CS 3100

Data Structures and Algorithms 2
Lecture 9: D&C: Closest Pair of Points

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4t edition:
* Section 4.5

Announcements

* PS4 coming soon

e Office hours
* Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
* Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
* TA office hours posted on our website

* Quizzes 1-2 coming February 29, 2024
* Both quizzes taken the same day
* If you have SDAC, please schedule for 1 exam (not a quiz)

Divide and Conquer

[CLRS Chapter 4]

Divide:
* Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
* If the suproblems are “large”:
* Solve each subproblem recursively

* |f the subproblems are “small”:
* Solve them directly (base case)

Combine:

* Merge solutions to subproblems to obtain
solution for original problem

Observation

Divide: D(n) time
Conquer: Recurse on smaller problems of size sq, ..., Sk

Combine: C(n) time
e Tm) =D(n) + + C(n)

Many divide and conquer algorithms have recurrences are of form:

* T(n) =a-T(n/b)+f(n) a and b are constants

Mergesort: T(n) = 2T(n/2) + n
Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n
Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

General Recurrence

T(Tl) = aT(n/b) + f(n) Number of Cost of

subproblems subproblem
n | rm 1 f(n)
a f(n/b)

k levels

@ @ f(/b?)

f(@@) ak f(n/b"")

General Recurrence

T(Tl) = aT(n/b) + f(n) Number of Cost of

subproblems subproblem

| n fm) 1 f (n)

a f(n/b)

k levels

@ @ f(/b?)

0| alBt (/)

Three Cases

7 = 0+)+ () + 21 () -+t (1)

k =log,n
Case 1: (] Ve D
Most work happens
at the leaves
(8 /)
Case 2:
Work happens
consistently throughout
4)
Case 3:
Most work happens
at top of tree D
- /] 7

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a

- Requirement on f Implication

Casel f(n) € O(n‘s_e) for some constant € > 0 T(n) € G)(n5)

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘g)
Case 2 f(n) € G)(n5) T(n) € @(n5 log n)

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a
| Requirementonf | Implication
Casel f(n) € 0(n5_8) for some constant & > 0 T(n) € G)(nS)
Case 2 f(n) € 0(n®) T(n) € O(n° logn)
f(n) e Q(n5+8) for some constante > 0
AND
T(n) € 0(f(n))

Case 3
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

Master Theorem Example 1

n
T(n) = aT (E) + f(n)

Case 1: if f(n) = 0(n'°8 2 ~€) for some constant € > 0, then T(n) = O(n'°8s @)
Case 2: if f(n) = O(n'°8> %), then T(n) = O(n!°8 % logn)

Case 3: if f(n) = Q(n!'°8 2+€) for some constant € > 0, and if af (g) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

n

T(n) =2T(2

)+n

Case 2
0(n'°822logn) = O(nlogn)

11

Tree method

T(n)=2T(g)+n
n n)
n
n/2 1" 4 n/2 | n
/\ — >\ log, n
n/4 "% n/a |t L in/a | n/a | w rlog

12

Master Theorem Example 2

n
T(n) = aT (E) + f(n)

Case 1: if f(n) = 0(n'°8 2 ~€) for some constant € > 0, then T(n) = O(n'°8s @)
Case 2: if f(n) = O(n'°8> %), then T(n) = O(n!°8 % logn)

Case 3: if f(n) = Q(n!'°8 2+€) for some constant € > 0, and if af (g) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

n

T(n) =4T(2

)+5n

Casel
@(nlogz 4) — @(le)

13

Tree method

Tree method

T(n) = 4T (g) +5n

Cost is increasing with the recursion depth
(due to large number of subproblems)

DN |

Most of the work happening in the leaves

16
4

)

Master Theorem Example 3

n
T(n) = aT (E) + f(n)

Case 1: if f(n) = 0(n'°8 2 ~€) for some constant € > 0, then T(n) = O(n'°8s @)
Case 2: if f(n) = O(n'°8> %), then T(n) = O(n!°8 % logn)

Case 3: if f(n) = Q(n!'°8 2+€) for some constant € > 0, and if af (g) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

n

T(n) = 3T(2

)+8n

Case 1
@(nlogz 3) ~ @(n1.585)

16

Karatsuba

- 1n

- 3n

N| O 0

- 9On

= | OO

. 3logzny

ae e

1Pafafal o afalalal il nl Soen

Master Theorem Example 4

n
T(n) = aT (E) + f(n)

Case 1: if f(n) = 0(n'°8 2 ~€) for some constant € > 0, then T(n) = O(n'°8s @)
Case 2: if f(n) = O(n'°8> %), then T(n) = O(n!°8 % logn)

Case 3: if f(n) = Q(n!'°8 2+€) for some constant € > 0, and if af (g) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

n

T(n) =2T(2

) + 15n3

Case 3

18

Master Theorem Example 4

n
T(n) = aT (E) + f(n)

Case 1: if f(n) = 0(n'°8 2 ~€) for some constant € > 0, then T(n) = O(n'°8s @)
Case 2: if f(n) = O(n'°8> %), then T(n) = O(n!°8 % logn)

