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Greedy Algorithms
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CLRS Readings

• Chapter 16, Greedy Algorithms
– Intro, page 414
– Section 16.2, Elements of the Greedy Strategy, Knapsack problem
– Later Section 16.1, Activity Selection problem
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Topics

• Greedy Algorithms: Our next algorithmic technique
• How to analyze problems with greedy solutions:
– Optimal substructure property
– Greedy choice property
– Proving correctness of greedy algorithms

• Three example problems
– Coin Change
– Activity Selection
– Knapsack (fractional version)
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Optimization Problems

• Greedy algorithms can (sometimes) solve optimization problems:
Find the best solution among all feasible solutions

• An example you know: Find the shortest path in a weighted graph G from s to v
– Form of the solution: a path (and sum of its edge-weights)

• Feasible solutions must meet problem constraints
– Example: All edges in solution are in graph G and form a simple path from s to v

• We can get a score for each feasible solution on some criteria:
We call this the objective function

– Example:  the sum of the edge weights in path

• One (or more) feasible solutions that scores highest (by the objective function) is 
the optimal solution(s)



Coin Change, Optimal Substructure, and the 
Greedy Choice Property
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Goals! 
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• First problem with a greedy algorithm solution (Coin Change!)

• What is optimal substructure? Why is it useful?
• Making a greedy choice to solve the problem
• What is the greedy choice property?



Everyone Already Knows Many Algorithms! 
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• Worked retail? You know how to make change!
• Example:
– My item costs $4.37.  I give you a five dollar bill.  What do you give 

me in change?
– Answer: two quarters, a dime, three pennies
– Why? How do we figure that out?



Making Change
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• The problem: 
– Give back the right amount of change, and…
– Return the fewest number of coins!

• Inputs: the dollar-amount to return
– Also, the set of possible coins. (Do we have half-dollars?  That affects the answer we 

give.)
• Output: a set of coins

• Note this problem statement is simply a transformation
– Given input, generate output with certain properties
– No statement about how to do it.

• Can you describe the algorithm you use?



Optimal Substructure
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• This problem has optimal substructure

• Optimal Substructure: If given an optimal solution to the larger 
problem, it can be seen to be made up of optimal solutions to 
smaller versions of the same problem.
– e.g., Optimal solution for giving 15 cents of change contains within it the 

optimal set of coins to make 5 cents of change (because a dime is part of 
the solution for 15 cents)

• Another way of stating it:
If A is an optimal solution to a problem, then the components of A 
are optimal solutions to subproblems



Optimal Substructure
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• This problem has optimal substructure

• Lemma 1: If a problem has optimal substructure, then a greedy 
algorithm MIGHT solve it (but not necessarily).

• Lemma 2: If a greedy algorithm solves the problem, then it has 
optimal substructure.

• Lesson: Check for optimal substructure to see if a greedy 
algorithm MIGHT be applicable. Also gives hints as to what the 
algorithm might be!!



Optimal Substructure
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• This problem has optimal substructure

• Claim (we will prove this):

• If C = 𝑐!, 𝑐", … , 𝑐# is the optimal set of coins to make A cents 
of change:

• Then 𝐶$ = {𝑐", 𝑐%, … , 𝑐#} is the optimal set of coins to make 
𝐴 − 𝑐! cents of change.



Need more on Optimal Substructure Property?

• Detailed discussion on p. 379 of CLRS (chapter on Dynamic 
Programming)
– If A is an optimal solution to a problem, then the components of A are optimal 

solutions to subproblems

• Another example: Shortest Path in graph problem
– Say P is min-length path from CHO to LA and includes DAL
– Let P1 be component of P from CHO to DAL, and P2 be component of P from DAL 

to LA
– P1 must be shortest path from CHO to DAL, and P2 must be shortest path from 

DAL to LA
– Why is this true?  Can you prove it?  Yes, by contradiction. (Try this at home!)
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A Change Algorithm
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1. Consider the largest coin
2. How many go into the amount left?
3. Add that many of that coin to the output
4. Subtract the amount for those coins from the amount left to 

return
5. If the amount left is zero, done!
6. If not, consider next largest coin, and go back to Step 2



