
Problem Set 5 mst3k
data structures and algorithms 2 - spring 2024 due march 13, 2024 at 11:59p

Collaboration Policy: You are encouraged to collaborate with up to 4 other students, but all work submitted must be your
own independently written solution. List the computing ids of all of your collaborators in the collabs command at the top
of the tex file. Do not share written notes, documents (including Google docs, Overleaf docs, discussion notes, PDFs), or
code. Do not seek published or online solutions for any assignments. If you use any published or online resources (which
may not include solutions) when completing this assignment, be sure to cite them. Do not submit a solution that you are
unable to explain orally to a member of the course staff. Any solutions that share similar text/code will be considered in
breach of this policy. Please refer to the syllabus for a complete description of the collaboration policy.

Collaborators: list your collaborators
Sources: list your sources

problem 1 Goldilocks and the n Bears

There’s been a crime is BookWorld!!
Fictional Detective Thursday Next is investigating the case of the mixed up porridge bowls.

Mama and Papa Bear have called her in to help “sort out” the mix-up caused by Goldilocks, who
mixed up their n childrens’ bowls of porridge (there are n children total and n bowls of porridge
total). Each child likes his/her porridge at a specific temperature, and thermometers haven’t
been invented in BookWorld at the time of this case. Since temperature is subjective (without
thermometers), we can’t ask the bears to compare themselves, and since porridge can’t talk, we
can’t ask the porridge to compare themselves. Therefore, to match up each bear with it’s preferred
bowl, Thursday Next must ask the bears to check a specific bowl of porridge. After tasting a bowl
of porridge, the bear will say one of “this porridge is too hot”, “this porridge is too cold”, or “this
porridge is just right”.

1. Give an algorithm for matching up bears with their preferred bowls of porridge which
performs O(n2) total “tastes”. Prove that your algorithm is O(n2).

Solution:

2. Give an algorithm which matches bears with their preferred bowls of porridge which per-
forms expected O(n log n) total “tastes”. Intuitively, but precisely, describe how you know
the algorithm is O(n log n).

Solution:

problem 2 Load Balancing

You work for a print shop with 4 printers. Each printer i has a queue with n jobs: ji,1, . . . , ji,n.
Each job has a number of pages, p(ji,m). A printer’s workload Wi = ∑ℓ p(ji,ℓ) is the sum of all
pages across jobs for for that printer. Your goal is to equalize the workload across all 4 printers
so that they all print the same number of total pages. You may only remove jobs from the end
of their queues, i.e., job ji,n must be removed before job ji,n−1, and you are allowed to remove a
different number of jobs from each printer. Note that jobs can only be removed, not added. Give
a greedy algorithm to determine the maximum equalized workload (possibly 0 pages) across all
printers. Be sure to state your greedy choice property.

Solution:



mst3k PS 5 - 2

problem 3 Crossing the Bridge

There are n people that need to cross a narrow rope bridge as quickly as possible, and each
respective person crosses at speeds s1, s2, ..., sn (note: you can assume these are integers and are sorted
in descending order). You must also follow these additional constraints:

1. It is nighttime and you only have a single flashlight. One equires the flashlight to cross the
bridge.

2. A max of two people can cross the bridge together at one time (and they must have the
flashlight).

3. The flashlight must be walked back and forth, it cannot be thrown, mailed, raven’d, etc.

4. A pair walking across together crosses at the speed of the slowest individual. They must
stay together!

Describe a greedy algorithm that solves this problem optimally. State the runtime of your
algorithm and prove your algorithm always returns the optimal solution. Note: The obvious greedy
algorithm does NOT work here. Be careful! This is more complicated than it appears.

Solution:


