CS4102 Algorithms

Fall 2021 — Floryan and Horton

Module 8
Dynamic Programming

Dynamic Programming and Greedy Approach

* TOPICS:

— Intro to Dynamic Programming

— Memoization

— Three DP Problems:
* Log Cutting
* 0/1 Knapsack
* Coin Change
* Weighted Activity Selection

Motivating Example

How many scalar multiplications are required to multiply
matrices A and B in this example?

C,= 2 c,=5

A B
* r;-c, elements in the result that we need to compute

* ¢, scalar multiplications per element in result
* Total cost:r;- ¢ - C,
* Sotheansweris... (3-2-5) =30

Trickier Question

What'’s the smallest number of scalar multiplications required
to calculate the matrix product ABC in this example?

4
2 5 4
A

B C
* For a pair of matrices, rememberit'sr;-c{ - c,
e (Calculate this cost for multiplying one pair of matrices
* You need to multiply that result with the 3™ matrix, too, so there’s a cost for that
* Total cost is the sum of these two costs
* Sotheansweris... (3:2-5)4+(3-5-4) =90 Nope! The answer is 64.
Think about how this might be!

CLRS Readings

* Chapter 15, Dynamic Programming
— Section 15.1, Log/Rod cutting, optimal substructure property
* Note: r,in book is called Cut() or C[] in our slides. We do use their example.

— Section 15.3, More on elements of DP, including optimal substructure
property

Dynamic Programming and Greedy Approach

* Module 8 is on Dynamic Programming
— Similar to Greedy Algorithms

— Solves problems that have optimal substructure, but do NOT have a
known greedy choice for optimal solutions

— Instead, try every option for the first “greedy” choice and see which
one leads to optimal solution.

* Will need some optimizations to make this efficient.

Optimization Problems

Both DP and Greedy solve optimization problems:
Find the best solution among all feasible solutions

An example you know: Find the shortest path in a weighted graph G from s to v
— Form of the solution: a path (and sum of its edge-weights)

Feasible solutions must meet problem constraints
— Example: All edges in solution are in graph G and form a simple path from sto v

We can get a score for each feasible solution on some criteria:

We call this the objective function
— Example: the sum of the edge weights in path

One (or more) feasible solutions that scores highest (by the objective function) is
the optimal solution(s)

Remember Fibonacci numbers?

 Formula: F(n)=F(n-1) + F(n-2)

* Recursive code:
long fib(int n) {
assert(n >=0);
if (n==0) return O;
if (n==1) return 1;
return fib(n-1) + fib(n-2);
}

* What's the problem?

— Repeatedly solves the same subproblems
— “Obscenely” exponential

Top-down using Memoization

* Before talking about bottom-up dynamic
programming using tables, top-down approach
uses general technique of Memoization

— AKA using a memory function
* Simple idea:
— Calculate and store solutions to subproblems

— Before solving it (again), look to see if you've
remembered it

10

Memoization

* Use a Table abstract data type
— Lookup key: whatever identifies a subproblem
— Value stored: the solution

* Could be an array/vector or 2D table(s)

— E.g. for Fibonacci, store fib(n) using
index n

— Need to initialize the array
* Could use a map / hash-table

11

Memoization and Filbonaccl

e Before recursive code below called, must initialize results[] so
all values are -1

long fib_mem(int n, long results[]) {
if (results[n] 1=-1)
return results[n]; // return stored value

long val;
if(n==0]]| n==1)val=n;//odd but right
else

val = fib_mem(n-1, results)
+ fib_mem(n-2, results);
results[n] = val; // store calculated value
return val;

12

Observations on fib_mem()

 Same elegant top-down, recursive approach based on
definition
— Without repeated subproblems

* Memory function: a function that remembers
—Save time by using extra space

e Can show this runs in ®(n)

13

Dynamic Programming
and Log Cutting

Dynamic programming

Old “bad” name (see Wikipedia or textbook)

Useful when the solution can be recursively described in terms of solutions
to sub-problems (optimal substructure)

— But greedy choice property doesn’t hold for the problem

Algorithm finds solutions to sub-problems and stores them in memory for
later use

More efficient than brute-force methods or recursive approaches that
solve the same sub-problems over and over again

15

Optimal Substructure Property

* Definition
— If Sis an optimal solution to a problem, then the components of S are
optimal solutions to sub-problems

 Examples:
— True for coin-changing
— True for single-source shortest path
— Not true for longest-simple-path
— True for knapsack

16

Dynamic Programming

 Works “bottom-up”

— Finds solutions to small sub-problems first

— Stores them

— Combines them somehow to find a solution to a slightly larger sub-problem
 Comparison to greedy approach

— Also requires optimal substructure

— But greedy makes choice first, then solves

— Greedy looks only at the current situation, not at a past ‘history’
 DPis good when sub-problems overlap, when they’re not independent

— No need to repeat the calculation to solve them
— Dynamic programming has stored them, so doesn’t repeat the calculation

17

Process for Dynamic Programming

1. Recognize what the sub-problems are

2. ldentify the recursive structure of the problem in terms of its sub-problems
— At the top level, what is the “last thing” done?

— This helps you see a recursive solution for any generic sub-problem in terms of smaller
sub-problems

3. Formulate a data structure (array, table) that can look-up solution to any sub-
problem in constant time

4. Develop an algorithm that loops through data structure solving each sub-
problem one at a time
— Bottom-up: from smallest sub-problems, to next largest, ..., to complete problem

18

Problems Solved with Dyn

* Log cutting (first example, uses list data structure)
* 0/1 knapsack problem

e Coin changing with “non-standard” coin selection
* Longest common subsequence

* Multiplying a sequence of matrices
— Can do in various orders: (AB)C vs. A(BC)
— Pick order that does fewest number of scalar multiplications

And ones we might not get to:
* All-pairs shortest paths (Floyd’s algorithm)
e Constructing optimal binary search trees

19

Log Cutting

Given a log of length n, and

a list (of length n) of prices P (P[i] is the price of a cut of size i)

Find the best way to cut the log to maximize our profit.
(Imagine we can sell each piece of the log at price P|i])

Price: 1 5 8 9 1110|1717 | 20| 24| 30

Length: 1 2 3 4 5 6 7 8 9 10

Select a list of lengths 4, ..., € such that:
2.t =n
to maximize), P[?;] Brute Force: O(2")

20

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. ldentify the recursive structure of the problem
 What is the “last thing” done?

2. Formulate a data structure (array, table) that can look-up solution to any
sub-problem in constant time
3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively. (Using memorization — we’ll do later!)
e “Bottom Up”: Iteratively solve smallest to largest

21

1. ldentify Recursive Structure

Pli] = value of a cut of length i
Cut(n) = value of best way to cut a log of length n

Cut(n —1) + P[1] So for a given value of n,

Cut(n) = max — Cut(n — 2) + P[2] |tofind Cut(n), we need
sub-problem solutions for
Cut(0) + p[n] Cut(n-1) down to Cut(0).

Cut(n — 4€y) What'’s the problem
with a top-down
recursive approach?

22

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

23

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

Cut(0) =0

Cut(i): 0

length: 0 1 2 3 4 5 6 7 8 9 10

o

24

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

Cut(1) = Cut(0) + P[1]

Cut(i): 0

length: 0 1 2 3 4 5 6 7 8 9 10

Price: 1|1s|s8lol1ol17]17]20]24]30

length: 1 2 3 4 5 6 7 8 9 10
25

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

[Ccut(1) + P[1]

Cut(2) = max — Cut(0) + P[2]

Cut(i): 0

length: 0 1 2 3 4 5 6 7 8 9 10

Price: 1|1s|s8lol1ol17]17]20]24]30

length: 1 2 3 4 5 6 7 8 9 10
26

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

Ccut(2) + P[1
Cut(1) + P[2
- Cut(0) + P[3.

Cut(3) = max _

Cut(i): 0

length: 0 1 2 3 4 5 6 7 8 9 10

Price: 1|1s|s8lol1ol17]17]20]24]30

length: 1 2 3 4 5 6 7 8 9 10
27

3. Select a Good Order for Solving Subproblems

Solve smallest sub-problem first

~Cut(3) + P[1
Cut(2) + P[2
C t 4 — B - -
ut(4) =max = . 5 4 pr3
- Cut(0) + P[4
Cut(i): 0

length: 0 1 2 3 4 5 6 7 8 9 10

Price: 1|1s|s8lol1ol17]17]20]24]30

length: 1 2 3 4 5 6 7 8 9 10
28

Log Cutting Pseudocode

Initialize Memory C

Cut(n):
C[0] =0
fori=1ton: //logsize

best=0
forj=1toi:// last cut

best = max(best, C[i-j] + P[j])
Cli] = best

return C[n] Run Time: 0(n?)

30

How 1o find the cuts”?

* This procedure told us the profit, but not the cuts themselves
* |dea: remember the choice that you made, then backtrack

31

Remember the choice made

Initialize Memory C, Choices
Cut(n):
C[0] =0
fori=1ton:
best=0
forj=1toi:
if best < Cli-j] + P[j]:
best = C[i-]] + P[j]
Choices[i]zﬂ Gives the size
C[i] = best of the last cut
return C[n] 2

Reconstruct the Cuts

e Backtrack through the choices

Choices: | 0 1 1 2 4 3 4 1 2 4

Length: 0 1 2 3 4 5 6 7 8 9

Example to demo
Choices[] only.
Profit of 20 is not

optimal!

33

Backtracking Pseudocode

l=n

while i > 0:
print Choices|i]
i =i — Choices]i]

34

Our Example: Getting Optimal Solution

_i_o0/1,2 3 /4 5 6 7/ 8 9 10
Cli] 0 1 5 8 10 13 17 18 22 25 30
Choices[i] 0 1 2 3 2 2 6 1 2 3 10

* Ifnwereb5
* Bestscoreis 13
e Cut at Choices[n]=2, then cut at
Choices[n-Choices[n]]= Choices[5-2]= Choices[3]=3
 |fnwere?7
* Bestscoreis 18
e Cutatl, thencutat6

35

Weighted Interval Scheduling

e Recall Interval Scheduling:

— Given a list of intervals pick a schedule of non-overlapping intervals
that maximizes the number chosen

* j.e. each one has the same value

* Weighted interval scheduling is similar, but...

— Each interval has a different value

37

Greedy solution to interval scheduling

* The algorithm:
— Sort the activities by finish time
— Schedule the first activity

— Then schedule the next activity in sorted list which starts after
previous activity finishes

— Repeat until no more activities

* |ntuition is even more simple:
— Always pick next activity that finishes earliest

38

Greedy solution to the weighted version

 What would the greedy algorithm pick for this example?
 And is that answer optimal?

Index
1

Value = 1 .

Value = 3
2 |

Value = 1
3 |

e ——

 We can see that the greedy algorithm does not work for the
weighted version

39

Step

Define the sub-problem

This problem has optimal substructure, so let’s only consider intervals up
to a certain point.

Let Opt(j) be the solution to this problem when only considering intervals 1
through j
— How should we order the intervals? Does it matter? We will see soon that it
does.

Note that Opt(0) =0

40

Step 2

* Define solution to problem in terms of sub-problems

e Base Case:
—Opt(0)=0

* Opt(j)="7

41

* Opt(j)="7

* Two cases:

— Interval j is not in the optimal solution
* Opt(j) = Opt(j-1) //same solution, because j interval doesn’t matter

— Interval j is in the optimal solution
* Opt(j) = Vj + Opt(intervals compatible with j)
* Intervals compatible with j? Yikes? How do we calculate that?

42

Calculating Opt(j)

e Sort all intervals by their finish time
— And number them sequentially

 We define interval i is less than interval j if i finishes before j (i.e. is before
it in the sort)

* Define p(j) to be the highest numbered interval i<j such thati and j are
disjoint

* Define OPT(j) to be the value of an optimal solution for intervals 1 through
jonly

43

Showing p())

Index
v, = 2
1 |) | p(1) = 0
v, = 4
2 | 2 p(2) = 0
vV, = 4
3 | R p(3) = 1
Ug = 7
4 | L p(4) =0
U5 = 2
5 ' l p(5) =3
Ve ™ 1
6 | i p(6) =3

44

* Opt(j)="

* TWO cases:

— Interval j is not in the optimal solution
* Opt(j) = Opt(j-1) //same solution, because j interval doesn’t matter

— Interval j is in the optimal solution
* Opt(j) = Vj + Optlp(j))

— So...we have
* Opt(j) = Max(Opt(j-1), Vj + Opt(p(j)))

45

Recursive solution

+ OPT(j) = max(v, + OPT(p(})), OPT(j-1))
— And OPT(0) =0
* This is similar in running time to the Fibonacci sequence

— And similarly exponential

* Consider a simple example:

46

That example will take exponential time

oPT(6)

orT(3) orT(2) orT(1)

* Notice that the
sub-problems are
being
re-computed
each time

orT(3)

ort(1) orr(1)

The tree of subproblems
grows very quickly.

oPT(1)
47

Step 3!

* Formulate the data structure to look up subproblems.
* Pretty simple, define M[n]

* M(j] stores the solution to Opt(j)

48

SO we add memoization. . .

e This runs in linear time

wl—Z
w2=4
UJ3=4I
UJ4=7I
w5=2
p—
w6=1

p(1) =0
p2) =0
p8) = 1
p4) =0
Bl5) =3
pl6) = 3

49

Computing the intervals

* The solution only gives us the final value
— Computing a sub-array each step would make it quadratic running
time
* To determine the intervals:
— If v, + MIp(j)] = M[j-1]
* Then jis part of the solution, and consider p(j)

— Else
 Then jis NOT part of the solution, and consider j-1

50

Reminder: Knapsack Problems

* Pages 425-427 1n textbook

* Description: Thief robbing a store finds n items,
each with a profit amount p; and a weight w;
— Wants to steal as valuable a load as possible
— But can only carry total weight C in their knapsack
— Which items should they take to maximize profit?

* Form of the solution: an x; value for each item,
showing if (or how much) of that item is taken

* Inputs are: C, n, the p;and w; values

Two Types of Knapsack Problem

* 0/1 knapsack problem

— Each item is discrete: must choose all of it or none of it.
Soeachx, isOor1l

— Greedy approach does not produce optimal solutions
— But dynamic programming does

* Fractional knapsack problem (AKA continuous knapsack)

— Can pick up fractions of each item.
So each x; is a value between O or 1

— A greedy algorithm finds the optimal solution

53

A Bit More Terminology

* Problems solvable by both Dynamic Programming and the Greedy
approach have the optimal substructure property:

— An optimal solution to a problem contains within it optimal solutions to
subproblems

— This allows us to build a solution one step at a time, because we can solve
increasingly smaller problems with confidence

 Dynamic Programming not a good solution for problems that have
the greedy-choice property:

— We can assemble a globally-optimal solution for the current by making a
locally-optimal choice, without considering results from subproblems

54

0/1 knapsack

n=3,C=4
Let’s try this same greedy solution with the 0/1 version Item | Value | Weight | Ratio |
— New example inputs =2 1 3 1 3
. . 2 5 2 2.5
1. Item 1 first. So x; is 1.
3 6 3 2

Capacity used is 1 of 4. Profit so far is 3.

2. Item 2 next. There’s room for it! So x,is 1. Capacity used is 3 of 4.
Profit sofaris3 +5 = 8.

3. Item 3 would be next, but its weight is 3 and knapsack only has 1 unit left!
So x5 is 0. Total profitis 8. x;=(1, 1, 0)

But picking items 1 and 3 will fit in knapsack, with total value of 9
— Thus, the greedy solution does not produce an optimal solution to the 0/1 knapsack algorithm
— Greedy choice left unused room, but we can’t take a fraction of an item
— The 0/1 knapsack problem doesn’t have the greedy choice property

55

Reminders about Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* Strategy:

1. ldentify the recursive structure of the problem
 What is the “last thing” done?

