ford-Fulkerson Algorithm

21

(𝑐"(𝑢, 𝑣) is the weight of edge (𝑢, 𝑣)
in the residual network 𝐺")

Ford-Fulkerson approach: take
any augmenting path
(will revisit this later)

Ford-Fulkerson Algorithm:
Updating Gf

22

1. f(u,v) = 0 for all edges (u,v)
2. While there is an “augmenting” path p from s to t in Gf such

that cf(u,v) > 0 for all edges (u,v) Î p
a. Find cf(p) = min{cf(u,v) | (u,v) Î p}
b. For each edge (u,v) Î p

i. f(u,v) = f(u,v) + cf(p) send flow along the path
ii. f(v,u) = f(v,u) - cf(p) send backflow the other way

Ford-Fulkerson Example

23

0/3

0/3

0/3

0/2

𝑠
𝑡

0/2

0/1

0/3
0/2

0/2

0/3

Initially: 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸

3

3

3

𝑠
𝑡

2

1

3
2

2

Residual graph 𝐺!

3

2

Ford-Fulkerson Example

24

0/3

0/3

0/3

0/2

𝑠
𝑡

0/2

0/1

0/3
0/2

0/2

0/3
3

3

𝑠
𝑡

2

1

3
2

2

Residual graph 𝐺!

Increase flow by 1 unit

33

2

Ford-Fulkerson Example

25

0/3

1/3

1/3

0/2

𝑠
𝑡

1/2

1/1

0/3
0/2

1/2

0/3
3

3

𝑠
𝑡

2

1

3
2

2

Residual graph 𝐺!

Increase flow by 1 unit

33

2

Ford-Fulkerson Example

26

0/3

1/3

1/3

0/2

𝑠
𝑡

1/2

1/1

0/3
0/2

1/2

0/3
2

2

𝑠
𝑡

1

3
2

1

1
1

1

1

1

Residual graph 𝐺!

33

2

Ford-Fulkerson Example

27

0/3

1/3

1/3

0/2

𝑠
𝑡

1/2

1/1

0/3
0/2

1/2

0/3
2

2

𝑠
𝑡

1

3
2

1

1
1

1

1

1

Residual graph 𝐺!

Increase flow by 1 unit

33

2

Ford-Fulkerson Example

28

0/3

2/3

1/3

0/2

𝑠
𝑡

2/2

1/1

0/3
0/2

1/2

1/3
2

2

𝑠
𝑡

1

3
2

1

1
1

1

1

1

Residual graph 𝐺!

Increase flow by 1 unit

33

2

Ford-Fulkerson Example

29

0/3

2/3

1/3

0/2

𝑠
𝑡

2/2

1/1

0/3
0/2

1/2

1/3
1

2

𝑠
𝑡

3
2

1

22
1

1

1

2 1

Residual graph 𝐺!

Increase flow by 1 unit

3

2

Ford-Fulkerson Example

30

0/3

2/3

1/3

0/2

𝑠
𝑡

2/2

1/1

0/3
0/2

1/2

1/3

Residual graph 𝐺!

1

2

𝑠
𝑡

3
2

1

22
1

1

1

2 1
3

2

Ford-Fulkerson Example

31

0/3

2/3

1/3

1/2

𝑠
𝑡

2/2

0/1

0/3
0/2

1/2

2/3

Residual graph 𝐺!

1

2

𝑠
𝑡

3
2

1

22
1

1

1

2 1

Increase flow by 1 unit

3

2

Ford-Fulkerson Example

32

0/3

2/3

1/3

1/2

𝑠
𝑡

2/2

0/1

0/3
0/2

1/2

2/3

Residual graph 𝐺!

1

2

𝑠
𝑡

3
2

1

12
1

1

1

2 2

Increase flow by 1 unit

3

1
1

Ford-Fulkerson Example

33

0/3

2/3

1/3

1/2

𝑠
𝑡

2/2

0/1

0/3
0/2

1/2

2/3

Residual graph 𝐺!

1

2

𝑠
𝑡

3
2

1

12
1

1

1

2 2
3

1
1

Ford-Fulkerson Example

34

0/3

2/3

2/3

2/2

𝑠
𝑡

2/2

0/1

0/3
0/2

2/2

2/3

Residual graph 𝐺!

1

2

𝑠
𝑡

3
2

1

12
1

1

1

2 2

Increase flow by 1 unit

3

1
1

Ford-Fulkerson Example

35

0/3

2/3

2/3

2/2

𝑠
𝑡

2/2

0/1

0/3
0/2

2/2

2/3

Residual graph 𝐺!

1

1

𝑠
𝑡

3
2
12

1

2

2

2 2
3

2

Ford-Fulkerson Example

36

0/3

2/3

2/3

2/2

𝑠
𝑡

2/2

0/1

0/3
0/2

2/2

2/3

Residual graph 𝐺!

No more augmenting paths

1

1

𝑠
𝑡

3
2
12

1

2

2

2 2
3

2

Maximum flow: 4

Our example

37

30

20

𝑠 𝑡

10 20

10

Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual
graph 𝐺! (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺!
• While there is an augmenting path 𝑝 in 𝐺!:

• Let 𝑐 = min
",$∈&

𝑐!(𝑢, 𝑣)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺! for the updated flow

Ford-Fulkerson Algorithm - Runtime

38

Time to find an augmenting path:

Number of iterations of While loop:

Define an augmenting path to be a path from 𝑠 → 𝑡 in the residual
graph 𝐺! (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺!
• While there is an augmenting path 𝑝 in 𝐺!:

• Let 𝑐 = min
",$∈&

𝑐!(𝑢, 𝑣)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺! for the updated flow

Ford-Fulkerson Algorithm - Runtime

39

Time to find an augmenting path: DFS: Θ(𝑉 + 𝐸)

Number of iterations of While loop: |𝑓|

Θ(𝐸 ⋅ 𝑓)

What type of search?

40

• “While there is an augmenting path 𝑝 in 𝐺:”
– Using a depth-first search is the Ford-Fulkerson algorithm

• Each augmenting path can be found in O(E) time
• And there can be |𝑓| paths
• So the running time is O(𝐸⋅|𝑓|)
• Will not terminate with irrational edge values

– Using a breadth-first search is the Edmonds-Karp algorithm
• Runs in O(V ⋅ E2)

– Total number of augmentations is O(V⋅E)
– And finding each augmentation takes O(E)

• Guaranteed termination with irrational edge values
• Run-time is independent of the maximum flow of the graph

