
CS 4102 Quiz (Module 6 Attempt 2), Fall 2021 Page 1 of 2 UVa userid:

Name

Quiz - Module 6: Graphs: Prim’s and Dijkstra’s

1. [8 points] Answer the following True/False.

Prim’s algorithm and Dijkstra’s algorithm both rely on that fact their problems have the opti-

mal substructure property.

True False

Prim’s MST algorithm could be altered so that a priority queue is not needed but instead

information about edges is sorted once at the start of the algorithm.

True False

We know that both Dijkstra’s and Prim’s algorithms store info about a node in a priority

queue. True or false: One significant difference between them is that for a given node

Dijkstra’s stores the weight of a single edge in the priority queue, while Prim’s stores the

sum of more than one edge.

True False

For Prim’s algorithm the algorithm may choose any node as the first node in the tree, but it

will find the same spanning tree as long as no edges in the graph have the same weight.

True False

For Dijkstra’s algorithm the algorithm will produce the same tree no matter which node is

chosen as the starting node, assuming that no edges in the graph have the same weight.

True False

An important goal of using indirect heaps is to make decreaseKey() faster than ⇥(n). True False

When using indirect heaps, indices in the indirect heap must always be updated whenever

a value in the heap is swapped with its parent or one of its children.

True False

Indirect Heaps provide a way to locate an element in the heap that is not the first or last item

in ⇥(1) time.

True False

2. [1 points] If we asked you to use an exchange argument to prove the correctness of Prims MST algorithm, which

of the following best summarizes the approach you would use to do this proof?

• We prove we reach an optimal result by choosing an edge and repeatedly exchanging it with the next

smaller-weight edge until we find one that does not introduce a cycle.

• We show that if the greedy choice is not correct, then some other edge was chosen that is not the edge that

Prim’s chose, but that using the Prim’s edge would produce a result that’s better.

• We argue that if a spanning tree with smaller total weight than the one found by Prim’s does exist, it must

have “exchanged” at least one edge in Prim’s tree with another edge that introduces a cycle.

3. [4 points] For each algorithm below, list the runtime of the algorithm under the various conditions in each

column. List your runtimes in Big-Theta notation.

Algorithm Indirect-Heap Min-Heap (find() is linear

time)

Dijkstra’s Algorithm

Prim’s Algorithm

CS 4102 Quiz (Module 6 Attempt 2), Fall 2021 Page 2 of 2 UVa userid:

4. [5 points] Complete the implementation of Prim’s algorithm below by filling in the blanks with appropriate

code.

MST�Prims (G, wt) {
/⇤Omitted . . . i n i t i a l i z e PQ and s t a r t node value⇤/

while (PQ not empty) {
v = PQ. ExtractMin () ;

f o r each w adj to v {
i f (w i s unseen) {

c o s t [w] =

PQ. (w, c o s t [w]) ; // funct ion name?

parent [w] = v ;

}
e l s e i f (w i s f r i n g e &&) {

c o s t [w] =

PQ. (w, c o s t [w]) ; // funct ion name?

parent [w] = v ;

}
}

}
}

In class, we saw a proof of correctness for Dijkstra’s algorithm. Answer the following questions about that proof.

5. [1 points] In this proof by induction, state the inductive hypothesis in terms of what is true for the first k
vertices chosen by the algorithm.

6. [1 points] During our inductive step, we came to this expression: opt(vi) +wt(e) > opt(v0i) +wt(e0) + �. Briefly

explain what v0i and e0 represents in this formula.

7. [1 points] Briefly explain what � represents in the formula given in the last question. (Assume that e is the edge

that connects v to a non-tree vertex w.)

8. [1 points] Briefly explain why the proof would no longer work if � can be negative. What problem arises?

CS 4102 Quiz (Module 7 Attempt 2), Fall 2021 Page 1 of 2 UVa userid:

Name

Quiz - Module 7: Greedy Algorithms

1. [7 points] Answer the following True/False.

Optimal substructure is a property of an optimization problem (e.g., coin changing prob-

lem) and not a property of a specific algorithm.

True False

When proving correctness of the greedy choice for coin changing, we used an exchange

argument, assuming that a quarter was not optimal for A � 25 but determined that

fewer coins could be used if we did include a quarter.

True False

If only given dimes and nickels in the coin changing problem, issuing the dime first still

leads to an optimal solution if one exists (though maybe the solution won’t exist).

True False

For the fractional knapsack problem, if all the items have the same value-to-weight ratio,

then any combination of items that fills the knapsack as much as possible is optimal.

True False

The fractional knapsack problem has optimal substructure True False

In the Daycare homework problem, a feasible solution for the problem is some proper

subset of the rooms to be remodeled.

True False

A feasible solution for the unweighted interval scheduling probelm only requires the intervals

selected do not conflict with one another.

True False

2. [5 points] For each of the following Greedy algorithms studied in class, read the new proposed Greedy Choice
Property for that problem and select whether or not this new greedy choice property will still lead to an optimal
solution. Put a checkmark in the corresponding box next to each entry.

Problem Greedy Choice Optimal? Not Op-

timal?

Coin

Change

Issue the smallest coin first up to largest coin last

Unweighted

Interval

Scheduling

Use same approach as in class, but sort by decreasing start time. Take

the interval with latest start time first and proceed.

Unweighted

Interval

Scheduling

Use same approach as in class, but sort by increasing start time. Take

the interval with earliest start time first and proceed.

Unweighted

Interval

Scheduling

Take interval with fewest conflicts and repeat

Fractional

Knapsack

Problem

Start with smallest value-to-weight ratio, but leave enough room for all

other items. For example, if C = 10 and every item except the smallest ratio
one has total sum weight of 7, then fill as much of C � 7 = 10� 7 = 3 of the
knapsack with the lowest ratio item and repeat.

