
Problem Set 1 mst3k
data structures and algorithms 2 - spring 2024 due january 31, 2024 at 11:59p

Collaboration Policy: You are encouraged to collaborate with up to 4 other students, but all work submitted must be your
own independently written solution. List the computing ids of all of your collaborators in the collabs command at the top
of the tex file. Do not share written notes, documents (including Google docs, Overleaf docs, discussion notes, PDFs), or
code. Do not seek published or online solutions for any assignments. If you use any published or online resources (which
may not include solutions) when completing this assignment, be sure to cite them. Do not submit a solution that you are
unable to explain orally to a member of the course staff. Any solutions that share similar text/code will be considered in
breach of this policy. Please refer to the syllabus for a complete description of the collaboration policy.

Collaborators: list your collaborators
Sources: list your sources

problem 1 Asymptotics

1. Consider the following functions, f (n) = n(log n)2 and g(n) = n1.5. Which grows more
quickly? (That is, which would be a “worse” time-complexity.) Express your answer in
terms of one of the order-classes we’ve studied, i.e. something in a form like f (n) = Θ(g(n))
but with something other than Big-Theta. Explain your answer with a short proof; you may
use any definitions from the course slides.

Solution:

problem 2 Proving Quicksort

For this problem, we’ll be reviewing how a proof by induction works. More specifically, we
will be using strong induction. For a refresher on induction, Wikipedia has a great description
and a few example proofs at: https://en.wikipedia.org/wiki/Mathematical_induction. To
prove the correctness of an algorithm using induction, we must consider the parts of the proof:
the base case, the inductive hypothesis, and the inductive step.

We will use induction to prove that Quicksort is correct. We will let you assume that the
partition operation works correctly. Recall that partition(list,first,last) returns the lo-
cation p of an item in the sublist list[first:last], where all items in positions before p are
< list[p], and all items after position p are > list[p]. The item at location p is the pivot-value,
and partition puts it into its correct position but does not sort what’s before it or after it. After
partition is done, Quicksort is called recursively on the sublists before and after the pivot-value.

1. In induction we start with the base case. If n = 1 (i.e., there is one item in the list), explain
why partition and Quicksort produce the correct answer for that list of size 1.

Solution:

2. We must next make an assumption: our inductive hypothesis. Describe briefly this assump-
tion. For any list of size less than n, ...

Solution:

3. Inductive step. Now we need to use this inductive hypothesis to make an argument that,
for a list of size n, Quicksort correctly produces a list that’s sorted. Namely, assuming that
partition works correctly and the inductive hypothesis is true, write an argument below

https://en.wikipedia.org/wiki/Mathematical_induction


mst3k PS 1 - 2

that shows, for a list of size n, the call to partition and the recursive calls to Quicksort
correctly sorts that list.

Solution:

problem 3 Optimal Study Spot

Alderman Library is finally open after years of renovations! But now it’s time to find your new
optimal study spot. Your main concern is being able to get to each of the building exits as quickly
as possible (unlike Clemons, strange and unexpected things can happen in Alderman stacks and
you never know which way you may need to exit). You are given a graph G = (V, E) where each
node v ∈ V represents either a room or an exit. Each edge in the graph represents a doorway
connecting a room to either another room or an exit. From any room, there is a path to every
exit. Your algorithm must find the room (or rooms) such that the distance to the farthest exit is
minimized.

Give a clear description of an algorithm to solve this problem. State and explain the time
complexity of your algorithm. Base your algorithm design on an algorithm we have studied in
this unit of the course.

Note: you may later decide to find an optimal study spot in one of the other buildings currently being
built, so your algorithm should not be specific only to Alderman’s new layout! Design your algorithm to
work on any graph of similar style.

For example, in the graph below, the optimal rooms are Room 3 and Room 5. You can get to
either exit from either Room 3 or Room 5 by going through at most 2 doors. Room 1 would require
going through 4 doors to get to Exit 2 and Room 2 would require going through 3 doors to get to
Exit 2.

Room 1

Room 2 Exit 1

Room 3 Room 5 Exit 2

Solution:


