
Fall 2021 – Floryan and Horton

Module 8
Dynamic Programming

1

Dynamic Programming and Greedy Approach

• TOPICS:
– Intro to Dynamic Programming
– Memoization
– Three DP Problems:
• Log Cutting
• 0/1 Knapsack
• Coin Change
• Weighted Activity Selection

2

Motivating Example

• r1⋅c2 elements in the result that we need to compute
• c1 scalar multiplications per element in result
• Total cost: r1⋅ 𝑐1 ⋅ 𝑐2
• So the answer is… (3 ⋅ 2 ⋅ 5) = 30

3

r1=3

c1= 2

2

c2= 5

3

5

× =

How many scalar multiplications are required to multiply
matrices A and B in this example?

𝐴 𝐵

Trickier Question

• For a pair of matrices, remember it’s r1⋅ 𝑐1 ⋅ 𝑐2
• Calculate this cost for multiplying one pair of matrices
• You need to multiply that result with the 3rd matrix, too, so there’s a cost for that
• Total cost is the sum of these two costs
• So the answer is… (3 ⋅ 2 ⋅ 5) + (3 ⋅ 5 ⋅ 4) = 90

4

3

2

2

5

3

4

× =

What’s the smallest number of scalar multiplications required
to calculate the matrix product ABC in this example?

𝐴 𝐵

5

4

×

𝐶

Nope! The answer is 64.
Think about how this might be!

CLRS Readings

• Chapter 15, Dynamic Programming
– Section 15.1, Log/Rod cutting, optimal substructure property
• Note: ri in book is called Cut() or C[] in our slides. We do use their example.

– Section 15.3, More on elements of DP, including optimal substructure
property

5

Dynamic Programming and Greedy Approach

• Module 8 is on Dynamic Programming
– Similar to Greedy Algorithms
– Solves problems that have optimal substructure, but do NOT have a

known greedy choice for optimal solutions
– Instead, try every option for the first “greedy” choice and see which

one leads to optimal solution.
• Will need some optimizations to make this efficient.

6

7

Optimization Problems

• Both DP and Greedy solve optimization problems:
Find the best solution among all feasible solutions

• An example you know: Find the shortest path in a weighted graph G from s to v
– Form of the solution: a path (and sum of its edge-weights)

• Feasible solutions must meet problem constraints
– Example: All edges in solution are in graph G and form a simple path from s to v

• We can get a score for each feasible solution on some criteria:
We call this the objective function

– Example: the sum of the edge weights in path

• One (or more) feasible solutions that scores highest (by the objective function) is
the optimal solution(s)

Memoization

8

9

Remember Fibonacci numbers?

• Formula: F(n) = F(n-1) + F(n-2)
• Recursive code:

long fib(int n) {
assert(n >= 0);
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1) + fib(n-2);

}
• What's the problem?
– Repeatedly solves the same subproblems
– “Obscenely” exponential

10

Top-down using Memoization

• Before talking about bottom-up dynamic
programming using tables, top-down approach
uses general technique of Memoization
– AKA using a memory function

• Simple idea:
– Calculate and store solutions to subproblems
– Before solving it (again), look to see if you've

remembered it

11

Memoization

• Use a Table abstract data type
– Lookup key: whatever identifies a subproblem
– Value stored: the solution

• Could be an array/vector or 2D table(s)
– E.g. for Fibonacci, store fib(n) using

index n
– Need to initialize the array

• Could use a map / hash-table

12

Memoization and Fibonacci
• Before recursive code below called, must initialize results[] so

all values are -1

long fib_mem(int n, long results[]) {
if (results[n] != -1)

return results[n]; // return stored value
long val;
if (n == 0 || n ==1) val = n; // odd but right
else

val = fib_mem(n-1, results)
+ fib_mem(n-2, results);

results[n] = val; // store calculated value
return val;

}

13

Observations on fib_mem()

• Same elegant top-down, recursive approach based on
definition
–Without repeated subproblems

• Memory function: a function that remembers
– Save time by using extra space

• Can show this runs in Q(n)

Dynamic Programming
and Log Cutting

14

Dynamic programming

15

• Old “bad” name (see Wikipedia or textbook)

• Useful when the solution can be recursively described in terms of solutions
to sub-problems (optimal substructure)
– But greedy choice property doesn’t hold for the problem

• Algorithm finds solutions to sub-problems and stores them in memory for
later use

• More efficient than brute-force methods or recursive approaches that
solve the same sub-problems over and over again

Optimal Substructure Property

16

• Definition
– If S is an optimal solution to a problem, then the components of S are

optimal solutions to sub-problems

• Examples:
– True for coin-changing
– True for single-source shortest path
– Not true for longest-simple-path
– True for knapsack

Dynamic Programming

17

• Works “bottom-up”
– Finds solutions to small sub-problems first
– Stores them
– Combines them somehow to find a solution to a slightly larger sub-problem

• Comparison to greedy approach
– Also requires optimal substructure
– But greedy makes choice first, then solves
– Greedy looks only at the current situation, not at a past ‘history’

• DP is good when sub-problems overlap, when they’re not independent
– No need to repeat the calculation to solve them
– Dynamic programming has stored them, so doesn’t repeat the calculation

Process for Dynamic Programming

18

1. Recognize what the sub-problems are

2. Identify the recursive structure of the problem in terms of its sub-problems
– At the top level, what is the “last thing” done?
– This helps you see a recursive solution for any generic sub-problem in terms of smaller

sub-problems

3. Formulate a data structure (array, table) that can look-up solution to any sub-
problem in constant time

4. Develop an algorithm that loops through data structure solving each sub-
problem one at a time
– Bottom-up: from smallest sub-problems, to next largest, …, to complete problem

Problems Solved with Dyn. Prog.

19

• Log cutting (first example, uses list data structure)
• 0/1 knapsack problem
• Coin changing with “non-standard” coin selection
• Longest common subsequence
• Multiplying a sequence of matrices

– Can do in various orders: (AB)C vs. A(BC)
– Pick order that does fewest number of scalar multiplications

And ones we might not get to:
• All-pairs shortest paths (Floyd’s algorithm)
• Constructing optimal binary search trees

Log Cutting

20

Given a log of length 𝑛, and
a list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖)
Find the best way to cut the log to maximize our profit.

(Imagine we can sell each piece of the log at price 𝑃[𝑖])

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ!, … , ℓ" such that:
∑ℓ# = 𝑛

to maximize ∑𝑃[ℓ#] Brute Force: 𝑂(2$)

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Formulate a data structure (array, table) that can look-up solution to any

sub-problem in constant time
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively. (Using memorization – we’ll do later!)
• “Bottom Up”: Iteratively solve smallest to largest

Dynamic Programming

21

1. Identify Recursive Structure

22

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ!
𝐶𝑢𝑡(𝑛 − ℓ!)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

So for a given value of n,
to find Cut(n), we need
sub-problem solutions for
Cut(n-1) down to Cut(0).

What’s the problem
with a top-down
recursive approach?

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

23

3. Select a Good Order for Solving Subproblems

24

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve smallest sub-problem first

𝐶𝑢𝑡 0 = 0

0

3. Select a Good Order for Solving Subproblems

25

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve smallest sub-problem first

𝐶𝑢𝑡 1 = 𝐶𝑢𝑡 0 + 𝑃[1]

1

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

3. Select a Good Order for Solving Subproblems

26

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve smallest sub-problem first

𝐶𝑢𝑡 2 = max 𝐶𝑢𝑡 1 + 𝑃 1
𝐶𝑢𝑡 0 + 𝑃 2

2

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

3. Select a Good Order for Solving Subproblems

27

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve smallest sub-problem first

𝐶𝑢𝑡 3 = max 𝐶𝑢𝑡 2 + 𝑃 1
𝐶𝑢𝑡 1 + 𝑃 2
𝐶𝑢𝑡 0 + 𝑃[3]

3

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

3. Select a Good Order for Solving Subproblems

28

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve smallest sub-problem first

𝐶𝑢𝑡 4 = max

𝐶𝑢𝑡 3 + 𝑃[1]
𝐶𝑢𝑡 2 + 𝑃 2
𝐶𝑢𝑡 1 + 𝑃 3
𝐶𝑢𝑡 0 + 𝑃[4]

4

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Log Cutting Pseudocode

30

Initialize Memory C
Cut(n):

C[0] = 0
for i=1 to n: // log size

best = 0
for j = 1 to i: // last cut

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]
Run Time: 𝑂(𝑛!)

How to find the cuts?

• This procedure told us the profit, but not the cuts themselves
• Idea: remember the choice that you made, then backtrack

31

Remember the choice made

32

Initialize Memory C, Choices
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
Choices[i]=j

C[i] = best
return C[n]

Gives the size
of the last cut

Reconstruct the Cuts

33

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

• Backtrack through the choices

7621

Example to demo
Choices[] only.
Profit of 20 is not
optimal!

Backtracking Pseudocode

i = n
while i > 0:

print Choices[i]
i = i – Choices[i]

34

Our Example: Getting Optimal Solution

i 0 1 2 3 4 5 6 7 8 9 10
C[i] 0 1 5 8 10 13 17 18 22 25 30

Choices[i] 0 1 2 3 2 2 6 1 2 3 10

35

• If n were 5
• Best score is 13
• Cut at Choices[n]=2, then cut at

Choices[n-Choices[n]]= Choices[5-2]= Choices[3]=3
• If n were 7
• Best score is 18
• Cut at 1, then cut at 6

Weighted Activity Selection

36

Weighted Interval Scheduling

37

• Recall Interval Scheduling:
– Given a list of intervals pick a schedule of non-overlapping intervals

that maximizes the number chosen
• i.e. each one has the same value

• Weighted interval scheduling is similar, but…
– Each interval has a different value

Greedy solution to interval scheduling

38

• The algorithm:
– Sort the activities by finish time
– Schedule the first activity
– Then schedule the next activity in sorted list which starts after

previous activity finishes
– Repeat until no more activities

• Intuition is even more simple:
– Always pick next activity that finishes earliest

Greedy solution to the weighted version

39

• What would the greedy algorithm pick for this example?
• And is that answer optimal?

• We can see that the greedy algorithm does not work for the
weighted version

Step 1

40

• Define the sub-problem

• This problem has optimal substructure, so let’s only consider intervals up
to a certain point.

• Let Opt(j) be the solution to this problem when only considering intervals 1
through j
– How should we order the intervals? Does it matter? We will see soon that it

does.

• Note that Opt(0) = 0

Step 2

41

• Define solution to problem in terms of sub-problems

• Base Case:
– Opt(0) = 0

• Opt(j) = ?

Step 2

42

• Opt(j) = ?

• Two cases:
– Interval j is not in the optimal solution
• Opt(j) = Opt(j-1) //same solution, because j interval doesn’t matter

– Interval j is in the optimal solution
• Opt(j) = Vj + Opt(intervals compatible with j)
• Intervals compatible with j? Yikes? How do we calculate that?

Calculating Opt(j)

43

• Sort all intervals by their finish time
– And number them sequentially

• We define interval i is less than interval j if i finishes before j (i.e. is before
it in the sort)

• Define p(j) to be the highest numbered interval i<j such that i and j are
disjoint

• Define OPT(j) to be the value of an optimal solution for intervals 1 through
j only

Showing p(j)

44

Step 2

45

• Opt(j) = ?

• Two cases:
– Interval j is not in the optimal solution

• Opt(j) = Opt(j-1) //same solution, because j interval doesn’t matter

– Interval j is in the optimal solution
• Opt(j) = Vj + Opt(p(j))

– So…we have
• Opt(j) = Max(Opt(j-1), Vj + Opt(p(j)))

Recursive solution

46

• OPT(j) = max(vj + OPT(p(j)), OPT(j-1))
– And OPT(0) = 0

• This is similar in running time to the Fibonacci sequence
– And similarly exponential

• Consider a simple example:

That example will take exponential time

47

• Notice that the
sub-problems are
being
re-computed
each time

Step 3!

48

• Formulate the data structure to look up subproblems.

• Pretty simple, define M[n]

• M[j] stores the solution to Opt(j)

So we add memoization…

49

• This runs in linear time

Computing the intervals

50

• The solution only gives us the final value
– Computing a sub-array each step would make it quadratic running

time

• To determine the intervals:
– If vj + M[p(j)] ≥ M[j-1]
• Then j is part of the solution, and consider p(j)

– Else
• Then j is NOT part of the solution, and consider j-1

0/1 Knapsack Problem

51

Reminder: Knapsack Problems

• Pages 425-427 in textbook
• Description: Thief robbing a store finds n items,

each with a profit amount pi and a weight wi
– Wants to steal as valuable a load as possible
– But can only carry total weight C in their knapsack
– Which items should they take to maximize profit?

• Form of the solution: an xi value for each item,
showing if (or how much) of that item is taken

• Inputs are: C, n, the pi and wi values

52

Two Types of Knapsack Problem

• 0/1 knapsack problem
– Each item is discrete: must choose all of it or none of it.

So each xi is 0 or 1
– Greedy approach does not produce optimal solutions
– But dynamic programming does

• Fractional knapsack problem (AKA continuous knapsack)
– Can pick up fractions of each item.

