
Strassen’s Algorithm for Matrix Multiplication,
QuickSelect, and Median of Medians

Readings: CLRS Ch. 4.2, Ch. 9

CS 4102: Algorithms
Spring 2021

Mark Floryan and Tom Horton

1

Readings

• CLRS Section 4.2 on Strassen’s algorithm

• CLRS Chapter 9
• Wikipedia articles on Quickselect and Median of Medians

2

Matrix Multiplication

3

Matrix Multiplication

4

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛!)

𝑛

𝑛

Lower Bound?𝑂(𝑛")

Matrix Multiplication D&C

5

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎! 𝑎" 𝑎# 𝑎$
𝑎% 𝑎& 𝑎' 𝑎(
𝑎) 𝑎!* 𝑎!! 𝑎!"
𝑎!# 𝑎!$ 𝑎!% 𝑎!&

𝐵 =

𝑏! 𝑏" 𝑏# 𝑏$
𝑏% 𝑏& 𝑏' 𝑏(
𝑏) 𝑏!* 𝑏!! 𝑏!"
𝑏!# 𝑏!$ 𝑏!% 𝑏!&

Divide:

Matrix Multiplication D&C

6

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎! 𝑎" 𝑎# 𝑎$
𝑎% 𝑎& 𝑎' 𝑎(
𝑎) 𝑎!* 𝑎!! 𝑎!"
𝑎!# 𝑎!$ 𝑎!% 𝑎!&

𝐴#,# 𝐴#,"

𝐴",# 𝐴","

𝐴𝐵 =
𝐴!,!𝐵!,! + 𝐴!,"𝐵",! 𝐴!,!𝐵!," + 𝐴!,"𝐵","
𝐴",!𝐵!,! + 𝐴","𝐵",! 𝐴",!𝐵!," + 𝐴","𝐵","

𝐵 =

𝑏! 𝑏" 𝑏# 𝑏$
𝑏% 𝑏& 𝑏' 𝑏(
𝑏) 𝑏!* 𝑏!! 𝑏!"
𝑏!# 𝑏!$ 𝑏!% 𝑏!&

𝐵#,# 𝐵#,"

𝐵",# 𝐵","

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

"

Combine:

Case 1!
𝑇 𝑛 = Θ(𝑛!)

Find an Algorithm with Better Recurrence?

7

𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

"

• We’ve got a recurrence and want to improve things.
You know how the Master Theorem works.
What can we change to make it better?

– Reduce the number of subproblems.
– Reduce the order class of the non-recursive work.

(OK to do more non-recursive work if new f(n) is same Θ)

Strassen’s Algorithm

8

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎! 𝑎" 𝑎# 𝑎$
𝑎% 𝑎& 𝑎' 𝑎(
𝑎) 𝑎!* 𝑎!! 𝑎!"
𝑎!# 𝑎!$ 𝑎!% 𝑎!&

𝐴#,# 𝐴#,"

𝐴",# 𝐴","
𝐵 =

𝑏! 𝑏" 𝑏# 𝑏$
𝑏% 𝑏& 𝑏' 𝑏(
𝑏) 𝑏!* 𝑏!! 𝑏!"
𝑏!# 𝑏!$ 𝑏!% 𝑏!&

𝐵#,# 𝐵#,"

𝐵",# 𝐵","
Calculate:

𝑄! = 𝐴!,! + 𝐴#,# (𝐵!,! + 𝐵#,#)
𝑄# = 𝐴#,! + 𝐴#,# 𝐵!,!
𝑄$ = 𝐴!,!(𝐵!,# − 𝐵#,#)
𝑄% = 𝐴#,#(𝐵#,! − 𝐵!,!)

𝑄& = 𝐴#,! − 𝐴!,! (𝐵!,! + 𝐵!,#)
𝑄' = 𝐴!,! + 𝐴!,# 𝐵#,#

𝑄(= 𝐴!,# − 𝐴#,# (𝐵#,! + 𝐵#,#)

𝐴!,!𝐵!,! + 𝐴!,"𝐵",! 𝐴!,!𝐵!," + 𝐴!,"𝐵","
𝐴",!𝐵!,! + 𝐴","𝐵",! 𝐴",!𝐵!," + 𝐴","𝐵","

𝑄! + 𝑄$ − 𝑄% + 𝑄' 𝑄# + 𝑄%
𝑄" + 𝑄$ 𝑄! − 𝑄" + 𝑄# + 𝑄&

Find 𝐴𝐵:

Number Mults.: 7 Number Adds: 18

𝑇 𝑛 = 7𝑇
𝑛
2 + 18

𝑛
2

"

=

Strassen’s Algorithm

9

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛"

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2
𝑛"

𝑛%&'! (= 𝑛%&'") ≈ 𝑛".+,) Case 1!

𝑇 𝑛 = Θ 𝑛%&'") ≈ Θ(𝑛".+,))

10

𝑛#

𝑛,-.! '

Is this the fastest?

11

Best possible
is unknown

May not even
exist!

Quickselect

12

Review: Quicksort

Idea: pick a pivot element, recursively sort two sublists around
that element
• Divide: select pivot element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

13

Partition (Divide step)

Given: a list, a pivot 𝑝

14

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Quicksort Run Time (Best)

Then we divide in half each time

15

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Quicksort Run Time (Worst)

Then we shorten by 1 each time

16

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛))

Can we Pick a Good Pivot for Quicksort?

• What makes a good Pivot for Quicksort?
– Roughly even split between left and right
– Ideally: the median

• Can we find a list’s median in linear time?
– Quickselect (https://en.wikipedia.org/wiki/Quickselect)

• Finds the median
• Works a lot like Quicksort: needs to do a Partition
• We need a good pivot for Quickselect for it to have good time-complexity

– Median of Medians (https://en.wikipedia.org/wiki/Median_of_medians)
• Can be used to find “pretty good” pivot for QS, or with Quickselect

17

https://en.wikipedia.org/wiki/Quickselect
https://en.wikipedia.org/wiki/Median_of_medians

Quickselect

• Finds 𝑖th order statistic
o 𝑖th smallest element in the list
o 1st order statistic: minimum
o 𝑛th order statistic: maximum

o
*
)

th order statistic: median

• CLRS, Section 9.1
– Selection problem: Give list of distinct numbers and value i, find

value x in list that is larger than exactly i-1 list elements

18

Quickselect

Idea: pick a pivot element, partition, then recurse on the sublist
containing index 𝑖
• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: if 𝑖 = index of 𝑝, done!
– if 𝑖 < index of 𝑝 recurse left. Else recurse right

• Combine: Nothing!

(Note: just one recursive call, unlike Quicksort.)
19

Partition (Divide step)

Given: a list, a pivot value x

20

85 7 3 12 10 1 2 4 9 611

Goal: All elements < 𝑥 on left, all > 𝑥 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Note: now using “x” to refer
to pivot value. We called it
“p” in previous slides.

Conquer

21

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑥 All elements > 𝑥
𝑥 = 8 put exactly where it belongs at position 8 (the split-point)

Remember: we’re looking for the 𝒊th order statistic
• If the split-point (8) is 𝑖 we’re done! The value stored at the split-point

is the result.
• If 𝑖 < split-point, look in left sub-list (using same value 𝑖)
• If 𝑖 > split-point, look in right sub-list (using an adjusted value of 𝑖)
– For example, if we wanted the 10th order statistic in the entire list,

here that would be the 2nd order statistic in the right sub-list

1 2 3 4 5 6 7 8 9 10 11 12Position
in list

CLRS Pseudocode for Quickselect

22

// number of elements in left sub-list + 1

// note adjustment to i when recursing on right side

Note: In CLRS, they’re using a partition that randomly chooses the pivot element.
That’s why you see “Randomized” in the names here. Ignore that for the moment.

A – the list
p – index of first item
r – index of last item
i – find ith smallest item
q – pivot location
k – number on left + 1

Work These Examples!

• For each of the following calls, show
– The value of q after each partition,
– Which recursive calls made
1. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=2)
2. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=5)
3. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=7)

23

Quickselect Run Time

Then we divide in half each time

24

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑆 𝑛 = 𝑆
𝑛
2
+ 𝑛

If the pivot is always the median:

𝑆 𝑛 = 𝑂(𝑛)

Quickselect Run Time

Then we shorten by 1 each time

25

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑆 𝑛 = 𝑆 𝑛 − 1 + 𝑛

If the partition is always unbalanced:

𝑆 𝑛 = 𝑂(𝑛))

Good Pivot for Quickselect

• What makes a good Pivot for Quickselect?
– Roughly even split between left and right
– Ideally: median

• Here’s what’s next:
– First, median of medians algorithm

• Finds something close to the median in Θ(𝑛) time
– Second, we can prove that when its result used with Quickselect’s partition, then

Quickselect is guaranteed Θ(𝑛)
• Because we now have a Θ(𝑛) way to find the median, this guarantees Quicksort will be Θ(𝑛 lg 𝑛)

– Notes:
• We have to do all this for every call to Partition in Quicksort
• We could just use the value returned by median of medians for Quicksort’s Partition

– See CLRS section “Balanced Partitioning” starting on p. 175

26

Déjà vu?

Pretty Good Pivot

• What makes a “pretty good” Pivot?
– Both sides of Pivot >30%

27

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

• Fast way to select a “pretty good” pivot
• Guarantees pivot is greater than 30% of elements and less than

30% of the elements
– I.e. it’s in the middle 40% (±20% of the true median)

• Idea: break list into chunks, find the median of each chunk, use the
median of those medians

• CLRS, pp. 220-221
• https://en.wikipedia.org/wiki/Median_of_medians

28

https://en.wikipedia.org/wiki/Median_of_medians

Median of Medians

29

1. Break list into chunks of size 5

2. Find the median of each chunk
(using insertion sort: n=5, 20 comparisons)

3. Return median of medians (using Quickselect, this
algorithm, called recursively, on list of medians)

List could be long, many
more than 5 medians!

List could be long, many
more than 5 chunks!

Why is this good?

30

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Imagine each chunk sorted, chunks ordered by their medians

MedianofMedians
is Greater than all

of these

𝑛
5

5

List could be long, so not
a small number!

Why is this good?

31

MedianofMedians
is larger than all

of these

Larger than 3
things in each
(but one) list to
the left <3 !

"
⋅ /
%
− 2 ≈ #/

!*
− 6 elements

Similarly: >3 !
"
⋅ /
%
− 2 ≈ #/

!*
− 6 elements

𝑛
5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Worried about the details of
this math? See CLRS p. 221

Run-time of Quickselect with Median of Medians

• What’s the cost 𝑆 𝑛 for Quickselect with Median of Medians?
• Divide: select an element 𝑝 using Median of Medians,

Partition(𝑝)
• Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left.

Else recurse right
• Combine: Nothing!

32

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7

10
𝑛

𝑆 𝑛 ≤ 𝑆
7

10
𝑛 +𝑀 𝑛 + Θ(𝑛)

Run-time M(n) for Median of Medians

33

1. Break list into chunks of 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(𝑛)

Θ(𝑛)

𝑆
𝑛
5

𝑀 𝑛 = 𝑆
𝑛
5
+ Θ(𝑛)

Quickselect

34

𝑀 𝑛 = 𝑆
𝑛
5
+ Θ(𝑛)𝑆 𝑛 ≤ 𝑆

7𝑛
10

+𝑀 𝑛 + Θ(𝑛)

= 𝑆
7𝑛
10

+ 𝑆
𝑛
5
+ Θ(𝑛)

𝑆 𝑛 = O(𝑛)
We can show by proof by induction that:

∴ 𝑆 𝑛 = Θ(𝑛)
𝑆 𝑛 = Ω(𝑛)

(next two slides)

Proof by Induction

𝑇 𝑛 = 𝑇 ⁄𝑛 5 + 𝑇 ⁄7𝑛 10 + 𝑐 ⋅ 𝑛

Claim: 𝑇 𝑛 ≤ 10𝑐𝑛

Base Case: 𝑇 0 = 0
𝑇 1 = 𝑐 ≤ 10𝑐 which is true since 𝑐 ≥ 1

Strictly speaking, we can handle any
𝑐 > 0, but assuming 𝑐 ≥ 1 to

simplify the analysis here

Prove 𝑇 𝑛 = O(𝑛)

Proof by Induction

36

𝑇 𝑛 = 𝑇 ⁄𝑛 5 + 𝑇 ⁄7𝑛 10 + 𝑐 ⋅ 𝑛
Inductive hypothesis: ∀𝑛 ≤ 𝑥+ : 𝑇 𝑛 ≤ 10𝑐𝑛

𝑇 𝑥) + 1
Inductive step:

= 10𝑐
1
5 +

7
10 𝑥) + 1 + 𝑐(𝑥) + 1)

= 9𝑐 𝑥) + 1 + 𝑐 𝑥) + 1 = 10𝑐(𝑥) + 1)

= 𝑇
1
5
𝑥) + 1 + 𝑇

7
10

𝑥) + 1 + 𝑐(𝑥) + 1)

≤ 10𝑐
1
5
𝑥) + 1 + 10𝑐

7
10

𝑥) + 1 + 𝑐(𝑥) + 1)Use inductive hypothesis

Simplify terms w/ algebra

We’ve proved inductive
hypothesis for 𝒙𝟎 + 𝟏

Compare to ‘Obvious’ Approach

• An “obvious” approach to Selection Problem:
– Given list and value i: Sort list, then choose i-th item
– We’ve only seen sorting algorithms that are Ω(𝑛 log 𝑛)
– We can show this really is a lower-bound
– So this approach is Θ(𝑛 log 𝑛)

• Therefore Quickselect is asymptotically better than this
sorting-based solution for Selection Problem!

37

Phew! Back to Quicksort

Then we divide in half each time

38

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛
2
+ Θ(𝑛)

Using Quickselect, with a median-of-medians partition,
we’re guaranteed to use true median, so:

𝑇 𝑛 = Θ(𝑛 log 𝑛)

Is it worth it?

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run
time

• But, this approach has very large constants
– If you absolutely must know it will be Θ(𝑛 log 𝑛), choose MergeSort

• Better approach: Choose random pivot for Quicksort
– Very small constant (random() is a fast algorithm)
– Can prove the expected runtime is Θ(𝑛 log 𝑛)
• Why? Getting unbalanced partitions every time is extremely unlikely

39