Evaluating Our Greedy Algorithm
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• How much work does it do?
– Say C is the amount of change, and N is the number of coins in our coin-set
– Loop at most N times, and inside the loop we do:

• A division
• Add something to the output list
• A subtraction, and a test

– We say this is O(N), or linear in terms of the size of the coin-set
• Could we do better?
– Is this an optimal algorithm?
– We need to do a proof somehow to show this



Another Change Algorithm
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• Give me another way to do this?

• Brute force:
– Generate all possible combinations of coins that add up to the required amount
– From these, choose the one with smallest number

• What would you say about this approach?

• There are other ways to solve this problem
– Dynamic programming: build a table of solutions to small subproblems, work 

your way up



Algorithm for making change
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• This algorithm makes change for an amount A using coins of denominations
denom[1] > denom[2] > ··· > denom[n] = 1.

• Input Parameters: denom, A
• Output Parameters: None

• greedy_coin_change(denom, A) {
i = 1
while (A > 0) {

c = A / denom[i]
println(“use ” + c + “ coins of denomination ” + denom[i])
A = A - c * denom[i]
i = i + 1

}
}



Making change proof
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• One methodology for proving correctness of greedy 
algorithms:

• A greedy algorithm is correct if the following hold:
– The problem has optimal substructure
– The algorithm has the greedy choice property (see next slide)



Making change proof
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• What is the greedy choice property?

• Your algorithm makes some greedy choice and then continues
– e.g., choose largest coin, then continue

• Prove that the one thing the greedy algorithm selects MUST be 
in some optimal solution to the problem.



Making change proof
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• Proving the  greedy choice property?

• Claim: For making A cents of change, some optimal solution 
MUST contain the largest coin such that 𝑐& ≤ 𝐴



Proof
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• Overview of proof:
– Assume largest coin NOT in some optimal solution
– Ok, some other coins must be in there instead.
– 4 Cases:

• Largest coin that fits is penny (1 cent) //this one is trivial though!
• Largest coin that fits is nickel (5 cent)
• Largest coin that fits is dime (10 cent)
• Largest coin that fits is quarter (25 cent)



Proof

21

• Largest coin that fits is penny (1 cent) //this one is trivial though!
– means A < 5
– Only penny fits, so penny must be in some optimal solution!

• Largest coin that fits is nickel (5 cent)
– Assume nickel not in optimal solution. Note A >= 5
– Pennies are only other option, so 5 or more pennies in optimal solution
– But I can swap out 5 of those pennies with a nickel

• Solution decreases by 4 coins!! Contradiction!!



Proof
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• Largest coin that fits is Dime (10 cent)
– Assume dime not in optimal solution. Note A >= 10 and A < 25
– So the optimal solution contains:

• >= 2 nickels, some number of pennies (might be 0)
• 1 nickel, some pennies (at least 5)
• all pennies (more than 10)

– In each case above, I can swap a dime in for some combination of nickels or pennies
• Solution decreases by 1, 5, or 9 coins respectively. Contradiction!

• Largest coin that fits is quarter (25 cent)
– Assume quarter not in optimal solution. Note A >= 25
– So the optimal solution contains:



Proof
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• Largest coin that fits is quarter (25 cent)
– Assume quarter not in optimal solution. Note A >= 25
– So the optimal solution contains:

• 2 dimes, 1 nickel, some pennies maybe
• 2 dimes, 0 nickels, 5 or more pennies
• 1 dime, 3 nickels, 0 or more pennies
• 1 dime, 2 nickels, 5 or more pennies
• 1 dime, 1 nickel, 10 or more pennies
• 1 dime, 0 nickel, 15 or more pennies
• 0 dime, 5 nickels, 0 or more pennies
• …

• For each case above, a quarter can be swapped back in for more than 1 coin 
to make the solution better!! Contradiction!



How would a failed proof work?
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• Prove greedy choice property for denominations 1, 6, and 10

• This is going to fail because the algorithm doesn’t work. Let’s 
see it!
– For A = 12, greedy outputs 10,1,1
– Best answer is 6,6



How would a failed proof work?
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• Largest coin that fits is Dime (10 cent)
– Assume dime not in optimal solution. Note A >= 10
– So the optimal solution contains:

• 2 or more six-cent coins, pennies maybe (could be 0)
• 1 six-cent coin, at least 4 pennies
• 0 six-cent coins, at least 10 pennies

• For the second two, we can do the exchange, but NOT for the 
first one. The proof doesn’t work!!



Knapsack Problems
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Knapsack Problems

• Pages 425-427 in textbook
• Description: Thief robbing a store finds n items, 

each with a profit amount pi  and a weight wi
– Wants to steal as valuable a load as possible
– But can only carry total weight C in their knapsack
– Which items should they take to maximize profit?

• Form of the solution: an xi  value for each item, 
showing if (or how much) of that item is taken

• Inputs are: C, n, the pi and wi values
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Two Types of Knapsack Problem

• 0/1 knapsack problem
– Each item is discrete: must choose all of it or none of it.

So each xi is 0 or 1
– Greedy approach does not produce optimal solutions
– But dynamic programming does

• Fractional knapsack problem (AKA continuous knapsack)
– Can pick up fractions of each item.

So each xi is a value between 0 or 1
– A greedy algorithm finds the optimal solution 
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Formal Statement of Fractional Knapsack Problem

• Given n objects and a knapsack of capacity C, where object i
has weight wi and earns profit pi, find values xi that maximize 
the total profit 

subject to the constraints

å
=

n

i
ii px

1

xiwi
i=1

n

∑ ≤C, 0 ≤ xi ≤1



Greedy Approach

• Let’s use a greedy strategy to solve the fractional knapsack
– Build solution by stages, adding one item to partial solution found so far
– At each stage, make locally optimal choice based on the greedy choice 

(sometimes called the greedy rule or the selection function)
• Locally optimal, i.e. best choice given what info available now

– Irrevocable: a choice can’t be un-done
– Sequence of locally optimal choices leads to globally optimal solution 

(hopefully)
• Must prove this for a given problem!
• Approximation algorithms, heuristic algorithms
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A Bit More Terminology

• Problems solvable by both Dynamic Programming and the 
Greedy approach have the optimal substructure property:
– An optimal solution to a problem contains within it optimal solutions 

to subproblems
– This allows us to build a solution one step at a time, because we can 

solve increasingly smaller problems with confidence
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Greedy Approach for Fractional Knapsack?

• Build up a partial solutions:
– Determine which of the remaining items to add
– How much can you add (its xi)
– Repeat until knapsack is full (or no more items)

• Which item to choose next?
What’s a good greedy choice (AKA greedy selection)?

• Let’s try several obvious options on this example:

Item Value Weight

1 25 18

2 24 15

3 15 10

n = 3, C = 20



Greedy choice #1:  by highest profit value

Possible Greedy Choices for Knapsack

Item Value Weight

1 25 18

2 24 15

3 15 10

n = 3, C = 20

Select item 1 first, then 
item 2, then item 3.
Take as much of each 
as fits!

1. Item 1 first. Can take all of it, so x1 is 1.
Capacity used is 18 of 20. Profit so far is 25.

2. Item 2 next. Room for only 2 units, so x2 is 
2/15 = 0.133.   Capacity used is 20 of 20.
Profit so far is 25 + (24 x 0.133) = 28.2.

3. Item 3 would be next, but knapsack full!
x3 is 0.  Total profit is 28.2.   xi = (1, .133, 0)



Possible Greedy Choices for Knapsack

Greedy choice #2:  by lowest weight

Item Value Weight

1 25 18

2 24 15

3 15 10

n = 3, C = 20

Select item 3 first, then 
item 2, then item 1.
Take as much of each 
as fits!

