CS4102 Algorithms

Fall 2021 — Horton and Floryan

These are Horton’s version of the slides, used in
his lecture.

Network Flow, Ford-Fulkerson

In your textbook

e CLRS 26.1 and 26.2

* Includes simple solutions to the following “complications”
— What if (u,v) and (v,u) are in the flow graph?
* Called “Antiparallel” edges — easy to adjust for this, example later

— What if we need >1 source? >1 sink?

—lOW NEtWOrks

 Consider a flow network, which is
a specialized directed graph with:
— A single source node s 50
— A single terminus node t

— Capacities on each edge °

* That must be integer!

 What is the maximum flow you 10
can send from s to t?

10

20

Applications

Transportation networks

— How many people can be routed?

Computer networks
Electrical distribution
Water distribution

Note that all these applications
have multiple sources and
multiple sinks!

— Whereas the flow networks we
study do not, yet

low Network

Graph G = (V,E)

Source nodes €V
el

Edge Capacities c(e) € Positive whole* numbers

If (u,v) € E then (v,u) & E (Note our example here violates this!)

Max flow intuition: If s is a faucet, t is a drain, and s connects to ¢t
through a network of pipes with given capacities, what is the
maximum amount of water which can flow from the faucet to the
drain?

-low Network: Antiparallel

—dges

Easy adjustment to remove antiparallel edges and have

equivalent flow graph: add intermediate node

(Note: our later examples use graph on the left without this adjustment.)

2/2

—low

Assignment of values to edges
- fle)=n
— E.g. n units of water going through that pipe
Capacity constraint
— f(e) < c(e) 2/3
— Flow cannot exceed capacity
Flow constraint Flow/Capacity
— Vv eV —{s,t}, inflow(v) = outflow(v)
— inflow(v) = Yyev f (v, %)

— outflow(v) = Xyey f(x, V)
— Water going in must match water coming out

Flow of G: |f| = outflow(s) — inflow(s)

— Net outflow of s

3 in example above

L et's Make Some Rules

Source node has NO incoming flow
Terminal (sink) node has NO outgoing flow

Internal nodes has net zero flow
— all units of flow going in must be going out as well

No edge is over capacity

GOAL: Find the maximum flow that can be “pushed” through the network
— l.e. maximize: |f| = outflow(s) — inflow(s)

How to Solve This”? This Greedy doesn'’t work

Saturate Highest Capacity Path First

10

20

Greedy doesn’'t work

Saturate Highest Capacity Path First

10

20

10

Greedy doesn’'t work

Saturate Highest Capacity Path First

Overall Flow: |f| = 20

11

Greedy doesn’'t work

Better Solution

Overall Flow: |f| = 30

12

13

—Ord-

-ulkerson: Algorithm overview

Iterative algorithm: push some flow along some path at each step

Model or record the residual capacities

— how much capacity is left after taking into account how much flow is going
through that edge at this time

Find a path from s to t such that the minimum residual capacity of
an edge on that path is greater than zero

— Since each value is an integer, it must be 1 or more
Update the residual capacities after taking into account this new

flow

Repeat until no more such paths are found

Algorithm notation

f(u,v): the flow on the edge fromutov

f(v,u): the backflow on the edge from v to u

c(u,v): the capacity on the edge fromutov

c(u,v): the residual capacity on the edge fromutov

G; is the graph where the edges weights are the residual

capacities

— THIS is usually the graph we actually use when running the algorithm
we are about to see.

Sackflow

* Each edge has forward flow and backflow
— The two must always be “inverses” of each other!

— |.e. they sum to the total capacity for that edge
* This allows for modeling of flow “returning” along a given edge

* One way to think about this:

— How much of the forward flow we could “un-do”

Residual Graph G

* Keep track of net available flow along each edge
 “Forward edges”: weight is equal to available flow along that

edge in the flow graph Flow | could add

o w(e) =c(e) — f(e)

* “Back edges”: weight is equal to backflow along that edge in

the flow graph

Flow | could remove

o w(e) = f(e)

Residual Graph Gf

Flow Graph G /Q\

P
are

b

Residual Graphs

Flow Graph

%\\010
\mN)

—Xample

Residual Graph

k
10 %

10

NN —

18

-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network G
* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VEP f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

4 N
] Ford-Fulkerson approach: take
Ford-Fulkerson max-flow algorithm: any augmenting path
* Initialize f(e) = 0foralle € E (will revisit this later)

/
* Construct the residual network G V

* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VEP f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

4 N
] Ford-Fulkerson approach: take
Ford-Fulkerson max-flow algorithm: any augmenting path
* Initialize f(e) = 0foralle € E (will revisit this later)

/
* Construct the residual network G V

* While there is an augmenting path p in Gf:{

e lLetc = min ce(u,v
U, VEP f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

(cr(u, v) is the weight of edge (u, v)
in the residual network Gy)

-ord-rulkerson Algorithm:;
Updating G:

1. f(u,v) =0 for all edges (u,v)

2. While there is an “augmenting” path p from s to tin G; such
that c{(u,v) > O for all edges (u,v) € p
a. Find cp) = min{c{u,v) | (u,v) € p}
b. For each edge (u,v) € p

i. f(u,v) =f(u,v) + cp) send flow along the path
ii. f(v,u) =f(v,u) - ¢{(p) send backflow the other way

ord-

0/3 0/2

0/3

Jlkerson

Initially: f(e) = Oforalle € E

—Xample

3 &
0/3
0/2 0/3) 3
0/2 2
3

Residual graph G

23

0/3

0/3

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

24

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

25

ord-

Jlkerson

Residual graph G

26

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

27

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

28

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

29

ord-

Jlkerson

Residual graph G

30

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

31

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

32

ord-

Jlkerson

Residual graph G

33

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

34

ord-

Jlkerson

Residual graph G

35

2/3

S 0/3
2/2

Maximum flow: 4

ord-

Jlkerson

—Xample

No more augmenting paths

Residual graph G

36

10

20

Our example

37

—ord-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

* Initialize f(e) = 0foralle € E

e Construct the residual network Gf

. . . . Ti to find ti th:
* While there is an augmenting path pin Gf: Ime to Tind an augmenting pa

* Letc = min cf(u, v) Number of iterations of While loop:
U,VED fA
* Add c units of flow to G based on the augmenting path p

* Update the residual network G¢ for the updated flow

—ord-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

* Initialize f(e) = 0foralle € E

e Construct the residual network Gf

: : : : Time to find ti th: DFS: O(V + E
» While there is an augmenting path p in Gz e e V+E)

e letc = min ¢ (u v) Number of iterations of While loop: |f|
u,vep f ’
* Add c units of flow to G based on the augmenting path p @(E y ‘fD
39

* Update the residual network G¢ for the updated flow

VWhat type of search”

* “While there is an augmenting path p in G¢”

— Using a depth-first search is the Ford-Fulkerson algorithm
e Each augmenting path can be found in O(E) time
* And there can be |f| paths
* So the running time is O(E-|f|)
* Will not terminate with irrational edge values

— Using a breadth-first search is the Edmonds-Karp algorithm
e Runsin O(V - E?)
— Total number of augmentations is O(V-E)
— And finding each augmentation takes O(E)
* Guaranteed termination with irrational edge values

* Run-time is independent of the maximum flow of the graph