So each xi is a value between 0 or 1
– A greedy algorithm finds the optimal solution

53

A Bit More Terminology

• Problems solvable by both Dynamic Programming and the Greedy
approach have the optimal substructure property:
– An optimal solution to a problem contains within it optimal solutions to

subproblems
– This allows us to build a solution one step at a time, because we can solve

increasingly smaller problems with confidence
• Dynamic Programming not a good solution for problems that have

the greedy-choice property:
– We can assemble a globally-optimal solution for the current by making a

locally-optimal choice, without considering results from subproblems

54

0/1 knapsack

55

Let’s try this same greedy solution with the 0/1 version
– New example inputs à

1. Item 1 first. So x1 is 1.
Capacity used is 1 of 4. Profit so far is 3.

2. Item 2 next. There’s room for it! So x2 is 1. Capacity used is 3 of 4.
Profit so far is 3 + 5 = 8.

3. Item 3 would be next, but its weight is 3 and knapsack only has 1 unit left!
So x3 is 0. Total profit is 8. xi = (1, 1, 0)

But picking items 1 and 3 will fit in knapsack, with total value of 9
– Thus, the greedy solution does not produce an optimal solution to the 0/1 knapsack algorithm
– Greedy choice left unused room, but we can’t take a fraction of an item
– The 0/1 knapsack problem doesn’t have the greedy choice property

Item Value Weight Ratio

1 3 1 3

2 5 2 2.5

3 6 3 2

n = 3, C = 4

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Strategy:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Formulate a data structure (array, table) that can look-up solution to any

sub-problem in constant time
3. Select a good order for solving subproblems

• “Bottom Up”: Iteratively solve smallest to largest
• “Top Down”: Solve each recursively. (We won’t do this for 0/1 knapsack.)

Reminders about Dynamic Programming

56

Dynamic programming solution to 0/1

57

We need to:
• Identify a recursive definition of how a larger solution is built

from optimal results for smaller sub-problems.

For 0/1 knapsack, what a sub-problem solution look like?
What can be “smaller”?
– Smaller capacity for the knapsack
– Fewer items

Some assumptions and observations

58

• Given a set S of the objects and a capacity C
– We assume the optimal solution is O, a subset of S
– For example, the items in O could be the bolded ones:

S = { s1, s2, s3, …, sk-1, sk, …, sn }
– Note that the last item sn may or may not be in the solution O

• Let’s use subscripts on Ok and Sk when we’re talking about the first
k items

• BTW, we’ll assume C and all wi are integer values
– And, most books etc. use “W” for what we’re calling C

Recursive Structure

59

What’s a recursive definition of how a solution of size n is built from optimal results
for smaller sub-problems? S = { s1, s2, s3, …, sn-1 , sn }

• Let’s say sn ∉ On (last item is not in optimal solution for Sn):
– Last item didn’t add anything to best solution for smaller subproblem
– We need optimal solution On-1 for the following smaller subproblem Sn-1:

n-1 items using same knapsack capacity C

• Let’s say sn ∈ O (last item is in optimal solution for Sn):
– Last item contributed wi to total weight we’re carrying
– We need optimal solution On-1 for the following smaller subproblem Sn-1 :

n-1 items using reduced capacity C-wn

(Note that “getting smaller” decreases number of items and also maybe capacity.)

First Step: Getting Things Started

60

• For sub-problems, what variables change in size?
– Maybe C (the capacity) and definitely k (number of items to steal)

• Define what we’re calculating: call it Knap(k, w)
– Note: we’ll use “w” for the changing capacity value in Knap(), but keep “C”

as the overall total capacity for the entire problem. (Sorry if confusing!)
• Whether we do recursion of work bottom-up, we need to know the

smallest cases
• Some small or boundary cases:
– No knapsack capacity (w=0), can’t add an item, so Knap(k, 0) = 0
– Nothing to steal (k=0), so Knap(0, w) = 0

Three cases to calculate Knap(k, w)

61

• Three cases for calculating Knap(k, w):
1. There is sufficient capacity to add item sk to the knapsack, and that creates

an optimal solution for k items
2. There is sufficient capacity to add item sk to the knapsack, and that does

NOT create an optimal solution for k items
3. There is insufficient capacity to add item sk to the knapsack

• Case 3 is easy to determine; we’ll have to compute whether 1 or 2
is optimal
– How do we know which is optimal? Compute both, pick larger value!

