More Divide and Conquer: Quicksort and Closest Pair of Points

1

CS 4102: Algorithms Fall 2021 Mark Floryan and Tom Horton

Trominoes

Next Example: Trominos

Tiling problems

- For us, a game: Trominos
- In "real" life: serious tiling problems regarding component layout on VLSI chips

Definitions

- Tromino
- A deficient board
 - $n \times n$ where $n = 2^k$
 - exactly one square missing
- Problem statement:
 - Given a deficient board, tile it with trominos
 - Exact covering, no overlap

Trominos: Playing the Game, Strategy

- Java app for Trominos: <u>http://www3.amherst.edu/~nstarr/puzzle.html</u>
- How can we approach this problem using Divide and Conquer?
- Small solutions: Can we solve them directly?
 - Yes: 2 x 2 board
- Next larger problem: 4 x 4 board
 - Hmm, need to divide it
 - Four 2 x 2 boards
 - Only one of these four has the missing square
 - Solve it directly!
 - What about the other three?

Trominos: Key to the Solution

- Place one tromino where three 2 x 2 boards connect
 - You now have three 2 x 2 deficient boards
 - Solve directly!
- General solution for deficient board of size n
 - Divide into four boards
 - Identify the smaller board that has the removed tile
 - Place one tromino that covers the corner of the other three
 - Now recursively process all four deficient boards
 - Don't forget! First, check for n==2

```
Input Parameters: n, a power of 2 (the board size);
                   the location L of the missing square
Output Parameters: None
tile(n,L) {
   if (n == 2) {
       // the board is a right tromino T
       tile with T
       return
   }
   divide the board into four n/2 \times n/2 subboards
   place one tromino as in Figure 5.1.4(b)
   // each of the 1 \times 1 squares in this tromino
   // is considered as missing
   let m_1, m_2, m_3, m_4 be the locations of the missing squares
   tile(n/2, m_1)
   tile(n/2, m)
   tile(n/2, m_3)
   tile(n/2, m_{A})
```

Trominos: Analysis

- What do we count? What's the basic operation?
 - Note we place a tromino and it stays put
 - No loops or conditionals other than placing a tile
 - Assume placing or drawing a tromino is constant
 - Assume that finding which subproblem has the missing tile is constant
- Conclusion: we can just count how many trominos are placed
- How many fit on a n x n board?

▶ (n² - 1) / 3

Do you think this optimal?

Trominos: Analysis

Runtime?

- If 'n' is the size of one board dimension (nxn board)
 - 4 subproblems of size n/2 x n/2
 - O(1) to place one tromino "across the cuts" and "combine"
- ► T(n) = 4T(n/2) + 1 = ??
- Also, think intuitively. There are n^2 board spaces and each "round" you are placing one tromino (3 spaces)
 - So at least n^2 / 3 JUST to place the Trominos

Closest Pair of Points

Readings: CLRS 33.4

Closest Pair of Points in 2D Space

Given: A list of points

Return:

Distance of the pair of points that are closest together (or possibly the pair too)

Closest Pair of Points: Naïve

Given: A list of points

Return: Distance of the closest pair of points

Naive Algorithm: $O(n^2)$ Test every pair of points, return the closest.

We can do better! $\Theta(n \log n)$

Divide: 2 (\mathbf{I}) At median x coordinate 5 Conquer: (4) Recursively find closest (6)pairs from Left and Right $\overline{7}$ Combine: 3 8 LeftPoints **RightPoints**

Divide: At median x coordinate

Conquer:

Recursively find closest pairs from Left and Right

Combine:

Return min of Left and Right pairs Problem ?

Combine: 2 2 Cases: (\mathbf{I}) 1. Closest Pair is 5 completely in Left or Right 6 2. Closest Pair Spans our "Cut" 9 Need to test points 3 across the cut 8 LeftPoints **RightPoints**

(4)

Define "runway" or "strip" along the cut.