2. Formulate a data structure (array, table) that can look-up solution to any
sub-problem in constant time

3. Select a good order for solving subproblems
» “Bottom Up”: Iteratively solve smallest to largest
* “Top Down”: Solve each recursively. (We won’t do this for 0/1 knapsack.)

56

Dynamic programming solution to 0/1

We need to:

* |dentify a recursive definition of how a larger solution is built
from optimal results for smaller sub-problems.

For 0/1 knapsack, what a sub-problem solution look like?
What can be “smaller”?

— Smaller capacity for the knapsack
— Fewer items

57

Some assumptions and observations

* Given a set S of the objects and a capacity C
— We assume the optimal solution is O, a subset of S

— For example, the items in O could be the bolded ones:
S=1{51,5,,S3, - Sk.1» Sk» =++» Sp }
— Note that the last item s, may or may not be in the solution O

* Let’s use subscripts on O, and S, when we’re talking about the first
k items

* BTW, we'll assume C and all w, are integer values
— And, most books etc. use “W” for what we’re calling C

58

Recursive Structure

What'’s a recursive definition of how a solution of size n is built from optimal results
for smaller sub-problems? S={51,553 ., Sn1 Sn }

* Let’ssays, & O, (last item is not in optimal solution for S,):
— Last item didn’t add anything to best solution for smaller subproblem

— We need optimal solution O, , for the following smaller subproblem S_ ;:
n-1 items using same knapsack capacity C

* Let’ssays, € O (last item is in optimal solution for S,,):
— Last item contributed w; to total weight we’re carrying

— We need optimal solution O, , for the following smaller subproblem S, ;:
n-1 items using reduced capacity C-w,

(Note that “getting smaller” decreases number of items and also maybe capacity.)

59

First Step: Getting Things Started

* For sub-problems, what variables change in size?
— Maybe C (the capacity) and definitely k (number of items to steal)
* Define what we’re calculating: call it Knap(k, w)

— Note: we'll use “w” for the changing capacity value in Knap(), but keep “C”
as the overall total capacity for the entire problem. (Sorry if confusing!)

 Whether we do recursion of work bottom-up, we need to know the
smallest cases

 Some small or boundary cases:
— No knapsack capacity (w=0), can’t add an item, so Knap(k, 0) =0
— Nothing to steal (k=0), so Knap(0, w) =0

60

Three cases to calculate Knap(k, w)

* Three cases for calculating Knap(k, w):

1. There is sufficient capacity to add item s, to the knapsack, and that creates
an optimal solution for k items

2. There is sufficient capacity to add item s, to the knapsack, and that does
NOT create an optimal solution for k items

3. There is insufficient capacity to add item s, to the knapsack

e Case 3 is easy to determine; we’ll have to compute whether 1 or 2
is optimal
— How do we know which is optimal? Compute both, pick larger value!

61

Case 1: Sufficient capacity and Optimal

* There is sufficient capacity to add item s, to the knapsack, and that
creates an optimal solution for k items

* Thus, our solution for the first k items is when we add item s, to the
optimal solution for the first k-1 items

* But by adding item s, to the knapsack, we have reduced capacity
— In particular, we only have w-w, for to steal the first k-1 items

* So the value for Knap(k, w) = v, + Knap(k-1, w-w,)

62

Case 2: Sufficient Capacity but Non-optimal

* There is sufficient capacity to add item s, to the knapsack, and
that does NOT create an optimal solution for k items

 Thus, our solution for the first k items is when we do NOT add
item s, to the solution for the first k-1 items
— Since we are not adding item s, to the knapsack, the solution is the
optimal solution to steal the first k-1 items with the same capacity
— So Knap(k, w) = Knap(k-1, w)

63

Case 3: Insufficient Capacity

* There is insufficient capacity to add item s, to the knapsack

— This is because w-w, <0 (i.e. w < w,)

 Then Knap(k, w) = Knap(k-1, w)

— Since we can’t add item s, to the knapsack, the solution is the same
as the first k-1 items with the same capacity

— Note that this formula is the same as case 2

64

Putting It All Together

* Recursively define solutions to sub-problems

e Base Case
Knap(k,0) =0

Knap(0,w) =0 ‘Subproblems are smaller! ‘

* Recursive Case / \ \

Knap(k, w) = max(Knap(k-1, w), Knap(k-1, w-w,) + v,)

\ J
i \ T J

/ AN

No room for s, or not part optimal solution s, is part of optimal solution

65

Reminders about Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

* Strategy:
1. ldentify the recursive structure of the problem
* What is the “last thing” done?

2. Formulate a data structure (array, table) that can look-up solution to any
sub-problem in constant time

3. Select a good order for solving subproblems
» “Bottom Up”: Iteratively solve smallest to largest
* “Top Down”: Solve each recursively. (We won’t do this for 0/1 knapsack.)

66

Lookup Table

 We want a data-structure that allows us to lookup a sub-
problem value in O(1) time

* Knap(k, w) has two parameters, so two-dimensional array
works great.

 Make an array called V[k, w]

— Store solution to Knap(k, w) at position V[k, w]

67

Determining the cases

* To determine between cases 1 and 2
— Simply compute both values, and take the higher

if (w-w, < 0)// notroom for item k
V[k, w] = V[k-1, w] // best result for k-1 items
else {
val_with_kth =v, + V[k-1, w-w,] // Case 1 above
val_for _k-1=V][k-1, w] // Case 2 above
V[k, w] = max(val_with_kth, val for k-1)

68

Put Values in Table

* Write a loop that fills in the table one cell at a time
 The table fills in one row at a time, moving rightwards and

downwards
ol | o Lt Lz L L e

o O O O O

69

Pseudo-code

Knapsack(v, w, O {

}

for (w =0 to O V[0, w] =0
for (k = 0 to n) V[k, 0] =0
for (k =1 to n) { // loop over all rows
for W=11to O { // loop over all columns
1f (w-w, < 0) // not room for item k
Vik, w] = V[k-1, w] // best result for k-1 items
else {
val_with_kth = v, + V[k-1, w-w,] // Case 1 above
val_for_k-1 = V[k-1, w] // Case 2 above
Vik, w] = max(val_with_kth, val_for_k-1)
}
}
}

return V[n,(C]

70

But our solution is only the value!

* Value V[n, C] is the optimal value

* To find which items were chosen, we can trace backward
through the table starting at V[n, C]

— If V[k, w] = V[k-1, w], then s, is not an item in the knapsack (this was
from cases 2 and 3). Look at V[k-1, w] next.

— Otherwise, s, is an item in the knapsack, and we look at
V[k-1, w-w,] next (this was from case 1)

71

Coin Change
with non-traditional coin sets

Making Change

 The problem:
— Give back the right amount of change, and...
— Return the fewest number of coins!

* |nputs: the dollar-amount to return

— Also, the set of possible coins. (Do we have half-dollars? That affects the answer we
give.)

* Qutput: a set of coins

* Note this problem statement is simply a transformation
— Given input, generate output with certain properties
— No statement about how to do it.

* Canyou describe the algorithm you use?

73

Greedy algorithm

* Given coin cent amounts of 10, 6, 5, and 1

 Compute the coins needed for 12 cents
— The greedy algorithm picks {10, 1, 1}
— But {6, 6} is more optimal (fewer coins)

74

Detinitions

* We define an array denom which holds the denominations of the coins
such that:

— denom[1] > denom|[2] > ... >denom[n] =1

— In other words, we sort the coin denominations in decreasing order, ending with
a penny
 We are obtaining change for an amount A

e Consider the i,j problem:
— The available denominations are denom][i] through denom[n], wherei>1 (i.e.
the smaller n-i+1 coins)

