Strassen’s Algorithm for Matrix Multiplication,
QuickSelect, and Median of Medians

Readings: CLRS Ch. 4.2, Ch. 9

CS 4102: Algorithms
Spring 2021
Mark Floryan and Tom Horton

* CLRS Section 4.2 on Strassen’s algorithm

* CLRS Chapter 9
* Wikipedia articles on Quickselect and Median of Medians

Matrix Multiplication

n
1 2 3] [2] |4] |6
n

4 5 6|X|8| 10| [12
7 8 91 114 16| (13

2+16+42 4+20+48 6+ 24+ 54

60 72 384]
132 162 192
204 252 300

Run time? 0(n3) Lower Bound? 0 (n?) 4

Matrix Multiplication D&C

Multiply nXn matrices (A and B)
Divide:

a3 Q14| Q15 QA6 (b3 b1a]| bis bield

Matrix Multiplication D&C

Multiply nXn matrices (A and B)

A1 A2 Bi1 || Bi2
A=|; > i B=|% J /
\A21 “Az,z) | B21 \Bzz .
Combine:
AB = [A1,1B1,1 +A12B21 A11Bi2 t A1,232,2]
Az 1B11 +Az2B21 Az1Bip + AypB5),

2 Case 1!

Runtime? T(n)=8T (g) + 4 (g) T(n) : @(n3)6

~ind an Algorithm with Better Recurrence”?

n N 2

T(n) = 8T (2) + 4(2)

 We’ve got a recurrence and want to improve things.
You know how the Master Theorem works.

What can we change to make it better?

— Reduce the number of subproblems.

— Reduce the order class of the non-recursive work.
(OK to do more non-recursive work if new f(n) is same 0)

Calculate:

Q1= (A11 + Az2)(Bi1 + By)
Q2 = (A2,1 + Az,z)B1,1
Q3 = A11(B12 — B32)
Qs = A22(B21 — B11)
Qs = (A1 + A12)B2
Qs = (Az1 — A11)(Bi1 + By 2)
Q7 = (A2 — A22)(By1 + By)

Find AB:

Ay1B11 +A12B,1 A11B1, + A1,sz,2]
Ay1B11+A,B,17 Ay1B1,+A3,B;,
[Q1+Q4—Q5+Q7 (3 + s]

Q2 + Q4 Q1 — Q2+ 03+ ¢
Number Mults.: 7 Number Adds: 18

T(n) = 7T (g) +18 (g)2

Strassen’s Algorithm

T(n) = 7T (g) + gnz

9
a=7b=2f(n) =§n2

nlogb a — nlogz 7 ~ n2.807 Case 1!

T(n) — @(nlogz 7) ~ @(n2.807)

N\

EER
SEEEAN:

IS this the fastest?

3.0 -
naive
ol Best possible
[is unknown
Strassen
28 - ~—Pan
I » Bini et al.
[May not even
271 exist!
2.6 -
i Schonhage § ¢ omani
2.3 - Coppersmith, Winograd Strassen
2.4 i Coppersmith, Winograd Stothers
- Williams
1 I I | I I | 1 I I 1 | I I L I I | I I 1 | I Yea.r
1950 1960 1970 1980 1990 2000 2010

11

Review: Quicksort

ldea: pick a pivot element, recursively sort two sublists around
that element

* Divide: select pivot element p, Partition(p)
* Conquer: recursively sort left and right sublists

* Combine: Nothing!

13

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right

14

Quicksort Run Time (Best)

If the pivot is always the median:

T

Then we divide in half each time

T(n) = 2T (g) +n

T(n) = 0(nlogn)

15

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

_

Then we shorten by 1 each time
Tn)=Tn—1)+n

T(n) = 0(n?)

16

Can we Pick a Good Pivot for Quicksort?

 What makes a good Pivot for Quicksort?

— Roughly even split between left and right
— |deally: the median

e Can we find a list’s median in linear time?

