CS4102 Algorithms

Fall 2021 - Floryan and Horton

Module 8

Dynamic Programming

Dynamic Programming and Greedy Approach

- TOPICS:
- Intro to Dynamic Programming
- Memoization
- Three DP Problems:
- Log Cutting
- 0/1 Knapsack
- Coin Change
- Weighted Activity Selection

Motivating Example

How many scalar multiplications are required to multiply matrices A and B in this example?

- $r_{1} \cdot c_{2}$ elements in the result that we need to compute
- c_{1} scalar multiplications per element in result
- Total cost: $r_{1} \cdot c_{1} \cdot c_{2}$
- So the answer is... $(3 \cdot 2 \cdot 5)=30$

Trickier Question

What's the smallest number of scalar multiplications required to calculate the matrix product $A B C$ in this example?

- For a pair of matrices, remember it's $r_{1} \cdot c_{1} \cdot c_{2}$
- Calculate this cost for multiplying one pair of matrices
- You need to multiply that result with the $3^{\text {rd }}$ matrix, too, so there's a cost for that
- Total cost is the sum of these two costs
- So the answer is... $(3 \cdot 2 \cdot 5)+(3 \cdot 5 \cdot 4)=90$
Nope! The answer is 64. Think about how this might be!

CLRS Readings

- Chapter 15, Dynamic Programming
- Section 15.1, Log/Rod cutting, optimal substructure property
- Note: r_{i} in book is called Cut() or C[] in our slides. We do use their example.
- Section 15.3, More on elements of DP, including optimal substructure property

Dynamic Programming and Greedy Approach

- Module 8 is on Dynamic Programming
- Similar to Greedy Algorithms
- Solves problems that have optimal substructure, but do NOT have a known greedy choice for optimal solutions
- Instead, try every option for the first "greedy" choice and see which one leads to optimal solution.
- Will need some optimizations to make this efficient.

Optimization Problems

- Both DP and Greedy solve optimization problems:

Find the best solution among all feasible solutions

- An example you know: Find the shortest path in a weighted graph G from s to v
- Form of the solution: a path (and sum of its edge-weights)
- Feasible solutions must meet problem constraints
- Example: All edges in solution are in graph G and form a simple path from s to v
- We can get a score for each feasible solution on some criteria:

We call this the objective function

- Example: the sum of the edge weights in path
- One (or more) feasible solutions that scores highest (by the objective function) is the optimal solution(s)

Memoization

Remember Fibonacci numbers?

- Formula: $F(n)=F(n-1)+F(n-2)$
- Recursive code:
long fib(int n) \{
assert($\mathrm{n}>=0$);
if ($\mathrm{n}==0$) return 0;
if ($\mathrm{n}==1$) return 1;
return fib(n-1) + fib(n-2);
\}
-What's the problem?
- Repeatedly solves the same subproblems
- "Obscenely" exponential

Top-down using Memoization

- Before talking about bottom-up dynamic programming using tables, top-down approach uses general technique of Memoization
- AKA using a memory function
- Simple idea:
- Calculate and store solutions to subproblems
- Before solving it (again), look to see if you've remembered it

Memoization

- Use a Table abstract data type
- Lookup key: whatever identifies a subproblem
- Value stored: the solution
- Could be an array/vector or 2D table(s)
- E.g. for Fibonacci, store fib(n) using index n
- Need to initialize the array
- Could use a map / hash-table

Memoization and Fibonacci

- Before recursive code below called, must initialize results[] so all values are -1

```
long fib_mem(int n, long results[]) {
    if ( results[n] != -1)
        return results[n]; // return stored value
    long val;
    if ( }\textrm{n}==0=0|n==1) val=n; // odd but righ
    else
        val = fib_mem(n-1, results)
        + fib_mem(n-2, results);
    results[n] = val; // store calculated value
    return val;
}
```


Observations on fib_mem()

- Same elegant top-down, recursive approach based on definition
-Without repeated subproblems
- Memory function: a function that remembers
- Save time by using extra space
- Can show this runs in $\Theta(\mathrm{n})$

Dynamic Programming and Log Cutting

Dynamic programming

- Old "bad" name (see Wikipedia or textbook)
- Useful when the solution can be recursively described in terms of solutions to sub-problems (optimal substructure)
- But greedy choice property doesn't hold for the problem
- Algorithm finds solutions to sub-problems and stores them in memory for later use
- More efficient than brute-force methods or recursive approaches that solve the same sub-problems over and over again

Optimal Substructure Property

- Definition
- If S is an optimal solution to a problem, then the components of S are optimal solutions to sub-problems
- Examples:
- True for coin-changing
- True for single-source shortest path
- Not true for longest-simple-path
- True for knapsack

Dynamic Programming

- Works "bottom-up"
- Finds solutions to small sub-problems first
- Stores them
- Combines them somehow to find a solution to a slightly larger sub-problem
- Comparison to greedy approach
- Also requires optimal substructure
- But greedy makes choice first, then solves
- Greedy looks only at the current situation, not at a past 'history'
- DP is good when sub-problems overlap, when they're not independent
- No need to repeat the calculation to solve them
- Dynamic programming has stored them, so doesn't repeat the calculation

Process for Dynamic Programming

1. Recognize what the sub-problems are
2. Identify the recursive structure of the problem in terms of its sub-problems

- At the top level, what is the "last thing" done?
- This helps you see a recursive solution for any generic sub-problem in terms of smaller sub-problems

3. Formulate a data structure (array, table) that can look-up solution to any subproblem in constant time
4. Develop an algorithm that loops through data structure solving each subproblem one at a time

- Bottom-up: from smallest sub-problems, to next largest, ..., to complete problem

Problems Solved with Dyn. Prog.

- Log cutting (first example, uses list data structure)
- 0/1 knapsack problem
- Coin changing with "non-standard" coin selection
- Longest common subsequence
- Multiplying a sequence of matrices
- Can do in various orders: (AB)C vs. A(BC)
- Pick order that does fewest number of scalar multiplications

And ones we might not get to:

- All-pairs shortest paths (Floyd's algorithm)
- Constructing optimal binary search trees

Log Cutting

Given a log of length n, and
a list (of length n) of prices P ($P[i]$ is the price of a cut of size i)
Find the best way to cut the log to maximize our profit.
(Imagine we can sell each piece of the log at price $P[i]$)

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that:
$\sum \ell_{i}=n$
to maximize $\sum P\left[\ell_{i}\right]$
Brute Force: $O\left(2^{n}\right)$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Formulate a data structure (array, table) that can look-up solution to any sub-problem in constant time
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively. (Using memorization - we'll do later!)
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i

$\operatorname{Cut}(n)=$ value of best way to cut a log of length n

$$
\operatorname{Cut}(n)=\max \left\{\begin{array}{l}
\operatorname{Cut}(n-1)+P[1] \\
\operatorname{Cut}(n-2)+P[2] \\
\ldots \\
\operatorname{Cut}(0)+P[n]
\end{array}\right.
$$

So for a given value of n, to find Cut(n), we need sub-problem solutions for Cut(n-1) down to Cut(0).

What's the problem with a top-down recursive approach?

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

$$
\operatorname{Cut}(0)=0
$$

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

$$
\operatorname{Cut}(1)=\operatorname{Cut}(0)+P[1]
$$

Price:
Length:

1	5	8	9	10	17	17	20	24	30
1	2	4	5	6	7	8	9	10	

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

$$
\operatorname{Cut}(2)=\max \left\{\begin{array}{l}
\operatorname{Cut}(1)+P[1] \\
\operatorname{Cut}(0)+P[2]
\end{array}\right.
$$

Price: \(\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\hline 1 \& 5 \& 8 \& 9 \& 10 \& 17 \& 17 \& 20 \& 24 \& 30

\hline\end{array}\right]\)| | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 10 | | | | | | |

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

$$
\operatorname{Cut}(3)=\max \left\{\begin{array}{l}
\operatorname{Cut}(2)+P[1] \\
\operatorname{Cut}(1)+P[2] \\
\operatorname{Cut}(0)+P[3]
\end{array}\right.
$$

Price:
Length:

1	5	8	9	10	17	17	20	24	30
1	2	4	5	6	7	9	10		

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

$$
\operatorname{Cut}(4)=\max \left\{\begin{array}{l}
\operatorname{Cut}(3)+P[1] \\
\operatorname{Cut}(2)+P[2] \\
\operatorname{Cut}(1)+P[3] \\
\operatorname{Cut}(0)+P[4]
\end{array}\right.
$$

1	5	8	9	10	17	17	20	24	30
1	2	4	5	6	7	8	9	10	

Log Cutting Pseudocode

Initialize Memory C
Cut(n):
$\mathrm{C}[0]=0$
for $\mathrm{i}=1$ to n : // log size
best $=0$
for $\mathrm{j}=1$ to i : // last cut best $=\max ($ best, $C[i-j]+P[j])$
$C[i]=$ best
return C[n]

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

Initialize Memory C, Choices
Cut(n):
$\mathrm{C}[0]=0$
for $\mathrm{i}=1$ to n :

$$
\text { best }=0
$$

$$
\text { for } j=1 \text { to } i \text { : }
$$

if best < C[i-j] + P[j]:

$$
\text { best }=C[i-j]+P[j]
$$

Choices[i]=j Gives the size
$\mathrm{C}[\mathrm{i}]=$ best
return $\mathrm{C}[\mathrm{n}]$

Reconstruct the Cuts

- Backtrack through the choices

Example to demo Choices[] only. Profit of 20 is not optimal!

Backtracking Pseudocode

$\mathrm{i}=\mathrm{n}$
while $\mathrm{i}>0$:
print Choices[i]
$\mathrm{i}=\mathrm{i}-$ Choices $[\mathrm{i}]$

Our Example: Getting Optimal Solution

\mathbf{i}	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{C}[i]$	0	1	5	8	10	13	17	18	22	25	30
Choices[i]	0	1	2	3	2	2	6	1	2	3	10

- If n were 5
- Best score is 13
- Cut at Choices[n]=2, then cut at Choices[n-Choices[n]]= Choices[5-2]= Choices[3]=3
- If n were 7
- Best score is 18
- Cut at 1 , then cut at 6

Weighted Activity Selection

Weighted Interval Scheduling

- Recall Interval Scheduling:
- Given a list of intervals pick a schedule of non-overlapping intervals that maximizes the number chosen
- i.e. each one has the same value
- Weighted interval scheduling is similar, but...
- Each interval has a different value

Greedy solution to interval scheduling

- The algorithm:
- Sort the activities by finish time
- Schedule the first activity
- Then schedule the next activity in sorted list which starts after previous activity finishes
- Repeat until no more activities
- Intuition is even more simple:
- Always pick next activity that finishes earliest

Greedy solution to the weighted version

- What would the greedy algorithm pick for this example?
- And is that answer optimal?

- We can see that the greedy algorithm does not work for the weighted version

Step 1

- Define the sub-problem
- This problem has optimal substructure, so let's only consider intervals up to a certain point.
- Let Opt(j) be the solution to this problem when only considering intervals 1 through j
- How should we order the intervals? Does it matter? We will see soon that it does.
- Note that $\operatorname{Opt}(0)=0$

Step 2

- Define solution to problem in terms of sub-problems
- Base Case:
$-\operatorname{Opt}(0)=0$
- $\operatorname{Opt}(\mathrm{j})=$?

Step 2

- $\operatorname{Opt}(\mathrm{j})=$?
- Two cases:
- Interval j is not in the optimal solution
- Opt(j) $=\operatorname{Opt}(\mathrm{j}-1) / /$ same solution, because j interval doesn't matter
- Interval j is in the optimal solution
- $\operatorname{Opt}(\mathrm{j})=\mathrm{Vj}+\operatorname{Opt}($ intervals compatible with j$)$
- Intervals compatible with j? Yikes? How do we calculate that?

Calculating Opt())

- Sort all intervals by their finish time
- And number them sequentially
- We define interval i is less than interval j if i finishes before j (i.e. is before it in the sort)
- Define $p(j)$ to be the highest numbered interval $i<j$ such that i and j are disjoint
- Define OPT(j) to be the value of an optimal solution for intervals 1 through j only

Showing p(i)

Index

Step 2

- $\operatorname{Opt}(\mathrm{j})=$?
- Two cases:
- Interval j is not in the optimal solution
- $\operatorname{Opt}(\mathrm{j})=\operatorname{Opt}(\mathrm{j}-1) / /$ same solution, because j interval doesn't matter
- Interval j is in the optimal solution
- Opt(j) = Vj + Opt(p(j))
- So...we have
- Opt(j) $=\operatorname{Max}(\operatorname{Opt}(j-1), \mathrm{Vj}+\operatorname{Opt}(p(j)))$

Recursive solution

- OPT $(\mathrm{j})=\max \left(\mathrm{v}_{\mathrm{j}}+\operatorname{OPT}(\mathrm{p}(\mathrm{j})), \operatorname{OPT}(\mathrm{j}-1)\right)$
- And OPT(0) $=0$
- This is similar in running time to the Fibonacci sequence
- And similarly exponential
- Consider a simple example:

That example will take exponential time

- Notice that the sub-problems are being
re-computed each time

- Formulate the data structure to look up subproblems.
- Pretty simple, define $M[n]$
- $\mathrm{M}[\mathrm{j}]$ stores the solution to $\operatorname{Opt}(\mathrm{j})$

So we add memoization. . .

- This runs in linear time

Computing the intervals

- The solution only gives us the final value
- Computing a sub-array each step would make it quadratic running time
- To determine the intervals:
- If $v_{j}+M[p(j)] \geq M[j-1]$
- Then j is part of the solution, and consider $\mathrm{p}(\mathrm{j})$
- Else
- Then j is NOT part of the solution, and consider $\mathrm{j}-1$

0/1 Knapsack Problem

Reminder: Knapsack Problems

- Pages 425-427 in textbook
- Description: Thief robbing a store finds n items, each with a profit amount p_{i} and a weight w_{i}
- Wants to steal as valuable a load as possible
- But can only carry total weight C in their knapsack
- Which items should they take to maximize profit?

- Form of the solution: an x_{i} value for each item, showing if (or how much) of that item is taken
- Inputs are: C, n, the p_{i} and w_{i} values

Two Types of Knapsack Problem

- 0/1 knapsack problem
- Each item is discrete: must choose all of it or none of it. So each x_{i} is 0 or 1
- Greedy approach does not produce optimal solutions
- But dynamic programming does
- Fractional knapsack problem (AKA continuous knapsack)
- Can pick up fractions of each item. So each x_{i} is a value between 0 or 1

- A greedy algorithm finds the optimal solution

A Bit More Terminology

- Problems solvable by both Dynamic Programming and the Greedy approach have the optimal substructure property:
- An optimal solution to a problem contains within it optimal solutions to subproblems
- This allows us to build a solution one step at a time, because we can solve increasingly smaller problems with confidence
- Dynamic Programming not a good solution for problems that have the greedy-choice property:
- We can assemble a globally-optimal solution for the current by making a locally-optimal choice, without considering results from subproblems

0/1 knapsack

Let's try this same greedy solution with the $0 / 1$ version

- New example inputs \rightarrow

1. Item 1 first. So x_{1} is 1 .

Capacity used is 1 of 4 . Profit so far is 3 .
$n=3, C=4$

Item	Value	Weight	Ratio
1	3	1	3
2	5	2	2.5
3	6	3	2

2. Item 2 next. There's room for it! So x_{2} is 1 . Capacity used is 3 of 4 . Profit so far is $3+5=8$.
3. Item 3 would be next, but its weight is 3 and knapsack only has 1 unit left! So x_{3} is 0 . Total profit is 8 . $x_{i}=(1,1,0)$

But picking items 1 and 3 will fit in knapsack, with total value of 9

- Thus, the greedy solution does not produce an optimal solution to the 0/1 knapsack algorithm
- Greedy choice left unused room, but we can't take a fraction of an item
- The 0/1 knapsack problem doesn't have the greedy choice property

Reminders about Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Strategy:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Formulate a data structure (array, table) that can look-up solution to any sub-problem in constant time
3. Select a good order for solving subproblems

- "Bottom Up": Iteratively solve smallest to largest
- "Top Down": Solve each recursively. (We won't do this for $0 / 1$ knapsack.)

Dynamic programming solution to 0/1

We need to:

- Identify a recursive definition of how a larger solution is built from optimal results for smaller sub-problems.

For 0/1 knapsack, what a sub-problem solution look like? What can be "smaller"?

- Smaller capacity for the knapsack
- Fewer items

Some assumptions and observations

- Given a set S of the objects and a capacity C
- We assume the optimal solution is O, a subset of S
- For example, the items in O could be the bolded ones:

$$
S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{k-1}, s_{k}, \ldots, s_{n}\right\}
$$

- Note that the last item s_{n} may or may not be in the solution 0
- Let's use subscripts on O_{k} and S_{k} when we're talking about the first k items
- BTW, we'll assume C and all w_{i} are integer values
- And, most books etc. use "W" for what we're calling C

Recursive Structure

What's a recursive definition of how a solution of size n is built from optimal results for smaller sub-problems? $\quad S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n-1}, s_{n}\right\}$

- Let's say $\mathrm{s}_{\mathrm{n}} \notin \mathrm{O}_{\mathrm{n}}$ (last item is not in optimal solution for S_{n}):
- Last item didn't add anything to best solution for smaller subproblem
- We need optimal solution O_{n-1} for the following smaller subproblem S_{n-1} : $\mathrm{n}-1$ items using same knapsack capacity C
- Let's say $s_{n} \in O$ (last item is in optimal solution for S_{n}):
- Last item contributed w_{i} to total weight we're carrying
- We need optimal solution $\mathrm{O}_{\mathrm{n}-1}$ for the following smaller subproblem $\mathrm{S}_{\mathrm{n}-1}$: $\mathrm{n}-1$ items using reduced capacity $\mathrm{C}-\mathrm{w}_{\mathrm{n}}$
(Note that "getting smaller" decreases number of items and also maybe capacity.)

First Step: Getting Things Started

- For sub-problems, what variables change in size?
- Maybe C (the capacity) and definitely k (number of items to steal)
- Define what we're calculating: call it Knap(k, w)
- Note: we'll use "w" for the changing capacity value in Knap(), but keep "C" as the overall total capacity for the entire problem. (Sorry if confusing!)
- Whether we do recursion of work bottom-up, we need to know the smallest cases
- Some small or boundary cases:
- No knapsack capacity ($\mathrm{w}=0$), can't add an item, so Knap(k, 0) $=0$
- Nothing to steal $(k=0)$, so Knap $(0, w)=0$

Three cases to calculate Knap(k, w)

- Three cases for calculating Knap(k, w):

1. There is sufficient capacity to add item s_{k} to the knapsack, and that creates an optimal solution for k items
2. There is sufficient capacity to add item s_{k} to the knapsack, and that does NOT create an optimal solution for k items
3. There is insufficient capacity to add item s_{k} to the knapsack

- Case 3 is easy to determine; we'll have to compute whether 1 or 2 is optimal
- How do we know which is optimal? Compute both, pick larger value!

Case 1: Sufficient capacity and Optimal

- There is sufficient capacity to add item s_{k} to the knapsack, and that creates an optimal solution for k items
- Thus, our solution for the first k items is when we add item s_{k} to the optimal solution for the first k - 1 items
- But by adding item s_{k} to the knapsack, we have reduced capacity - In particular, we only have $\mathbf{w}-\mathbf{w}_{\mathbf{k}}$ for to steal the first \mathbf{k} - $\mathbf{1}$ items
- So the value for $\operatorname{Knap}(k, w)=\mathbf{v}_{\mathrm{k}}+\operatorname{Knap}\left(\mathrm{k}-1, \mathbf{w}-\mathbf{w}_{\mathrm{k}}\right)$

Case 2: Sufficient Capacity but Non-optimal

- There is sufficient capacity to add item s_{k} to the knapsack, and that does NOT create an optimal solution for k items
- Thus, our solution for the first k items is when we do NOT add item s_{k} to the solution for the first k - 1 items
- Since we are not adding item s_{k} to the knapsack, the solution is the optimal solution to steal the first $\mathbf{k}-1$ items with the same capacity - So Knap(k, w) = Knap(k-1, w)

Case 3: Insufficient Capacity

- There is insufficient capacity to add item s_{k} to the knapsack - This is because $w-w_{k}<0$ (i.e. $w<w_{k}$)
- Then Knap(k, w) = Knap(k-1, w)
- Since we can't add item s_{k} to the knapsack, the solution is the same as the first k - 1 items with the same capacity
- Note that this formula is the same as case 2

Putting It All Together

- Recursively define solutions to sub-problems
- Base Case
$\operatorname{Knap}(k, 0)=0$
Knap(0,w) = 0
- Recursive Case
$\operatorname{Knap}(\mathrm{k}, \mathrm{w})=\max \left(\operatorname{Knap}(\mathrm{k}-1, \mathrm{w}), \operatorname{Knap}\left(\mathrm{k}-1, \mathrm{w}-\mathrm{w}_{\mathrm{k}}\right)+\mathrm{v}_{\mathrm{k}}\right)$

No room for s_{k} or not part optimal solution
s_{k} is part of optimal solution

Reminders about Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Strategy:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Formulate a data structure (array, table) that can look-up solution to any sub-problem in constant time
3. Select a good order for solving subproblems

- "Bottom Up": Iteratively solve smallest to largest
- "Top Down": Solve each recursively. (We won't do this for 0/1 knapsack.)

Lookup Table

- We want a data-structure that allows us to lookup a subproblem value in $\mathrm{O}(1)$ time
- Knap(k, w) has two parameters, so two-dimensional array works great.
- Make an array called V[k, w]
- Store solution to Knap(k, w) at position V[k, w]

Determining the cases

- To determine between cases 1 and 2
- Simply compute both values, and take the higher

```
if (w-w
    V[k,w] = V[k-1,w] // best result for k-1 items
```

else \{
val_with_kth $=v_{k}+\mathrm{V}\left[\mathrm{k}-1, \mathrm{w}-\mathrm{w}_{\mathrm{k}}\right] / /$ Case 1 above
val_for_k-1 = V[k-1, w] // Case 2 above
$\mathrm{V}[\mathrm{k}, \mathrm{w}]=\max ($ val_with_kth, val_for_k-1)
\}

Put Values in Table

- Write a loop that fills in the table one cell at a time
- The table fills in one row at a time, moving rightwards and downwards

V[k,w]	$w=0$	$w=1$	$w=2$	\ldots	$w=C$
$k=0$	0	0	0	0	0
$k=1$	0				
$k=2$	0				
\ldots	0				
$k=n$	0				

Pseudo-code

```
Knapsack(v, w, C) \{
    for ( \(w=0\) to C) \(V[0, w]=0\)
    for ( \(k=0\) to \(n\) ) \(V[k, 0]=0\)
    for ( \(k=1\) to \(n\) ) \{ // loop over all rows
        for ( \(w=1\) to C) \{ // loop over all columns
        if \(\left(w-w_{k}<0\right)\) // not room for item \(k\)
            \(\mathrm{V}[\mathrm{k}, \mathrm{w}]=\mathrm{V}[\mathrm{k}-1, \mathrm{w}]\) // best result for \(\mathrm{k}-1\) items
        else \{
            val_with_kth \(=\mathrm{v}_{\mathrm{k}}+\mathrm{V}\left[\mathrm{k}-1, \mathrm{w}-\mathrm{w}_{\mathrm{k}}\right] / /\) Case 1 above
            val_for_k-1 = V[k-1, w] // Case 2 above
            \(\mathrm{V}[\mathrm{k}, \mathrm{w}]=\max \left(\mathrm{va} 1 \_w i t h \_k t h, ~ v a 1 \_f o r \_k-1\right.\) )
        \}
    \}
    \}
    return V[n,C]
\}
```


But our solution is only the value!

- Value $V[n, C]$ is the optimal value
- To find which items were chosen, we can trace backward through the table starting at $\mathrm{V}[\mathrm{n}, \mathrm{C}]$
- If $\mathrm{V}[\mathrm{k}, \mathrm{w}]=\mathrm{V}[\mathrm{k}-1, \mathrm{w}]$, then s_{k} is not an item in the knapsack (this was from cases 2 and 3). Look at $\mathrm{V}[\mathrm{k}-1, \mathrm{w}]$ next.
- Otherwise, s_{k} is an item in the knapsack, and we look at $\mathrm{V}\left[\mathrm{k}-1, \mathrm{w}-\mathrm{w}_{\mathrm{k}}\right]$ next (this was from case 1)

Coin Change with non-traditional coin sets

Making Change

- The problem:
- Give back the right amount of change, and...
- Return the fewest number of coins!
- Inputs: the dollar-amount to return
- Also, the set of possible coins. (Do we have half-dollars? That affects the answer we give.)
- Output: a set of coins
- Note this problem statement is simply a transformation
- Given input, generate output with certain properties
- No statement about how to do it.
- Can you describe the algorithm you use?

Greedy algorithm

- Given coin cent amounts of $10,6,5$, and 1
- Compute the coins needed for 12 cents
- The greedy algorithm picks $\{10,1,1\}$
- But $\{6,6\}$ is more optimal (fewer coins)

Definitions

- We define an array denom which holds the denominations of the coins such that:
- denom[1] > denom[2] > ... > denom[n] = 1
- In other words, we sort the coin denominations in decreasing order, ending with a penny
- We are obtaining change for an amount A
- Consider the i,j problem:
- The available denominations are denom[i] through denom[n], where $\mathrm{i} \geq 1$ (i.e. the smaller $n-i+1$ coins)
- Note: when i is large, you're working with fewer types of coins, and when $\mathrm{i}=1$ you're working with your complete set
- The amount we are looking for is j , where $\mathrm{j} \leq \mathrm{A}$ (i.e. the remaining amount of money)

The i,j problem

- Consider the i, j problem: (Remember, i is which coins, and j is the amount)
- The available denominations are denom[i] through denom[n], where $i \geq 1$ (i.e. the smaller $n-i+1$ coins)
- The amount we are looking for is j , where $\mathrm{j} \leq \mathrm{A}$ (i.e. the remaining amount of money)
- Given coins of denominations 10,6 , and 1 , here's the table showing how to create change up to 12 cents: Ouranswer!

Solving the problem

- How to solve the i, j problem (Remember, i is which coins, and j is the amount)
- If denom[i] > j , then not possible to include this coin
- Then the solution is the same as the ($i+1$), j problem (same amount, but with one fewer of the coin-options)
- In the table, that's the cell right below the current cell.
- Is this making the problem simpler?
- Maybe the best answer does use a coin of denomination i
- Then the solution is 1 more than the $\mathrm{i},(\mathrm{j}$-denom[i]) problem
- j changes to j-denom[i] because we subtract off the value of the coin used
- i doesn't change because there could be multiple coins of denomination i used in the solution
- Maybe the best answer does NOT use a coin of denomination i
- Then the solution is the same as the ($\mathrm{i}+1$), j problem
- In the table, that's the cell right below the current cell

The formulaic solution

- The solution becomes:

$$
C[i][j]=\left\{\begin{array}{cl}
C[i+1][j] & \text { if } \operatorname{denom}[i]>j \\
\min (C[i+1][j], 1+C[i][j-\text { denom }[i]]) & \text { if } \operatorname{denom}[i] \leq j
\end{array}\right.
$$

- Where $\mathrm{C}[\mathrm{i}][0]=0$ for all values of i
- If we have a penny, then $\mathrm{C}[\mathrm{n}][\mathrm{j}]=\mathrm{j}$
- This is required to get all amounts, so we assume a penny is the smallest denomination

Recursive solution

- The solution:

$$
C[i][j]=\left\{\begin{array}{cl}
C[i+1][j] & \text { if } \operatorname{denom}[i]>j \\
\min (C[i+1][j], 1+C[i][j-\text { denom }[i]]) & \text { if } \operatorname{denom}[i] \leq j
\end{array}\right.
$$

- Note that a given problem (C[i][j]) is expressed in terms of subproblems
- We can write a solution now using memorization with a top-down solution (recursive calls), or a bottom-up approach (build a table)

The bottom-up algorithm

```
dynamic_coin_change1 (denom, A, C) \{
    \(\mathrm{n}=\) denom.last
    for \(\mathrm{j}=0\) to A
        \(C[n][j]=j\)
    for \(\mathrm{i}=\mathrm{n}-1\) down to 1
        for \(\mathrm{j}=0\) to A
            if ( denom[j] > \(\mathrm{j}|\mid\)
                \(C[i+1][j]<1+C[i][j\)-denom[i] \(])\)
                        \(C[i][j]=C[i+1][j]\)
            else
                \(C[i][j]=1+C[i][j\)-denom[i] \(]\)
\}
```


Time complexity?

Constant time to file each cell in the table. So $\Theta(n \cdot A)$ where n is the number of coins and A is the amount

But how to get the coins chosen?

- It's easy to trace back through the values
- Or, we could keep a used Boolean array
- If used[i][j] is true, then the solution for i, j does use a coin of denom[i] for amount j
- If false, it does not

	0	1	2	3	4	5	6	7	8	9	10	11	12	Can use 1, 6 \& 10
1	F	F	F	F	F	F	F	F	F	F	T	T	F	
2	F	F	F	F	F	F	T	T	T	T	T	T	T	Can use $1 \& 6$
3	F	T	T	T	T	T	T	T	T	T	T	T	T	Can use 1

Recording the answers

```
dynamic_coin_change2 (denom, A, C, used) {
    n= denom.last
    for j=0 to A
        C[n][j] = j
        used[n][j] = true
    for i=n-1 downto 1
        for j=0 to A
            if (denom[j] > j ||
            C[i+1][j] < 1+C[i][j-denom[i]] )
                C[i][j] = C[i+1][j]
                used[i][j] = false
            else
                C[i][j] = 1 + C[i][j-denom[i]]
                used[i][j] = true
}
```


Obtaining the coin set

```
optimal_coins_set (i, j, denom, used) {
    if ( j == 0 )
        return
    if ( used[i][j] )
        println ("Use coin of denomination " + denom[i])
        optimal_coins_set (i, j-denom[i], denom, used)
    else
        optimal_coins_set (i+1, j, denom, used)
}
```