CS 4102 Quiz (Module 7 Attempt 2), Fall 2021 Page 2 of 2 UVa userid:

3. [2 points] Show that you understand how the Unweighted Activity Selection Problem has optimal substructure

by explaining it using the following example: Because the optimal set of intervals (start and end times shown) is
{(1, 3), (4, 5), (5, 8)} for intervals that fall between time 1 and 8, it must be the case that...

For this problem, we are given a set of points on a 1-dimensional number line (e.g., P = {�0.8, 2, 2.5}). Our goal is

to cover each point with any number of unit-length intervals. A unit-length interval is an interval that has a width of

exactly 1.0. For example, one solution to the example above would be to use two intervals, one from (�1, 0) to cover

the �0.8 and another from (1.8, 2.8) to cover both the 2 and 2.5 (note that there is wiggle room with the intervals,

and thus many possible unique solutions).

These questions are about finding an optimal greedy algorithm for covering all of the points given in P with as

few unit-length intervals as possible.

4. [2 points] Consider this greedy choice: We select an interval to cover as many points at once as we can. Show

this does not always work by drawing pictures showing the greedy’s selected intervals and a separate picture

showing the optimal set of intervals. (Hint: We used six points and had this algorithm cover 4, 1, and 1 points
respectively when the optimal is to cover 3, and 3 points respectively)

5. [1 points] Describe a better Greedy Choice Property for this problem. Note: You HAVE to cover the first (minimum)
point. Think about how to cover that one while minimizing the work left on remaining points.

6. [2 points] In a few sentences, describe why this property works. No need for a proof here, just a short bit of intuition
behind why it will work.

CS 4102 Quiz (Module 8 Attempt 2), Fall 2021 Page 1 of 2 UVa userid:

Name

Quiz - Module 8: Dynamic Programming

1. [8 points] Answer the following True/False.

In the Drainage homework assignment, if we use top-down dynamic program-
ming then we don’t need to worry about the order we process the cells (no
need to sort).

True False

Our solution to the Discrete Knapsack Problem ran in time ⇥(W ⇤ n2). True False

The dynamic programming solution to the Discrete Knapsack Problem considers
all options for a particular item: The case where that item is included in an
optimal solution and the case where it is not in some optimal solution.

True False

If a problem is recursive, but does NOT have overlapping subproblems, then
dynamic programming will not improve the runtime.

True False

Even if the set of coins is such that our greedy algorithm (using the largest
coin) will work, the dynamic programming solution will still compute the cor-
rect result but will have a worse runtime compared to the greedy algorithm.

True False

The dynamic programming solution to Log Cutting had a runtime of n2, even
though the memoization array was of size n

True False

When solving the weighted activity selection problem, we needed to pre-
compute the values for P (). Computing this function has better time com-
plexity than any other part of the algorithm.

True False

When solving the discrete knapsack problem, if an item completely fills the knap-
sack then that item is definitely in the optimal solution

True False

2. [3 points] For this question, you will need to state whether or not the alteration to each dynamic programming
algorithm will still produce the correct result. Read the alteration to the algorithm and then place a checkmark

in the corresponding box in the table to note if the new approach still produces the optimal solution or not.

Problem Variant Optimal? Not Op-

timal?

Log Cut-
ting

Same as in class, but work from the end of the log to the front instead
(i.e., identify the location of the first cut instead of the last cut).

Weighted
Activity
Selection

Same as in class but sort intervals by descending start times. P (i) func-
tion returns first interval AFTER interval i that does not conflict. Work
from last interval down to first.

Discrete
Knap-
sack
Problem

Same as in class, but sort the items according to their value-to-weight
ratio first. Consider items in this particular order when building the DP
table.

CS 4102 Quiz (Module 8 Attempt 2), Fall 2021 Page 2 of 2 UVa userid:

3. [3 points] Take a look at the following top-down dynamic programming implementation for the coin change prob-

lem. Add in the missing lines of code to complete the implementation.

//A i s amount of change to make , C i s which coin in denom we are cons ider ing .
CoinChange (denom , A, C) {

i f (memory[A] [C] != �1)

n = denom . l a s t //n i s index of penny
i f (A == 0){ memory[A] [C] = 0 ; re turn 0 ; }
e l s e i f (C == n){ memory[A] [n] = A; re turn A; }

bes t = i n f i n i t y
i f (denom[C] <= A) bes t =
bes t = Min (best , CoinChange (denom , A, C+ 1))

re turn bes t
}

For this problem, you are given a set of n boxes B = {b1, b2, ..., bn} which are given to you in increasing volume.
You are also given a function f(bi, bj) which returns true if and only if box bi fits fully inside of box bj (Note that box

bi can be smaller than box bj in volume but still not fit inside). You are planning to give your friend a birthday present,
and want to create a large set of nested presents. Your friend will have to open a present, only to find ANOTHER
present. These will get smaller and smaller until they finally find the real present. Given the list of boxes, can you
figure out the most number of boxes that can be nested together?

4. [1 points] Suppose our sub-problem is P (i): the most number of boxes that can be nested using only boxes 1

through i AND such that box i is the outermost box (box i MUST be included). State the base case for P (1).

5. [2 points] State a recursive solution to P (i) in terms of smaller sub-problems. Hint, you might need to check

multiple sub-problems, and you will need to use the function f() here.

6. [1 points] Now state which sub-problem(s) is the solution to the overall problem. Note, this will be chosen among

a set of possible options, so think carefully. Is it necessarily the case that you have to use the largest box?

7. [1 points] Lastly, how many total sub-problems are there to solve?

