
CS 4102: Algorithms Page 1 of 1 Fall 2021

Module 6 - Graphs: Prim’s and Dijkstra’s

1. Prove or give a counter-example for the following claim: If an undirected, connected graph
G has all unique integer edge weights, then the Minimum-Spanning Tree of G must be
unique as well.

2. This problem was in the slides but we didn’t get to it in lecture. Suppose Floryan is trying to
schedule a flight from city A to city B and wants an itinerary that is as efficient as possi-
ble. However, instead of a traditional flight optimization (e.g., getting to destination in the
least amount of total travel time), Floryan only cares about minimizes his layover time in
airports. Floryan doesn’t mind being on the plane for a long time, or having multiple legs
to his trip. He dispises sitting in airports and not making any progress. Given a start city
A, an end city B, and a list of flights (each flight contains the start city, end city, departure
date/time, and arrival date/time), describe an algorithm that finds the itinerary with he
minimum layover time possible.

HINT: You don’t need to develop a new algorithm here. One of the ones from class will work. How-
ever, you might need to alter how you structure the problem as a graph so that the algorithm works
as intended.

3. This problem is about robots that need to reach a particular destination. Suppose that you
have an area represented by a graph G = (V,E) and two robots with starting nodes s1, s2 ∈
V . Each robot also has a destination node d1, d2 ∈ V . Your task is to design a schedule of
movements along edges in G that move both robots to their respective destination nodes.
You have the following constraints:

1. You must design a schedule for the robots. A schedule is a list of steps, where each step
is an instruction for a single robot to move along a single edge.

2. If the two robots ever get close, then they will interfere with one another (robot social
distancing, you know!?). Thus, you must design a schedule so that the robots, at no
point in time, exist on the same or adjacent nodes.

3. You can assume that s1 and s2 are not the same or adjacent, and that the same is true
for d1 and d2.

Design an algorithm that produces an optimal schedule for the two robots. Make sure to
address each of the following:

• Describe your algorithm (HINT: Try changing the graph into a different one to remove the
constraints of the Robots not being able to be on the same or adjacent nodes)
• What is the worst-case runtime of your algorithm? Specifically, how big is the new

graph you constructed as a function of the size of the original graph?
• How would the runtime change as the number of robots grows? Does the algorithm

get faster or slower?