Case 1: Sufficient capacity and Optimal

62

• There is sufficient capacity to add item sk to the knapsack, and that
creates an optimal solution for k items

• Thus, our solution for the first k items is when we add item sk to the
optimal solution for the first k-1 items

• But by adding item sk to the knapsack, we have reduced capacity
– In particular, we only have w-wk for to steal the first k-1 items

• So the value for Knap(k, w) = vk + Knap(k-1, w-wk)

Case 2: Sufficient Capacity but Non-optimal

63

• There is sufficient capacity to add item sk to the knapsack, and
that does NOT create an optimal solution for k items

• Thus, our solution for the first k items is when we do NOT add
item sk to the solution for the first k-1 items
– Since we are not adding item sk to the knapsack, the solution is the

optimal solution to steal the first k-1 items with the same capacity
– So Knap(k, w) = Knap(k-1, w)

Case 3: Insufficient Capacity

64

• There is insufficient capacity to add item sk to the knapsack
– This is because w-wk < 0 (i.e. w < wk)

• Then Knap(k, w) = Knap(k-1, w)
– Since we can’t add item sk to the knapsack, the solution is the same

as the first k-1 items with the same capacity
– Note that this formula is the same as case 2

• Recursively define solutions to sub-problems
• Base Case

Knap(k,0) = 0
Knap(0,w) = 0

• Recursive Case
Knap(k, w) = max(Knap(k-1, w), Knap(k-1, w-wk) + vk)

Putting It All Together

65

Subproblems are smaller!

sk is part of optimal solutionNo room for sk or not part optimal solution

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Strategy:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Formulate a data structure (array, table) that can look-up solution to any

sub-problem in constant time
3. Select a good order for solving subproblems

• “Bottom Up”: Iteratively solve smallest to largest
• “Top Down”: Solve each recursively. (We won’t do this for 0/1 knapsack.)

Reminders about Dynamic Programming

66

Lookup Table

67

• We want a data-structure that allows us to lookup a sub-
problem value in O(1) time

• Knap(k, w) has two parameters, so two-dimensional array
works great.

• Make an array called V[k, w]
– Store solution to Knap(k, w) at position V[k, w]

Determining the cases

68

• To determine between cases 1 and 2
– Simply compute both values, and take the higher

if (w-wk< 0) // not room for item k
V[k, w] = V[k-1, w] // best result for k-1 items

else {
val_with_kth = vk + V[k-1, w-wk] // Case 1 above
val_for_k-1 = V[k-1, w] // Case 2 above
V[k, w] = max(val_with_kth, val_for_k-1)

}

Put Values in Table

69

• Write a loop that fills in the table one cell at a time
• The table fills in one row at a time, moving rightwards and

downwards
V[k,w] w = 0 w = 1 w = 2 … w = C

k = 0 0 0 0 0 0

k = 1 0

k = 2 0

… 0

k = n 0

Pseudo-code

70

Knapsack(v, w, C) {
for (w = 0 to C) V[0, w] = 0
for (k = 0 to n) V[k, 0] = 0
for (k = 1 to n) { // loop over all rows

for (w = 1 to C) { // loop over all columns
if (w-wk < 0) // not room for item k

V[k, w] = V[k-1, w] // best result for k-1 items
else {

val_with_kth = vk + V[k-1, w-wk] // Case 1 above
val_for_k-1 = V[k-1, w] // Case 2 above
V[k, w] = max(val_with_kth, val_for_k-1)

}
}

}
return V[n,C]

}

But our solution is only the value!

71

• Value V[n, C] is the optimal value

• To find which items were chosen, we can trace backward
through the table starting at V[n, C]
– If V[k, w] = V[k-1, w], then sk is not an item in the knapsack (this was

from cases 2 and 3). Look at V[k-1, w] next.
– Otherwise, sk is an item in the knapsack, and we look at

V[k-1, w-wk] next (this was from case 1)

Coin Change
with non-traditional coin sets

72

Making Change

73

• The problem:
– Give back the right amount of change, and…
– Return the fewest number of coins!

• Inputs: the dollar-amount to return
– Also, the set of possible coins. (Do we have half-dollars? That affects the answer we

give.)
• Output: a set of coins

• Note this problem statement is simply a transformation
– Given input, generate output with certain properties
– No statement about how to do it.

• Can you describe the algorithm you use?