* Note: wheniis large, you’re working with fewer types of coins, and
when i=1 you’re working with your complete set

— The amount we are looking for is j, where j < A (i.e. the remaining amount of
money)

75

The 1,] problem

* Consider the I,j problem: (Remember, i is which coins, and j is the amount)

— The available denominations are denom[i] through denom|n], where
i > 1 (i.e. the smaller n-i+1 coins)

— The amount we are looking for is j, where j < A (i.e. the remaining
amount of money)

e Given coins of denominations 10, 6, and 1, here’s the table
showing how to create change up to 12 cents: ouranswer!

j (the amount)

Jol1]2/3]4a]/5]6]7|8]9[10/11
Bl o 1 2 3 4 5 1 2 3 4 1 2 2" Canusel,6&10

in0123451234562Canuse1&6
B0123456789101112 Canusel

Solving the problem

 How to solve the i,j problem (Remember,iis which coins, and j is the amount)

— If denom[i] > j, then not possible to include this coin

* Then the solution is the same as the (i+1),j problem (same amount, but with one fewer of the coin-options)
* Inthe table, that’s the cell right below the current cell.
* |s this making the problem simpler?

— Maybe the best answer does use a coin of denomination i
* Then the solution is 1 more than the i,(j-denom[i]) problem
* j changes to j-denom[i] because we subtract off the value of the coin used
* idoesn’t change because there could be multiple coins of denomination i used in the solution

— Maybe the best answer does NOT use a coin of denomination i

* Then the solution is the same as the (i+1),j problem
* Inthe table, that’s the cell right below the current cell

77

The tformulaic solution

e The solution becomes:

ClilL /1= { Cli +1][{] if denom[i]> j

min(C[i +1][11+ C[i][j — denom[i]]) 1f denom|i]< j

 Where C[i][0] = O for all values of i

* If we have a penny, then C[n][j] =

— This is required to get all amounts, so we assume a penny is the smallest
denomination

78

Recursive solution

e The solution:

Cli+1][/] if denom[i]> j
]

L= {min(C [I+]1][j11+Cli][] - denom[i]]) 1f denom|i]< j

* Note that a given problem (CJi][j]) is expressed in terms of sub-
problems

* We can write a solution now using memorization with a top-down
solution (recursive calls), or a bottom-up approach (build a table)

79

he pottom-up algorithm

dynamic_coin_changel (denom, A, C) { - -
n = denom.last ‘Tlme complexity? ‘
forj=0to A
Cln][il =] Constant time to file each cell in the table.
fori=n-1downtol So ©(n - A) where n is the number of coins
forj=0to A and A is the amount

if (denom[j] >j ||
Cli+1][j] < 1 + C]i][j-denom[i]])
C[il[i] = C[i+1][j]
else
C[i]l[j] = 1 + CJi]l[j-denom]i]]

80

But how to get the coins chosen”

* |t's easy to trace back through the values
* Or, we could keep a used Boolean array

— If usedli][j] is true, then the solution for i,j does use a coin of
denom[i] for amount |

— If false, it does not

j
Jol1/2/3/4/5/6/7 /8|9 1001112
inF F F F F F F F F F T T F Canusel, 6&10
nFFFFFFTTTTTTTcanusel&6

BFTTTTTTTTTTTTcanusel

81

Recording the answers

dynamic_coin_change2 (denom, A, C, used) {
n = denom.last
forj=0to A
Cln][j] =]
used[n][j] = true
fori=n-1downto 1
forj=0to A
if (denom[j] >j ||
Cli+1][j] < 1+C[i][j-denom[i]])
C[il[i] = Cli+1][j]
used[i][j] = false
else
C[i][j] = 1 + C[i][j-denom([i]]
used[i][j] = true

82

Obtaining the coin set

optimal coins set (i, j, denom, used) {
if (J==0)
return
if (used[i][3]])
println (“Use coin of denomination “ + denom[i])
optimal coins set (i, j-denom[i], denom, used)
else

optimal coins set (i+l, j, denom, used)

83

