CS4102 Algorithms

Fall 2021 — Horton and Floryan

These are Horton’s version of the slides, used in
his lecture.

Network Flow, Ford-Fulkerson



In your textbook

e CLRS 26.1 and 26.2

* Includes simple solutions to the following “complications”
— What if (u,v) and (v,u) are in the flow graph?
* Called “Antiparallel” edges — easy to adjust for this, example later

— What if we need >1 source? >1 sink?



—lOW NEtWOrks

 Consider a flow network, which is
a specialized directed graph with:
— A single source node s 50
— A single terminus node t

— Capacities on each edge °

* That must be integer!

 What is the maximum flow you 10
can send from s to t?

10

20



Applications

Transportation networks

— How many people can be routed?

Computer networks
Electrical distribution
Water distribution

Note that all these applications
have multiple sources and
multiple sinks!

— Whereas the flow networks we
study do not, yet



low Network

Graph G = (V,E)

Source nodes €V
el

Edge Capacities c(e) € Positive whole* numbers

If (u,v) € E then (v,u) & E (Note our example here violates this!)

Max flow intuition: If s is a faucet, t is a drain, and s connects to ¢t
through a network of pipes with given capacities, what is the
maximum amount of water which can flow from the faucet to the
drain?



-low Network: Antiparallel

—dges

Easy adjustment to remove antiparallel edges and have

equivalent flow graph: add intermediate node

(Note: our later examples use graph on the left without this adjustment.)



2/2

—low

Assignment of values to edges
- fle)=n
— E.g. n units of water going through that pipe
Capacity constraint
— f(e) < c(e) 2/3
— Flow cannot exceed capacity
Flow constraint Flow/Capacity
— Vv eV —{s,t}, inflow(v) = outflow(v)
— inflow(v) = Yyev f (v, %)

— outflow(v) = Xyey f(x, V)
— Water going in must match water coming out

Flow of G: |f| = outflow(s) — inflow(s)

— Net outflow of s

3 in example above



L et's Make Some Rules

Source node has NO incoming flow
Terminal (sink) node has NO outgoing flow

Internal nodes has net zero flow
— all units of flow going in must be going out as well

No edge is over capacity

GOAL: Find the maximum flow that can be “pushed” through the network
— l.e. maximize: |f| = outflow(s) — inflow(s)



How to Solve This”? This Greedy doesn'’t work

Saturate Highest Capacity Path First
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Greedy doesn’'t work

Saturate Highest Capacity Path First

10

20
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Greedy doesn’'t work

Saturate Highest Capacity Path First

Overall Flow: |f| = 20
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Greedy doesn’'t work

Better Solution

Overall Flow: |f| = 30
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—Ord-

-ulkerson: Algorithm overview

Iterative algorithm: push some flow along some path at each step

Model or record the residual capacities

— how much capacity is left after taking into account how much flow is going
through that edge at this time

Find a path from s to t such that the minimum residual capacity of
an edge on that path is greater than zero

— Since each value is an integer, it must be 1 or more
Update the residual capacities after taking into account this new

flow

Repeat until no more such paths are found



Algorithm notation

f(u,v): the flow on the edge fromutov

f(v,u): the backflow on the edge from v to u

c(u,v): the capacity on the edge fromutov

c(u,v): the residual capacity on the edge fromutov

G; is the graph where the edges weights are the residual

capacities

— THIS is usually the graph we actually use when running the algorithm
we are about to see.



Sackflow

* Each edge has forward flow and backflow
— The two must always be “inverses” of each other!

— |.e. they sum to the total capacity for that edge
* This allows for modeling of flow “returning” along a given edge

* One way to think about this:

— How much of the forward flow we could “un-do”



Residual Graph G

* Keep track of net available flow along each edge
 “Forward edges”: weight is equal to available flow along that

edge in the flow graph Flow | could add

o w(e) =c(e) — f(e)

* “Back edges”: weight is equal to backflow along that edge in

the flow graph

Flow | could remove

o w(e) = f(e)

Residual Graph Gf

Flow Graph G /Q\
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Residual Graphs

Flow Graph
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-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network G
* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VEP f( )

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow



-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

4 N
] Ford-Fulkerson approach: take
Ford-Fulkerson max-flow algorithm: any augmenting path
* Initialize f(e) = 0foralle € E (will revisit this later)

/
* Construct the residual network G V

* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VEP f( )

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow



-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

4 N
] Ford-Fulkerson approach: take
Ford-Fulkerson max-flow algorithm: any augmenting path
* Initialize f(e) = 0foralle € E (will revisit this later)

/
* Construct the residual network G V

* While there is an augmenting path p in Gf:{

e lLetc = min ce(u,v
U, VEP f( )

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

(cr(u, v) is the weight of edge (u, v)
in the residual network Gy)




-ord-rulkerson Algorithm:;
Updating G:

1. f(u,v) =0 for all edges (u,v)

2. While there is an “augmenting” path p from s to tin G; such
that c{(u,v) > O for all edges (u,v) € p
a. Find cp) = min{c{u,v) | (u,v) € p}
b. For each edge (u,v) € p

i. f(u,v) =f(u,v) + cp) send flow along the path
ii. f(v,u) =f(v,u) - ¢{(p) send backflow the other way



ord-
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0/3

Jlkerson

Initially: f(e) = Oforalle € E

—Xample
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Residual graph G
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0/3
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ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G
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ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G
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ord-

Jlkerson

Residual graph G
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ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G
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ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G
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ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G
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ord-

Jlkerson

Residual graph G
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ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G
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ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G
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ord-

Jlkerson

Residual graph G
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ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G
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ord-

Jlkerson

Residual graph G
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2/3

S 0/3
2/2

Maximum flow: 4

ord-

Jlkerson

—Xample

No more augmenting paths

Residual graph G
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Our example
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—ord-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

* Initialize f(e) = 0foralle € E

e Construct the residual network Gf

. . . . Ti to find ti th:
* While there is an augmenting path pin Gf: Ime to Tind an augmenting pa

* Letc = min cf(u, v) Number of iterations of While loop:
U,VED fA
* Add c units of flow to G based on the augmenting path p

* Update the residual network G¢ for the updated flow



—ord-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

* Initialize f(e) = 0foralle € E

e Construct the residual network Gf

: : : : Time to find ti th: DFS: O(V + E
» While there is an augmenting path p in Gz e e V+E)

e letc = min ¢ (u v) Number of iterations of While loop: |f|
u,vep f ’
* Add c units of flow to G based on the augmenting path p @(E y ‘fD
39

* Update the residual network G¢ for the updated flow



VWhat type of search”

* “While there is an augmenting path p in G¢”

— Using a depth-first search is the Ford-Fulkerson algorithm
e Each augmenting path can be found in O(E) time
* And there can be |f| paths
* So the running time is O(E-|f|)
* Will not terminate with irrational edge values

— Using a breadth-first search is the Edmonds-Karp algorithm
e Runsin O(V - E?)
— Total number of augmentations is O(V-E)
— And finding each augmentation takes O(E)
* Guaranteed termination with irrational edge values

* Run-time is independent of the maximum flow of the graph