— Quickselect (https://en.wikipedia.org/wiki/Quickselect)
* Finds the median
* Works a lot like Quicksort: needs to do a Partition
 We need a good pivot for Quickselect for it to have good time-complexity
— Median of Medians (https://en.wikipedia.org/wiki/Median_of medians)
e Can be used to find “pretty good” pivot for QS, or with Quickselect

17

https://en.wikipedia.org/wiki/Quickselect
https://en.wikipedia.org/wiki/Median_of_medians

Quickselect

* Finds it" order statistic
o ith smallest element in the list
o 15t order statistic: minimum
o nth order statistic: maximum

n . . .
O ;th order statistic: median

* CLRS, Section 9.1

— Selection problem: Give list of distinct numbers and value J, find
value x in list that is larger than exactly i-1 list elements

18

Quickselect

ldea: pick a pivot element, partition, then recurse on the sublist
containing index i

* Divide: select an element p, Partition(p)

* Conquer: if i = index of p, done!
— if i < index of p recurse left. Else recurse right

* Combine: Nothing!

(Note: just one recursive call, unlike Quicksort.)

19

Partition (Divide step)

Given: a list, a pivot value x Note: now using “x” to refer

to pivot value. We called it
“p” in previous slides.

Start: unordered list

11| 5 7 3 112110 1 2 4 9 6 .

Goal: All elements on left, all > x on right

20

Conguer

Position > 1 2 3 4 5 6 7 8 9 10 11 12
in list

All elements < x T All eIerr!ents > X
x = 8 put exactly where it belongs at position 8 (the split-point)

Remember: we’re looking for the ith order statistic

e If the split-point (8) is i we’re done! The value stored at the split-point
is the result.

e Ifi <split-point, look in left sub-list (using same value i)
e Ifi > split-point, look in right sub-list (using an adjusted value of i)

— For example, if we wanted the 10 order statistic in the entire list,
here that would be the 2" order statistic in the right sub-list

21

CLRS Pseudocode for Quickselect

elseif i <k
return RANDOMIZED-SELECT (A, p,q — 1,i)
else return RANDOMIZED-SELECT(A,q + 1,r,i — k)

A —the list

RANDOMIZED-SELECT (4, p,7,i) p — index of first item

o r —index of last item
I Ep==r i — find ith smallest item
2 return A[p] g — pivot location
3 g = RANDOMIZED-PARTITION (4, p,r) k= number on left + 1
4 k =qg—p+1 [/ numberof elements in left sub-list + 1
5 ifi== // the pivot value is the answer
6 return A[q]
7
8
9

// note adjustment to i when recursing on right side

Note: In CLRS, they’re using a partition that randomly chooses the pivot element.
That’s why you see “Randomized” in the names here. Ignore that for the moment. 27

Work These =xamples!

* For each of the following calls, show

— The value of g after each partition,

— Which recursive calls made

1. Se
2. Se
3. Se

ect(
ect(

ect(

:3I 2) 9) OI 7) 5) 6) 1:
:3I 2) 9) OI 7) 5) 6) 1:

:3I 2) 9) OI 7) 5) 6) 1:

, p=0, r=7, i=2)
, p=0, r=7, i=5)
, p=0, r=7, i=7)

23

Quickselect Run Time

If the pivot is always the median:

T[]

Then we divide in half each time

S(n) =S(g)+n

S(n) =0(n)

24

Quickselect Run Time

If the partition is always unbalanced:

_

Then we shorten by 1 each time

Sm)=Sn—1)+n

S(n) = 0(n?)

25

Good Pivot for Quickselect

* What makes a good Pivot for Quickselect? QQ
— Roughly even split between left and right (‘\’b

— ldeally: median Oe

e Here’s what’s next:

— First, median of medians algorithm
* Finds something close to the median in ©®(n) time

— Second, we can prove that when its result used with Quickselect’s partition, then
Quickselect is guaranteed 0(n)
* Because we now have a ©(n) way to find the median, this guarantees Quicksort will be ©(nlgn)
— Notes:
* We have to do all this for every call to Partition in Quicksort

* We could just use the value returned by median of medians for Quicksort’s Partition
— See CLRS section “Balanced Partitioning” starting on p. 175

26

Pretty Good Pivot

 What makes a “pretty good” Pivot?