Combine:

2. Closest Pair Spanned our "Cut"

Need to test points across the cut.

Bad approach: Compare all points within $\delta =$ $\min\{\delta_L, \delta_R\}$ of the cut.

How many are there?

Define "runway" or "strip" along the cut.

Combine: 2. Closest Pair Spanned our "Cut" δ_L Need to test points across the cut δ_{P} Bad approach: Compare 6 all points within $\delta =$ $\overline{7}$ $\min{\{\delta_L, \delta_R\}}$ of the cut. How many are there? <u>3</u>2δ $T(n) = 2T\left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)^2$ $= \Theta(n^2)$ LeftPoints RightPoints

Combine:

2. Closest Pair Spanned our "Cut"

Need to test points across the cut

We don't need to test all pairs!

Don't need to test any points that are $> \delta$ from one another

LeftPoints

RightPoints

Reducing Search Space

Combine:

Need to test points across the cut

Claim #1: if two points are the closest pair that cross the cut, then you can surround them in a box that's $2 \cdot \delta$ wide by δ tall.

Let's draw some examples.

δ

Reducing Search Space

Assume you're checking in increasing y-order, and you've reached the first point of the closest pair.

Do you have to look at **all points above it** to be <u>guaranteed</u> to find the other point and the minimum distance?

No!

- Imagine you drew a box with its bottom at point's y-coordinate.
- See Claim #1.
- Claim #2: only 8 points can be in the box.

Claim #1: if two points are the closest pair that cross the cut, then you can surround them in a box that's $2 \cdot \delta$ wide by δ tall.

δ

Reducing Search Space

Assume you're checking in increasing y-order, and you've reached the first point of the closest pair.

Do you have to look at **all points above it** to be <u>guaranteed</u> to find the other point and the minimum distance?

No!

- Imagine you drew a box with its bottom at point's y-coordinate.
- See Claim #1.
- Claim #2: only 8 points can be in the box.

Claim #1: if two points are the closest pair that cross the cut, then you can surround them in a box that's $2 \cdot \delta$ wide by δ tall.

δ

Combine:

2. Closest Pair Spanned our "Cut"

Consider points in strip in increasing y-order.

For a given point p, we can prove the 8th point and beyond is more than δ from p. (pp. 1041-2 in CLRS)

So for each point in strip, check next 7 points in y-order.

 $\Theta(n)$ Better!

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by *x*-coordinate (Later we'll also need to process points by y-coordinate, too.)

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list

Base case?

Combine:

- Consider only points in the runway (*x*-coordinate within distance δ of median)
- Process runway points by *y*-coordinate
- Compare each point in runway to 7 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Closest Pair of Points: Divide and Conquer

What is the running time?	$\Theta(n\log n)$	Initialization: Sort points by <i>x</i> -coordinate
$\Theta(n \log n)$	Θ(1)	Divide: Partition points into two lists of points based on x -coordinate (split at the median x)
T(n)	2 <i>T</i> (<i>n</i> /2)	Conquer: Recursively compute the closest pair of points in each list
- ()		
$T(n) = 2T(n/2) + \Theta(n)$	$\Theta(n)$	 Combine: Process runway points by <i>y</i>-coordinate and Compare each point in runway to 7 points above it and save the closest pair.
Case 2 of Master's Theorem $T(n) = \Theta(n \log n)$	Θ(1)	 Output closest pair among left, right, and runway points

Summary for Closest Pair of Points

- Comparing all pairs is a brute-force fail
 - Except for small inputs
- Divide and conquer a big improvement
- Needed to find an efficient way for part of the combine step
 - Geometry came through for us here!
 - Only needed to look at constant number of points for each point in the strip
- Implementation subtleties
 - > Don't want to sort the strip by y-coordinate in each recursive call
 - In initialization, create an "index" that lets you process all points in order by y-coordinate
 - (There are other ways to address this.)