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Trominoes
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Next Example: Trominos
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} Tiling problems
} For us, a game:  Trominos
} In “real” life: serious tiling problems regarding component 

layout on VLSI chips
} Definitions

} Tromino
} A deficient board

} n x n where n = 2k

} exactly one square missing

} Problem statement:
} Given a deficient board, tile it with trominos

} Exact covering, no overlap



Trominos: Playing the Game, Strategy
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} Java app for Trominos:
http://www3.amherst.edu/~nstarr/puzzle.html

} How can we approach this problem using Divide and Conquer?
} Small solutions: Can we solve them directly?

} Yes:  2 x 2 board

} Next larger problem:  4 x 4 board
} Hmm, need to divide it
} Four 2 x 2 boards
} Only one of these four has the missing square

} Solve it directly!
} What about the other three?

http://www3.amherst.edu/~nstarr/puzzle.html


Trominos: Key to the Solution

5

} Place one tromino where three 2 x 2 boards connect
} You now have three 2 x 2 deficient boards
} Solve directly!

} General solution for deficient board of size n
} Divide into four boards
} Identify the smaller board that has the removed tile
} Place one tromino that covers the corner of the other three
} Now recursively process all four deficient boards
} Don’t forget! First, check for n==2



Input Parameters: n, a power of 2 (the board size);
the location L of the missing square

Output Parameters: None

tile(n,L) {
if (n == 2) {

// the board is a right tromino T
tile with T
return

}

divide the board into four n/2 × n/2 subboards
place one tromino as in Figure 5.1.4(b)

// each of the 1 × 1 squares in this tromino 
// is considered as missing

let m1,m2,m3,m4 be the locations of the missing squares
tile(n/2,m1)
tile(n/2,m2)
tile(n/2,m3)
tile(n/2,m4)

}
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Trominos: Analysis
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} What do we count?  What’s the basic operation?
} Note we place a tromino and it stays put
} No loops or conditionals other than placing a tile
} Assume placing or drawing a tromino is constant
} Assume that finding which subproblem has the missing tile is 

constant

} Conclusion: we can just count how many trominos are 
placed

} How many fit on a n x n board?
} (n2 – 1) / 3 

} Do you think this optimal?



Trominos: Analysis
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} Runtime?

} If ‘n’ is the size of one board dimension (nxn board)
} 4 subproblems of size n/2 x n/2
} O(1) to place one tromino “across the cuts” and “combine”

} T(n) = 4T(n/2) + 1 = ??

} Also, think intuitively. There are n^2 board spaces and 
each “round” you are placing one tromino (3 spaces)
} So at least n^2 / 3 JUST to place the Trominos



Closest Pair of Points

Readings: CLRS 33.4
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Closest Pair of Points in 2D Space
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Given: 
A list of points

Return: 
Distance of the pair of 
points that are closest 
together
(or possibly the pair too)



Naive Algorithm:
Test every pair of points, 
return the closest.

Closest Pair of Points: Naïve
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Given: 
A list of points

Return: 
Distance of the closest 
pair of points

𝑂(𝑛!)

We can do better!
Θ(𝑛 log 𝑛)



Closest Pair of Points: D&C
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Divide: How?
At median x coordinate
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Conquer: 

Combine: 



Closest Pair of Points: D&C
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Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and 
Right

Combine: 
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Closest Pair of Points: D&C
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Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and 
Right

Combine: 
Return min of Left and 
Right pairs Problem

?

?
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Closest Pair of Points: D&C
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LeftPoints RightPoints

Combine: 
2 Cases:

?

1. Closest Pair is 
completely in Left or 
Right

2. Closest Pair Spans 
our “Cut”

Need to test points 
across the cut
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Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut.

𝛿"

𝛿#

Bad approach: Compare 
all points within 𝛿 =
min{𝛿" , 𝛿#} of the cut.

2𝛿How many are there?
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Define “runway” or 
“strip” along the cut.



Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿"

𝛿#

2𝛿

Bad approach: Compare 
all points within 𝛿 =
min{𝛿" , 𝛿#} of the cut.

How many are there?

𝑻 𝒏 = 𝟐𝑻
𝒏
𝟐 +

𝒏
𝟐

𝟐
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= 𝚯 𝒏𝟐

Define “runway” or 
“strip” along the cut.



Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿"

𝛿#

2𝛿

We don’t need to test all 
pairs!

Don’t need to test any 
points that are > 𝛿 from 
one another
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Reducing Search Space
Combine: 
Need to test points across the 
cut
Claim #1:  if two points are 
the closest pair that cross the 
cut, then you can surround 
them in a box that’s 2 ⋅ 𝛿 wide 
by 𝛿 tall.

2 ⋅ 𝛿

Let’s draw some examples.
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𝛿



Reducing Search Space

Claim #1:  if two points are the 
closest pair that cross the cut, then 
you can surround them in a box 
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿
Assume you’re checking in 
increasing y-order, and you’ve 
reached the first point of the 
closest pair.
Do you have to look at all 
points above it to be guaranteed
to find the other point and the 
minimum distance?
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No!
• Imagine you drew a box with its 

bottom at point’s y-coordinate.
• See Claim #1.
• Claim #2: only 8 points can be in 

the box.

𝛿



Reducing Search Space

Claim #1:  if two points are the 
closest pair that cross the cut, then 
you can surround them in a box 
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿
Assume you’re checking in 
increasing y-order, and you’ve 
reached the first point of the 
closest pair.
Do you have to look at all 
points above it to be guaranteed
to find the other point and the 
minimum distance?
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No!
• Imagine you drew a box with its 

bottom at point’s y-coordinate.
• See Claim #1.
• Claim #2: only 8 points can be in 

the box.

𝛿



Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned our “Cut”

𝛿"

𝛿#

2𝛿

Consider points in strip in 
increasing y-order.

For a given point p, we can 
prove the 8th point and beyond 
is more than 𝛿 from p.

(pp. 1041-2 in CLRS)

So for each point in strip, 
check next 7 points in y-order.
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𝚯 𝒏 𝑩𝒆𝒕𝒕𝒆𝒓!

Only 
check 
next 7



Closest Pair of Points: Divide and Conquer
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LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate
(Later we’ll also need to process points by y-
coordinate, too.)

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Consider only points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Process runway points by 𝑦-coordinate
• Compare each point in runway to 7 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Process runway points by 𝑦-coordinate and

Compare each point in runway to 7 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points



Summary for Closest Pair of Points
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} Comparing all pairs is a brute-force fail
} Except for small inputs

} Divide and conquer a big improvement
} Needed to find an efficient way for part of the combine step

} Geometry came through for us here!
} Only needed to look at constant number of points for each point in 

the strip

} Implementation subtleties
} Don’t want to sort the strip by y-coordinate in each recursive call
} In initialization, create an “index” that lets you process all points in 

order by y-coordinate
} (There are other ways to address this.)