1. Item 3 first. Can take all of it, so x3 is 1.
Capacity used is 10 of 20. Profit so far is 15.

2. Item 2 next. Room for only 10 units, so x2 is 
10/15 = 0.667.   Capacity used is 20 of 20.
Profit so far is 15 + (24 x 0.667) = 31.

3. Item 1 would be next, but knapsack full!
x1 is 0.  Total profit is 31.0.   xi = (0, .667, 1)

Note it’s better than previous greedy choice.
Best possible?



Item Value Weight Ratio

1 25 18 1.4

2 24 15 1.6

3 15 10 1.5

Possible Greedy Choices for Knapsack

Greedy choice #3:  highest value-to-weight ratio
n = 3, C = 20

Select item 2 first, then 
item 3, then item 1.
Take as much of each 
as fits!

1. Item 2 first. Can take all of it, so x2 is 1.
Capacity used is 15 of 20. Profit so far is 24.

2. Item 3 next. Room for only 5 units, so x1 is 
5/10 = 0.5.   Capacity used is 20 of 20.
Profit so far is 24 + (15 x 0.5) = 31.5.

3. Item 1 would be next, but knapsack full!
x1 is 0.  Total profit is 31.5.   xi = (0, 1, 0.5)

This greedy choice produces optimal solution!
Must prove this (but we won’t today).



Fractional Knapsack Algorithm

FRACTIONAL_KNAPSACK(a, C)
1   n = a.last
2   for i = 1 to n
3       ratio[i] = a[i].p / a[i].w
4   sort(a, ratio)
5   weight = 0
6   i = 1
7   while (i ≤ n and weight < C)
8       if (weight + a[i].w ≤ C)
9           println “select all of object “ + a[i].id
10         weight = weight + a[i].w
11     else
12         r = (C – weight) / a[i].w
13         println “select “ + r + “ of object “ + a[i].id
14         weight = C
15     i = i+1

Worst-case runtime:
for loop and while loop 
take θ(n) time,
sorting takes θ(nlgn) time, 
so algorithm takes θ(nlgn) 
time



Another Knapsack Example to Try

• Assume for this problem that:  
• Ratios of profit to weight:

• What order do we examine items?
• What are the xi values that result?
• What’s the total profit?

p1/w1 = 5/120 = .0417
p2/w2 = 5/150 = .0333
p3/w3 = 4/200 = .0200
p4/w4 = 8/150 = .0533
p5/w5 = 3/140 = .0214

wi
i=1

n

∑ ≤C



Optimal Substructure Proof
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• First, let’s show that fractional knapsack has the optimal 
substructure property

• Formally: Suppose we have a solution to knapsack 𝑆 =
{𝑖!, 𝑖", 𝑖%…} where each 𝑖' is the amount taken of each of the i
items for a knapsack with capacity 𝑊. 

• Then: It must be the case that 𝑆$ = {𝑖", 𝑖%, 𝑖(, … } is optimal for a 
knapsack of size 𝑊 − 𝑖!



Optimal Substructure Proof
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• Formally: Suppose we have a solution to knapsack 𝑆 = {𝑖!, 𝑖", 𝑖#…} where each 𝑖$ is the 
amount taken of each of the respective items for a knapsack with capacity 𝑊. 

• Then: It must be the case that 𝑆% = {𝑖", 𝑖#, 𝑖&, … } is optimal for a knapsack of size 𝑊 − 𝑖!

• Proof Outline:
• Let V() be a function that computes the value of an item or of an entire solution
• Note that 𝑉 𝑆 = 𝑉 𝑖! + 𝑉 𝑆% and recall that S is optimal
• Suppose S’ is NOT optimal, then some better solution S’’ exists such that 𝑉 𝑆%% > 𝑉(𝑆%)

for capacity 𝑊 − 𝑖!
• But now there is a better overall solution: 𝑉 𝑆 = 𝑉 𝑖! + 𝑉 𝑆% < 𝑉 𝑖! + 𝑉(𝑆%%) so the 

original S is not actually optimal as assumed. Contradiction!!



Greedy Choice Property
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• Greedy Choice Property: The item with the largest value-to-weight ratio, filled to its max 
possible amount, must be in some optimal solution.

• Terms:
• Items are 𝐼 = {𝑖!, 𝑖", 𝑖#, … } and each item has a value and weight field (like an object)

• Assume ratios of items sorted. 𝑅 = {𝑟!, 𝑟", … } and 𝑟$ =
' $ .)
' $ .*

and 𝑟! ≤ 𝑟" ≤ ⋯ ≤ 𝑟+
• 𝑊 > 0 is capacity of knapsack



Greedy Choice Property
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• Greedy Choice Property: The item with the largest value-to-weight ratio, filled to its max 
possible amount, must be in some optimal solution.

• Proof:
• Assume claim is false and the largest value-to-weight ratio item 𝑖+ is NOT in optimal sol.

– Optimal solution be values 𝑂 = {𝑜!, 𝑜", … } where 𝑜# was NOT taken to its maximum amount.

• We COULD have taken some amount 𝑀𝑖𝑛(𝑊, 𝑖+. 𝑤), but optimal solution has strictly less 
than this amount ( 𝑜+ < 𝑀𝑖𝑛(𝑊, 𝑖+. 𝑤) )

• Let 𝛿 = 𝑀𝑖𝑛 𝑊, 𝑖+. 𝑤 − 𝑜+ > 0 be the extra amount of weight of item n that was NOT 
taken by this optimal solution

• Note that 0 < 𝛿 < 𝑊 (There must be at least some extra weight AND knapsack is not full)
• Cont.d on next slide…



Greedy Choice Property
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• Proof:
• Note that 0 < 𝛿 < 𝑊 (There must be at least some extra weight AND knapsack is not full)

• This extra weight 𝛿 must be taken by some other arbitrary item 𝑜$ in optimal solution
– Note that the ratio of item j is the same or worse than item n:    𝑟$ ≤ 𝑟# *by definition

• So, let’s swap the amount we placed in 𝑖$ back into item n. (V is the value function again) 
to make a new solution O’

𝑉 𝑂′ = 𝑉 𝑂 − 𝛿 ∗ 𝑟$ + 𝛿 ∗ 𝑟+
𝑉 𝑂% = 𝑉 𝑂 + 𝛿 𝑟+ − 𝑟$

𝑉 𝑂% ≥ 𝑉(𝑂)
• Contradiction!!!!



0/1 knapsack
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Let’s try this same greedy solution with the 0/1 version
– New example inputs à

1. Item 1 first. So x1 is 1.
Capacity used is 1 of 4. Profit so far is 3.

2. Item 2 next. There’s room for it!  So x2 is 1.   Capacity used is 3 of 4.
Profit so far is 3 + 5 = 8.

3. Item 3 would be next, but its weight is 3 and knapsack only has 1 unit left!
So x3 is 0.  Total profit is 8.   xi = (1, 1, 0)

But picking items 1 and 3 will fit in knapsack, with total value of 9
– Thus, the greedy solution does not produce an optimal solution to the 0/1 knapsack algorithm
– Greedy choice left unused room, but we can’t take a fraction of an item
– The 0/1 knapsack problem doesn’t have the greedy choice property

Item Value Weight Ratio

1 3 1 3

2 5 2 2.5

3 6 3 2

n = 3, C = 4



Activity Selection
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Activity-Selection Problem

• Problem: You and your classmates go on Semester at Sea
– Many exciting activities each morning
– Each starting and ending at different times
– Maximize your “education” by doing as many as possible

• This problem: they’re all equally good!
• Another problem: they have weights (we need DP for that one)

• Welcome to the activity selection problem
– Also called interval scheduling
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The Activities!

Id Start End Activity
1 9:00 10:45 Fractals, Recursion and Crayolas

2 9:15 10:15 Tropical Drink Engineering with Prof. Bloomfield

3 9:30 12:30 Managing Keyboard Fatigue with Swedish Massage

4 9:45 10:30 Applied ChemE: Suntan Oil or Lotion?