— Both sides of Pivot >30%
>30%

O Select Pivot from
r this range

T
T

>30%

27

Median of Medians

e Fast way to select a “pretty good” pivot

* Guarantees pivot is greater than 30% of elements and less than
30% of the elements

— |.e. it’s in the middle 40% (£20% of the true median)

* |dea: break list into chunks, find the median of each chunk, use the
median of those medians

* CLRS, pp. 220-221
* https://en.wikipedia.org/wiki/Median of medians

28

https://en.wikipedia.org/wiki/Median_of_medians

Median of Medians

1. Break list into chunks of size 5 List could be long, many
/ more than 5 chunks!

2. Find the median of each chunk
(using insertion sort: n=5, 20 comparisons)

3. Return median of medians (using Quickselect, this
algorithm, called recursively, on list of medians)

. <« List could be long, many
more than 5 medians!

29

VWhy Is this good?

Imagine each chunk sorted, chunks ordered by their medians

MedianofMedians
is Greater than all
Of these A A A A A

<[<f< < — 5

—_

N N N N

List could be long, so not

[Yg} / a small number!

30

Why Is this good?

MedianofMedians
is larger than all
of these ~ A ~ ~ <

A N N A A Worried about the details of
this math? See CLRS p. 221

Larger than 3

|
things in each E
(but one) list to 1 I i
the left (5 |~ 2) ~ - — 6 elements < L]
Similarly: 3 (1 = 2) ~ 2 _ 6 elements > [
| . = 10 31

Run-time of Quickselect with Median of Medians

* What’s the cost S(n) for Quickselect with Median of Medians?
* Divide: select an element p using Median of Medians,
Partition(p) M(n) + ©(n)

* Conquer: ifi = index of p, done, if i < index of p recurse left.
Else recurse right

7
<3S (—n)
* Combine: Nothing! 10

S(h) < S (1—70n) + M(n) + 0(n) 32

Run-time M(n) for Median of Medians

1. Break list into chunks of 5 ©(n)

2. Find the median of each chunk ©(n)

3. Return median of medians (using Quickselect)
[S (E)
5

Mn)=3S (g) + 0(n)

33

Quickselect

S(n) <S(ZO)+M(n)+®(n) M(n) =S(§)+®(n)

—s(2) 45 0
(10) N (E) +0)
We can show by proof by induction that:
S(Tl) — O(Tl) (next two slides)

S(n) = Qn)
~S(n) =0(Mn)

Proot by Induction

T(n)=Tn/5)+T(7n/10)+c-n
Prove T(n) = 0(n)

Claim: T(n) < 10cn

Base Case: T(0) =0
T(1) = ¢ < 10c which is true sincec > 1

~
Strictly speaking, we can handle any

c > 0, butassumingc = 1 to
simplify the analysis here

)

Proot by Induction

T(n) =Tn/5)+T(7n/10)+c-n

Inductive hypothesis: Vn < x, : T(n) < 10cn

Inductive step: 1 v/
T(xg+1) = T(g(xo + 1)) +T(1—O(x0 + 1)) +c(xyg + 1)

1 7
Use inductive hypothesis < 10c (g (xO + 1)) + 10c (E (xO + 1)) + C(XO + 1)

1 7
Simplify terms w/ algebra = 10c (g + E) (xO + 1) + C(xO + 1)

We’ve proved inductive

=9c(xo+ 1) +clxg+1) =10c(xo +1) | ihesis for x, + 1

36

Compare to ‘Opbvious’ Approach

* An “obvious” approach to Selection Problem:
— Given list and value i: Sort list, then choose i-th item
— We'’ve only seen sorting algorithms that are (L(nlogn)
— We can show this really is a lower-bound
— So this approach is O(nlogn)

* Therefore Quickselect is asymptotically better than this
sorting-based solution for Selection Problem!

37

Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition,
we’re guaranteed to use true median, so:

e[[rof]]

2 5 1 3 6 4

2 1.5 6 4

Then we divide in half each time
n
T(n) = 2T (E) +0(n)

T(n) = O(nlogn)

38

IS It worth it”?

* Using Quickselect to pick median guarantees ®(nlogn) run
time

* But, this approach has very large constants
— If you absolutely must know it will be ®(nlogn), choose MergeSort
e Better approach: Choose random pivot for Quicksort

— Very small constant (random() is a fast algorithm)

— Can prove the expected runtime is @(nlogn)
 Why? Getting unbalanced partitions every time is extremely unlikely

39

