
More Divide and Conquer:
Quicksort and Closest Pair of Points

CS 4102: Algorithms
Fall 2021

Mark Floryan and Tom Horton

1

Trominoes

2

Next Example: Trominos

3

} Tiling problems
} For us, a game: Trominos
} In “real” life: serious tiling problems regarding component

layout on VLSI chips
} Definitions

} Tromino
} A deficient board

} n x n where n = 2k

} exactly one square missing

} Problem statement:
} Given a deficient board, tile it with trominos

} Exact covering, no overlap

Trominos: Playing the Game, Strategy

4

} Java app for Trominos:
http://www3.amherst.edu/~nstarr/puzzle.html

} How can we approach this problem using Divide and Conquer?
} Small solutions: Can we solve them directly?

} Yes: 2 x 2 board

} Next larger problem: 4 x 4 board
} Hmm, need to divide it
} Four 2 x 2 boards
} Only one of these four has the missing square

} Solve it directly!
} What about the other three?

http://www3.amherst.edu/~nstarr/puzzle.html

Trominos: Key to the Solution

5

} Place one tromino where three 2 x 2 boards connect
} You now have three 2 x 2 deficient boards
} Solve directly!

} General solution for deficient board of size n
} Divide into four boards
} Identify the smaller board that has the removed tile
} Place one tromino that covers the corner of the other three
} Now recursively process all four deficient boards
} Don’t forget! First, check for n==2

Input Parameters: n, a power of 2 (the board size);
the location L of the missing square

Output Parameters: None

tile(n,L) {
if (n == 2) {

// the board is a right tromino T
tile with T
return

}

divide the board into four n/2 × n/2 subboards
place one tromino as in Figure 5.1.4(b)

// each of the 1 × 1 squares in this tromino
// is considered as missing

let m1,m2,m3,m4 be the locations of the missing squares
tile(n/2,m1)
tile(n/2,m2)
tile(n/2,m3)
tile(n/2,m4)

}
6

Trominos: Analysis

7

} What do we count? What’s the basic operation?
} Note we place a tromino and it stays put
} No loops or conditionals other than placing a tile
} Assume placing or drawing a tromino is constant
} Assume that finding which subproblem has the missing tile is

constant

} Conclusion: we can just count how many trominos are
placed

} How many fit on a n x n board?
} (n2 – 1) / 3

} Do you think this optimal?

Trominos: Analysis

8

} Runtime?

} If ‘n’ is the size of one board dimension (nxn board)
} 4 subproblems of size n/2 x n/2
} O(1) to place one tromino “across the cuts” and “combine”

} T(n) = 4T(n/2) + 1 = ??

} Also, think intuitively. There are n^2 board spaces and
each “round” you are placing one tromino (3 spaces)
} So at least n^2 / 3 JUST to place the Trominos

Closest Pair of Points

Readings: CLRS 33.4

9

Closest Pair of Points in 2D Space

10

1 2

3

4
5

6

7

8

Given:
A list of points

Return:
Distance of the pair of
points that are closest
together
(or possibly the pair too)

Naive Algorithm:
Test every pair of points,
return the closest.

Closest Pair of Points: Naïve

11

1 2

3

4
5

6

7

8

Given:
A list of points

Return:
Distance of the closest
pair of points

𝑂(𝑛!)

We can do better!
Θ(𝑛 log 𝑛)

Closest Pair of Points: D&C

1 2

3

4
5

6

7

8

Divide: How?
At median x coordinate

12

Conquer:

Combine:

Closest Pair of Points: D&C

1 2

3

4
5

6

7

8

Divide:
At median x coordinate

Conquer:

LeftPoints RightPoints

Recursively find closest
pairs from Left and
Right

Combine:

13

Closest Pair of Points: D&C

1 2

3

4
5

6

7

8

Divide:
At median x coordinate

Conquer:

LeftPoints RightPoints

Recursively find closest
pairs from Left and
Right

Combine:
Return min of Left and
Right pairs Problem

?

?

14

Closest Pair of Points: D&C

1 2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:
2 Cases:

?

1. Closest Pair is
completely in Left or
Right

2. Closest Pair Spans
our “Cut”

Need to test points
across the cut

15

Spanning the Cut

1 2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut.

𝛿"

𝛿#

Bad approach: Compare
all points within 𝛿 =
min{𝛿" , 𝛿#} of the cut.

2𝛿How many are there?

16

Define “runway” or
“strip” along the cut.

Spanning the Cut

1 2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

𝛿"

𝛿#

2𝛿

Bad approach: Compare
all points within 𝛿 =
min{𝛿" , 𝛿#} of the cut.

How many are there?

𝑻 𝒏 = 𝟐𝑻
𝒏
𝟐 +

𝒏
𝟐

𝟐

17

= 𝚯 𝒏𝟐

Define “runway” or
“strip” along the cut.

Spanning the Cut

1 2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

𝛿"

𝛿#

2𝛿

We don’t need to test all
pairs!

Don’t need to test any
points that are > 𝛿 from
one another

18

Reducing Search Space
Combine:
Need to test points across the
cut
Claim #1: if two points are
the closest pair that cross the
cut, then you can surround
them in a box that’s 2 ⋅ 𝛿 wide
by 𝛿 tall.

2 ⋅ 𝛿

Let’s draw some examples.

19

𝛿

Reducing Search Space

Claim #1: if two points are the
closest pair that cross the cut, then
you can surround them in a box
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿
Assume you’re checking in
increasing y-order, and you’ve
reached the first point of the
closest pair.
Do you have to look at all
points above it to be guaranteed
to find the other point and the
minimum distance?

20

No!
• Imagine you drew a box with its

bottom at point’s y-coordinate.
• See Claim #1.
• Claim #2: only 8 points can be in

the box.

𝛿

Reducing Search Space

Claim #1: if two points are the
closest pair that cross the cut, then
you can surround them in a box
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿
Assume you’re checking in
increasing y-order, and you’ve
reached the first point of the
closest pair.
Do you have to look at all
points above it to be guaranteed
to find the other point and the
minimum distance?

21

No!
• Imagine you drew a box with its

bottom at point’s y-coordinate.
• See Claim #1.
• Claim #2: only 8 points can be in

the box.

𝛿

Spanning the Cut

1 2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned our “Cut”

𝛿"

𝛿#

2𝛿

Consider points in strip in
increasing y-order.

For a given point p, we can
prove the 8th point and beyond
is more than 𝛿 from p.

(pp. 1041-2 in CLRS)

So for each point in strip,
check next 7 points in y-order.

22

𝚯 𝒏 𝑩𝒆𝒕𝒕𝒆𝒓!

Only
check
next 7

Closest Pair of Points: Divide and Conquer

1 2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate
(Later we’ll also need to process points by y-
coordinate, too.)

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Consider only points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Process runway points by 𝑦-coordinate
• Compare each point in runway to 7 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

Closest Pair of Points: Divide and Conquer

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Process runway points by 𝑦-coordinate and

Compare each point in runway to 7 points
above it and save the closest pair

• Output closest pair among left, right, and
runway points

Summary for Closest Pair of Points

25

} Comparing all pairs is a brute-force fail
} Except for small inputs

} Divide and conquer a big improvement
} Needed to find an efficient way for part of the combine step

} Geometry came through for us here!
} Only needed to look at constant number of points for each point in

the strip

} Implementation subtleties
} Don’t want to sort the strip by y-coordinate in each recursive call
} In initialization, create an “index” that lets you process all points in

order by y-coordinate
} (There are other ways to address this.)