5 9:45 11:15 Optimization, Greedy Algorithms, and the Buffet Line

6 10:15 11:00 Hydrodynamics and Surfing

7 10:15 11:30 Computational Genetics and Infectious Diseases

8 10:30 11:45 Turing Award Speech Karaoke

9 11:00 12:00 Pool Tanning for Engineers

10 11:00 12:15 Mechanics, Dynamics and Shuffleboard Physics

11 12:00 12:45 Discrete Math Applications in Gambling
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Generalizing Start, End

Id Start End Len Activity
1 0 6 7 Fractals, Recursion and Crayolas

2 1 4 4 Tropical Drink Engineering with Prof. Bloomfield

3 2 13 12 Managing Keyboard Fatigue with Swedish Massage

4 3 5 3 Applied ChemE: Suntan Oil or Lotion?

5 3 8 6 Optimization, Greedy Algorithms, and the Buffet Line

6 5 7 3 Hydrodynamics and Surfing

7 5 9 5 Computational Genetics and Infectious Diseases

8 6 10 5 Turing Award Speech Karaoke

9 8 11 4 Pool Tanning for Engineers

10 8 12 5 Mechanics, Dynamics and Shuffleboard Physics

11 12 14 3 Discrete Math Applications in Gambling
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Greedy Approach

1. Select a first item.
2. Eliminate items that are incompatible with that item.

(I.e. they overlap, not part of a feasible solution)
3. Apply the greedy choice (AKA selection function) to pick the 

next item.
4. Go to Step 2

What is a good greedy choice for selecting next item?
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Some Possibilities

1. Maybe pick the next compatible activity that starts earliest?
– “Compatible” here means “doesn’t overlap”

2. Or, pick the shortest one?
3. Or, pick the one that has the least conflicts (i.e. overlaps)?
4. Or…?
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Activity-Selection

• Formally:
– Given a set S of n activities

si = start time of activity i
fi = finish time of activity i

– Find max-size subset A of compatible activities

! Assume (wlog) that f1 £ f2 £ … £ fn

1
2

3
4

5

6
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Activity Selection: A Greedy Algorithm

• The algorithm using the best greedy choice is simple:
– Sort the activities by finish time
– Schedule the first activity
– Then schedule the next activity in sorted list which starts after 

previous activity finishes
– Repeat until no more activities

• Or in simpler terms:
– Always pick the compatible activity that finishes earliest
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Optimal Substructure Property

• Remember?
• Detailed discussion on p. 379 (in chapter on Dynamic Programming)

– If A is an optimal solution to a problem, then the components of A are optimal solutions to 
subproblems

• Reminder:  Example 1, Shortest Path
– Say P is min-length path from CHO to LA and includes DAL
– Let P1 be component of P from CHO to DAL, and P2 be component of P from DAL to LA
– P1 must be shortest path from CHO to DAL, and P2 must be shortest path from DAL to LA
– Why is this true?  Can you prove it?  Yes, by contradiction.

• Do it!  In-class exercise
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Activity Selection: Optimal Substructure 

• Let k be the minimum activity in the solution A (i.e., the one with the 
earliest finish time).  Then A - {k} is an optimal solution to S’ = {i Î S: si ³
fk}
– In words: once activity #1 is selected, the problem reduces to finding 

an optimal solution for activity-selection over activities in S
compatible with activity #1

– Proof: if we could find optimal solution B’ to S’ with |B| > |A - {k}|,
• Then B U {k} is compatible 
• And |B U {k}| > |A| -- contradiction! We said A is the overall best.

• Note: book’s discussion on p. 416 is essentially this, but 
doesn’t assume we choose the 1st activity
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Back to Semester at Sea…
Id Start End Len Activity
2 1 4 4 Tropical Drink Engineering with Prof. Bloomfield

4 3 5 3 Applied ChemE: Suntan Oil or Lotion?

1 0 6 7 Fractals, Recursion and Crayolas

6 5 7 3 Hydrodynamics and Surfing

5 3 8 6 Optimization, Greedy Algorithms, and the Buffet Line

7 5 9 5 Computational Genetics and Infectious Diseases

8 6 10 5 Turing Award Speech Karaoke

9 8 11 4 Pool Tanning for Engineers

10 8 12 5 Mechanics, Dynamics and Shuffleboard Physics

3 2 13 12 Managing Keyboard Fatigue with Swedish Massage

11 12 14 3 Discrete Math Applications in Gambling

Solution:  2, 6, 9, 11
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Visualizing these Activities

ID Start End 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 6
2 1 4
3 2 13
4 3 5
5 3 8
6 5 7
7 5 9
8 6 10
9 8 11
10 8 12
11 12 14
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Visualizing these Activities in Solution

ID Start End 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 6
2 1 4
3 2 13
4 3 5
5 3 8
6 5 7
7 5 9
8 6 10
9 8 11
10 8 12
11 12 14
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Sorted, Then Showing Selection and 
Incompatibilities

ID Start End 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 1 4
4 3 5
1 0 6
6 5 7
5 3 8
7 5 9
8 6 10
9 8 11
10 8 12
3 2 13
11 12 14

Select solid-colored item,
Eliminates activities X’d
out of same color
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Book’s Recursive Greedy Algorithm

• Add dummy activity a0 with f0 = 0, so that sub-problem S0
is entire set of activities S

• Initial call: RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n)
• Run time is θ(n), assuming the activities are already 

sorted by finish times

RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)
1 m = k + 1  // start with the activity after the last added activity
2 while m ≤ n and s[m] < f[k]  // find the first activity in Sk to finish
3     m = m + 1
4 if m ≤ n
5     return {am} U RECURSIVE-ACTIVITY-SELECTOR(s, f, m, n)
6 else return Ø
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Non-recursive algorithm
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greedy-interval (s, f)
n = s.length
A = {a1}
k = 1   # last added
for m = 2 to n

if s[m] ≥ f[k]
A = A U {am}
k = m

return A

• s is an array of the intervals’ start
times

• f is an array of the intervals’
finish times, sorted

• A is the array of the intervals to
schedule

• How long does this take?
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Does Greedy Always Find Optimal Solution?

• Yes, we can prove that the greedy algorithm always “stays 
ahead”!
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Does Greedy Always Find Optimal Solution?

• Yes, we can prove that the greedy algorithm always “stays 
ahead”!
– How?

• Overall idea: Show the i’th interval algorithm chooses always 
ends earlier than optimal solution
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Does Greedy Always Find Optimal Solution?

• Lemma 1: Let 𝐺 = {𝑔!, 𝑔", … , 𝑔#} be greedy algorithm 
intervals and 𝑂 = {𝑜!, 𝑜", … , 𝑜)} be the optimal solution

Show that ∀*+, 𝑔* . 𝑓 ≤ 𝑜* . 𝑓 //f is finish time
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Does Greedy Always Find Optimal Solution?

Lemma 1: Let 𝐺 = {𝑔!, 𝑔", … , 𝑔+} be greedy algorithm intervals and 𝑂 = {𝑜!, 𝑜", … , 𝑜,} be 
the optimal solution

Show that ∀-.! 𝑔-. 𝑓 ≤ 𝑜-. 𝑓 //f is finish time
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Base Case:

𝑔!. 𝑓 ≤ 𝑜!. 𝑓

This is true by definition of how the greedy algorithm works:
Greedy algorithm chooses the interval with the lowest finish time, so the inequality must 
be true for the very first one.



Does Greedy Always Find Optimal Solution?

Lemma 1: Let 𝐺 = {𝑔!, 𝑔", … , 𝑔+} be greedy algorithm intervals and 𝑂 = {𝑜!, 𝑜", … , 𝑜,} be 
the optimal solution

Show that ∀-.! 𝑔-. 𝑓 ≤ 𝑜-. 𝑓 //f is finish time
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Inductive Hypothesis: 
Assume that up through (but not including) some arbitrary k:

𝑔-. 𝑓 ≤ 𝑜-. 𝑓 if  𝑖 < 𝑘

In other words, the inequality holds up through some k-1 value.

We will next check if it still holds for k



Does Greedy Always Find Optimal Solution?

Lemma 1: Let 𝐺 = {𝑔!, 𝑔", … , 𝑔+} be greedy algorithm intervals and 𝑂 = {𝑜!, 𝑜", … , 𝑜,} be 
the optimal solution

Show that ∀-.! 𝑔-. 𝑓 ≤ 𝑜-. 𝑓 //f is finish time
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Inductive Step:
Is the inequality true for k? Let’s assume it isn’t true:

𝑔/. 𝑓 > 𝑜/. 𝑓 Assuming for sake of contradiction (1)
𝑔/0!. 𝑓 ≤ 𝑜/0!. 𝑓 True by inductive hypothesis (2)
𝑜/0!. 𝑓 ≤ 𝑜/. 𝑠 segment k must start after segment k-1 ends (3)

𝑔/0!. 𝑓 ≤ 𝑜/0!. 𝑓 ≤ 𝑜/. 𝑠 combining lines 2 and 3 (4)

Line 4 states that 𝑔/0! is combatable with 𝑜/
This means that the greedy algorithm could choose 𝑜/ but didn’t (chose 𝑔/ instead) 
Contradiction! Greedy WILL choose the next available segment with minimal end time



Does Greedy Always Find Optimal Solution?

Rest of proof:

G ≠ O //G not optimal ftsoc

𝐺 = 𝑛 < 𝑂 //definition of optimal

𝑔#. 𝑓 ≤ 𝑜#. 𝑓 ≤ 𝑜#*!. 𝑠 //by lemma 1 and def of valid schedule

𝑔#. 𝑓 ≤ 𝑜#*!. 𝑠 //from previous line

//CONTRADICTON //greedy could have chosen 𝑜#%!
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Bridge Crossing
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Can you solve it??

Activity: Can you solve this problem?

n friends need to cross a bridge in the dark, but only have one flashlight. 
In addition, the bridge can only hold the weight of two people at a time. 
Given the walking speeds of each person 𝑆 = {𝑠!, 𝑠", … , 𝑠#}, give an 
algorithm that gets all n people across the bridge as quickly as possible.

**Assume 𝑠! ≤ 𝑠" ≤ ⋯ ≤ 𝑠#
**If two people cross together, they walk at the slower person’s speed
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Can you solve it??

Possible solution number 1: 

𝑠! escorts everyone else one at a time

This does NOT work. Can you find a counter-example??
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Can you solve it??

Possible solution number 2: 

𝑠! and 𝑠" escort the two slowest members 𝑠#$! and 𝑠#
- 𝑠! and 𝑠" go across
- 𝑠! returns
- 𝑠#$! and 𝑠# cross together
- 𝑠" returns

…and repeat

This does NOT work. Can you find a counter-example??
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Can you solve it??

Solution: Greedy algorithm is to try to get the two slowest people 
across as quickly as possible. Then, recurse on the rest of the input

See which of the previous two techniques is better:
1. 𝑠! escorts Cost = 𝑠# + 𝑠! + 𝑠#+! + 𝑠!
2. 𝑠#+! and 𝑠# go together Cost = 𝑠" + 𝑠! + 𝑠# + 𝑠"
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Can you solve it??

See which of the previous two techniques is better:
1. 𝑠! escorts 𝑐! = 𝑠# + 𝑠! + 𝑠#+! + 𝑠!
2. 𝑠# and 𝑠#+! go together c" = 𝑠" + 𝑠! + 𝑠# + 𝑠"

Difference is:
𝐶! − 𝐶" = 𝑠# + 𝑠! + 𝑠#+! + 𝑠! − 𝑠" + 𝑠! + 𝑠# + 𝑠"

= 𝑠#+! + 𝑠! − 2𝑠"
**If this value is positive, do approach 2, otherwise approach 1
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