Greedy algorithm

74

• Given coin cent amounts of 10, 6, 5, and 1

• Compute the coins needed for 12 cents
– The greedy algorithm picks {10, 1, 1}
– But {6, 6} is more optimal (fewer coins)

Definitions

75

• We define an array denom which holds the denominations of the coins
such that:
– denom[1] > denom[2] > … > denom[n] = 1
– In other words, we sort the coin denominations in decreasing order, ending with

a penny
• We are obtaining change for an amount A
• Consider the i,j problem:
– The available denominations are denom[i] through denom[n], where i ≥ 1 (i.e.

the smaller n-i+1 coins)
• Note: when i is large, you’re working with fewer types of coins, and

when i=1 you’re working with your complete set
– The amount we are looking for is j, where j ≤ A (i.e. the remaining amount of

money)

The i,j problem

76

• Consider the i,j problem: (Remember, i is which coins, and j is the amount)

– The available denominations are denom[i] through denom[n], where
i ≥ 1 (i.e. the smaller n-i+1 coins)

– The amount we are looking for is j, where j ≤ A (i.e. the remaining
amount of money)

• Given coins of denominations 10, 6, and 1, here’s the table
showing how to create change up to 12 cents:

0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 4 5 1 2 3 4 1 2 2

2 0 1 2 3 4 5 1 2 3 4 5 6 2

3 0 1 2 3 4 5 6 7 8 9 10 11 12

i

j (the amount)

Can use 1, 6 & 10
Can use 1 & 6
Can use 1

Our answer!

Solving the problem

77

• How to solve the i,j problem (Remember, i is which coins, and j is the amount)

– If denom[i] > j, then not possible to include this coin
• Then the solution is the same as the (i+1),j problem (same amount, but with one fewer of the coin-options)
• In the table, that’s the cell right below the current cell.
• Is this making the problem simpler?

– Maybe the best answer does use a coin of denomination i
• Then the solution is 1 more than the i,(j-denom[i]) problem
• j changes to j-denom[i] because we subtract off the value of the coin used
• i doesn’t change because there could be multiple coins of denomination i used in the solution

– Maybe the best answer does NOT use a coin of denomination i
• Then the solution is the same as the (i+1),j problem
• In the table, that’s the cell right below the current cell

The formulaic solution

78

• The solution becomes:

• Where C[i][0] = 0 for all values of i

• If we have a penny, then C[n][j] = j
– This is required to get all amounts, so we assume a penny is the smallest

denomination

()î
í
ì

£-++
>+

=
jidenomidenomjiCjiC
jidenomjiC

jiC
][if]][][[1],][1[min
][if]][1[

]][[

Recursive solution

79

• The solution:

• Note that a given problem (C[i][j]) is expressed in terms of sub-
problems

• We can write a solution now using memorization with a top-down
solution (recursive calls), or a bottom-up approach (build a table)

()î
í
ì

£-++
>+

=
jidenomidenomjiCjiC
jidenomjiC

jiC
][if]][][[1],][1[min
][if]][1[

]][[

The bottom-up algorithm

80

dynamic_coin_change1 (denom, A, C) {
n = denom.last
for j = 0 to A

C[n][j] = j
for i = n-1 down to 1

for j = 0 to A
if (denom[j] > j ||

C[i+1][j] < 1 + C[i][j-denom[i]])
C[i][j] = C[i+1][j]

else
C[i][j] = 1 + C[i][j-denom[i]]

}

Time complexity?

Constant time to file each cell in the table.
So Θ(n · A) where n is the number of coins
and A is the amount

But how to get the coins chosen?

81

• It’s easy to trace back through the values
• Or, we could keep a used Boolean array
– If used[i][j] is true, then the solution for i,j does use a coin of

denom[i] for amount j
– If false, it does not

0 1 2 3 4 5 6 7 8 9 10 11 12

1 F F F F F F F F F F T T F

2 F F F F F F T T T T T T T

3 F T T T T T T T T T T T T

i

j

Can use 1, 6 & 10
Can use 1 & 6
Can use 1

Recording the answers

82

dynamic_coin_change2 (denom, A, C, used) {
n = denom.last
for j = 0 to A

C[n][j] = j
used[n][j] = true

for i = n-1 downto 1
for j = 0 to A

if (denom[j] > j ||
C[i+1][j] < 1+C[i][j-denom[i]])

C[i][j] = C[i+1][j]
used[i][j] = false

else
C[i][j] = 1 + C[i][j-denom[i]]
used[i][j] = true

}

Obtaining the coin set

83

optimal_coins_set (i, j, denom, used) {
if (j == 0)

return
if (used[i][j])

println (“Use coin of denomination “ + denom[i])
optimal_coins_set (i, j-denom[i], denom, used)

else
optimal_coins_set (i+1, j, denom, used)

}