Case 3: if f(n) = Q(n!'°8 2+€) for some constant € > 0, and if af (g) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

n Important: For Case 3, need to additionally check
T = 2T (=) + 15n3 !
() (2) +15m that 2f(n/2) < cf(n) for constant ¢ < 1 and
Case 3 sufficiently large n
30 1
@(Tls) Zf(Tl/Z) — 30(7’1/2)3 — §n3 < Z(lSTlB)

19

Master Theorem Example 4 (Visually)

T(n) =2T(n/2) + 15n3

M\ 15 (g) 5 Z) Z ’ 15n3 > 10g2 n

Master Theorem Example 4 (Visually)

T(n) =2T(n/2) + 15n3

Cost is decreasing with the recursion depth (5,3
(due to high non-recursive cost)

-
-
. 15n3
Most of the work happening at the top i D

15n3 > logz n
16

15log, n D

ie’s Yard

Robb

There Has to be an Easier Way!

[

: ™ e
N ‘&‘.\ LS E PR N

Trees and Plants

Constraints

How wide can the robot be?

0
()
Q
-
)
G
O
=
qV)
Q.
i)
()]
Q
(7))
ke
o
e
-
G-

Objective

Closest Pair of Points

Given: A list of points @ @

Return: Pair of points with
smallest distance apart @

25

Closest Pair of Points: Naive

Given: A list of points @% ___ 20

Return: Pair of points with @
smallest distance apart @

Algorithm: Test every
pair of points, return the
closest @

Running Time: 0(n?*) ©
Goal: O(nlogn)

Closest Pair of Points: Divide and Conquer

Divide: How? ® ©)
At median x coordinate

Closest Pair of Points: Divide and Conquer

Divide: ® @

At median x coordinate

Conquer: ®
Recursively find closest pairs ®

from LeftPoints and RightPoints

N

28 LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Divide: ® @

At median x coordinate

Conquer: ®
Recursively find closest pairs ®

from LeftPoints and RightPoints

Combine:
Return smaller of left
and right pairs Problem? ©)

29 LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Combine: ®

Case 1: Closest pair is
completely in LeftPoints or

RightPoints ®
Case 2: Closest pair spans our
llcutﬂ

Need to test points across the
cut

30 LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our
“cut

”

Need to test points across the
cut

Compare all pairs of points within
d = min{d;, dp} of the cut

How many are there?

31

®

LeftPoints

RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ @
“cut”
Need to test points across the < @
cut @
Compare all pairs of points within)
d = min{d;, dp} of the cut
How many are there? @ ©
In the worst case, all of the points!
T(n) = 27 (5) + 0(?) € A(n?) 9y ®
. LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ @
llcutﬂ
Need to test points across the @

T eRIE Do we need to test every
d = min{d;, pair of points in the
How many a boundary region (runway)? @ ®

cut @)

In the worst case, all of the points!
n

T(n) =27 (5) + 0(?) € A(n?) ®,,

. LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ Q@
llcutﬂ
Need to test points across the @
cut G
Observation: We don’t need)
to test all pairs! ®
@

Only need to test points within
distance d of each another ®

2| ®

34 LeftPoints RightPoints

Reducing Search Space

Case 2: Closest pair spans our 4—2 . d >
llcutﬂ 5
Need to test points across the
cut = =

Divide the runway into
squares with dimension d /2

d
How many points can be in a 7 |
square? atmostl SUSUINSUS SONSSN WSNSS. S—
d 4 |

Reducing Search Space

Case 2: Closest pair spans our
llcutﬂ

Need to test points across the
cut

Divide the runway into
squares with dimension d /2

How many squares can contain a
point < d away?

. at most 15

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair @
of points in each list @

Combine:

e Construct list of points in the boundary

* Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

* OQutput closest pair among left, right, and @
runway points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Looks like another O(nlogn)

algorithm — combine step is still ® @
too expensive

Combine:

e Construct list of points in poundary

e Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

* OQutput closest pair among left, right, and @
runway points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

Construct list of points in the boundary

Sort runway points by y-coordinate - =————p-
Compare each point in runway to 15 points

above it and save the closest pair

Output closest pair among left, right, and

runway points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

* List of points sorted according to y-
coordinate

Sorting runway points by y-
coordinate now becomes a merge

Listing Points in the Boundary

LeftPoints:
Closest Pair: (1,5), d; 5
Sorted Points: [3,7,5,1]

RightPoints:
Closest Pair: (4,6), d4 ¢
Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Runway Points: [8,7,6,5,2]

Both of these lists can be computed

by a single pass over the lists

LeftPoints

®

RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

e Construct list of points in the boundary

e Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

* OQutput closest pair among left, right, and
runway points

)

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

Closest Pair of Points: Divide and Conquer

@(n log n) Initialization: Sort points by x-coordinate

What is the running time?

O(nlogn) o)
2T (n/2)
r(n)
O(n)
T(n) =2T(n/2) +06O(n)
O(n)
Case 2 of Master’s Theorem: (1)

T(n) = 0(nlogn)

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

