
CS 4102: Algorithms Page 1 of ?? Fall 2021

Module 4 - Graphs: BFS and DFS

1. Describe an algorithm that, given a directed graph G represented as an adjacency matrix,
returns whether or not the graph contains vertex with in-degree |V | − 1 and out-degree 0.
In other words, does the graph have a node such that every other node points to it, but it
does not point to any other node. Your algorithm must be O(V). Note that there are Θ(V 2)
cells in your adjacency matrix so you’ll need to be clever here.

2. Write clear pseudo-code to solve the following:

given a graph G, a start vertex s, and a vertex node t, use DFS to find any path from s to t
and return the list of vertices in that path. Your algorithm should stop the search as soon
as it finds any path. If t is not reachable from s, return an empty path (i.e., an empty list).
The vertices in the list that is returned should be in order from s to t. G could be directed or
undirected. For this problem, please use an implementation of the search algorithm taught
in class and modify it.

3. This question is about the depth-first search tree and breadth-first search tree generated from a
given connected graph G. Recall that these trees are formed by including the subset edges
from E that are traversed to first discover each node in the respective search. With this in
mind, prove the following claim:

If Td is the depth-first search tree generated by running DFS on G rooted at some node u, and Tb

is the breadth-first search tree generated by running BFS on G rooted at that same node u, then
Td = Tb → G = Td = Tb. In other words, if BFS and DFS produce the same tree, then the entire
graph G was already a tree.
Update! Assume that graph G is undirected!

4. For a given undirected graph G, prove that the depth of a DFS tree cannot be smaller than
the depth of the BFS tree. (Clearly state your proof strategy or technique.)

