CS 3100

Data Structures and Algorithms 2 Lecture 9: D\&C: Closest Pair of Points

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS $4^{\text {th }}$ edition:

- Section 4.5

Announcements

- PS4 coming soon
- Office hours
- Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
- Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
- TA office hours posted on our website
- Quizzes 1-2 coming February 29, 2024
- Both quizzes taken the same day
- If you have SDAC, please schedule for 1 exam (not a quiz)

Divide and Conquer

[CLRS Chapter 4]

Divide:

- Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)

Observation

Divide: $D(n)$ time
Conquer: Recurse on smaller problems of size s_{1}, \ldots, s_{k}
Combine: $C(n)$ time

Recurrence:

- $T(n)=D(n)+\sum_{i \in[k]} T\left(s_{i}\right)+C(n)$

Many divide and conquer algorithms have recurrences are of form:

$$
\text { - } T(n)=a \cdot T(n / b)+f(n)
$$

a and b are constants
Mergesort: $T(n)=2 T(n / 2)+n$
Divide and Conquer Multiplication: $T(n)=4 T(n / 2)+5 n$
Karatsuba Multiplication: $T(n)=3 T(n / 2)+8 n$

General Recurrence

$$
T(n)=a T(n / b)+f(n)
$$

Number of
Cost of subproblems subproblem

1	$f(n)$
a	$f(n / b)$
a^{2}	$f\left(n / b^{2}\right)$
a^{k}	$f\left(n / b^{k}\right)$

General Recurrence

$$
T(n)=a T(n / b)+f(n)
$$

Number of subproblems

1 a

$$
a^{2}
$$

$$
\begin{aligned}
& a^{\log _{b} n} \\
& =n^{\log _{b} a}
\end{aligned} f_{6}\left(n / b^{k}\right)
$$

Three Cases

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+a^{k} f\left(\frac{n}{b^{k}}\right)
$$

$$
k=\log _{b} n
$$

Case 1:

Most work happens at the leaves

Case 2:
Work happens consistently throughout

Case 3:
Most work happens at top of tree

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

$$
\delta=\log _{b} a
$$

Requirement on f
 Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0 \quad T(n) \in \Theta\left(n^{\delta}\right)$

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

$$
\delta=\log _{b} a
$$

Requirement on f

Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0 \quad T(n) \in \Theta\left(n^{\delta}\right)$
Case 2 $f(n) \in \Theta\left(n^{\delta}\right)$ $T(n) \in \Theta\left(n^{\delta} \log n\right)$

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

$$
\delta=\log _{b} a
$$

Requirement on f

Implication

Case $1 f(n) \in O\left(n^{\delta-\varepsilon}\right)$ for some constant $\varepsilon>0 \quad T(n) \in \Theta\left(n^{\delta}\right)$
Case 2

$$
f(n) \in \Theta\left(n^{\delta}\right)
$$

$$
T(n) \in \Theta\left(n^{\delta} \log n\right)
$$

$$
f(n) \in \Omega\left(n^{\delta+\varepsilon}\right) \text { for some constant } \varepsilon>0
$$ AND

Case 3

$$
\begin{gathered}
a f\left(\frac{n}{b}\right) \leq c f(n) \text { for constant } c<1 \text { and } \\
\text { sufficiently large } n
\end{gathered}
$$

$$
T(n) \in \Theta(f(n))
$$

Master Theorem Example 1

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

Case 2

$$
\Theta\left(n^{\log _{2} 2} \log n\right)=\Theta(n \log n)
$$

Tree method

Master Theorem Example 2

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=4 T\left(\frac{n}{2}\right)+5 n
$$

Case 1

$$
\Theta\left(n^{\log _{2} 4}\right)=\Theta\left(n^{2}\right)
$$

Tree method

$$
T(n)=4 T\left(\frac{n}{2}\right)+5 n
$$

Tree method

$$
T(n)=4 T\left(\frac{n}{2}\right)+5 n
$$

Cost is increasing with the recursion depth (due to large number of subproblems)

Most of the work happening in the leaves

Master Theorem Example 3

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=3 T\left(\frac{n}{2}\right)+8 n
$$

Case 1

$$
\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.585}\right)
$$

Karatsuba

$$
T(n)=3 T\left(\frac{n}{2}\right)+8 n
$$

Master Theorem Example 4

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=2 T\left(\frac{n}{2}\right)+15 n^{3}
$$

Case 3

Master Theorem Example 4

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$
$T(n)=2 T\left(\frac{n}{2}\right)+15 n^{3}$
Case 3
$\Theta\left(n^{3}\right)$

Important: For Case 3, need to additionally check that $2 f(n / 2) \leq c f(n)$ for constant $c<1$ and sufficiently large n

$$
2 f(n / 2)=30(n / 2)^{3}=\frac{30}{8} n^{3} \leq \frac{1}{4}\left(15 n^{3}\right)
$$

Master Theorem Example 4 (Visually)

$$
T(n)=2 T(n / 2)+15 n^{3}
$$

Master Theorem Example 4 (Visually)

$$
T(n)=2 T(n / 2)+15 n^{3}
$$

Cost is decreasing with the recursion depth $15 n^{3}$ (due to high non-recursive cost)

Most of the work happening at the top

Robbie's Yard

There Has to be an Easier Way!

Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

Closest Pair of Points

Given: A list of points
Return: Pair of points with smallest distance apart
(1)

(2)

(5)
(4)
(6)

$$
7
$$

(3)

Closest Pair of Points: Naïve

Given: A list of points
Return: Pair of points with smallest distance apart

Algorithm: Test every pair of points, return the closest

Running Time: $O\left(n^{2}\right)$
Goal: $O(n \log n)$
(1)
(5.)

(2)

(6)
(7)
(3)
(8)

Closest Pair of Points: Divide and Conquer

Divide: How?
At median x coordinate

(1)	(2)	
(5)	(6)	(4)
(7)		
(3)	(8)	

Closest Pair of Points: Divide and Conquer

Divide:

At median x coordinate

Conquer:
Recursively find closest pairs from LeftPoints and RightPoints

Closest Pair of Points: Divide and Conquer

Divide:

At median x coordinate

Conquer:
Recursively find closest pairs from LeftPoints and RightPoints

Combine:
Return smaller of left and right pairs Problem?

Closest Pair of Points: Divide and Conquer

Combine:
Case 1: Closest pair is completely in LeftPoints or RightPoints

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Spanning the Cut

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Compare all pairs of points within $d=\min \left\{d_{L}, d_{R}\right\}$ of the cut How many are there?

Spanning the Cut

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Compare all pairs of points within $d=\min \left\{d_{L}, d_{R}\right\}$ of the cut
How many are there?
In the worst case, all of the points!

$$
T(n)=2 T\left(\frac{n}{2}\right)+\Omega\left(n^{2}\right) \in \Omega\left(n^{2}\right)
$$

Spanning the Cut

Spanning the Cut

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Observation: We don't need to test all pairs!

Only need to test points within distance d of each another

Reducing Search Space

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Divide the runway into squares with dimension $d / 2$

How many points can be in a square? at most 1

Reducing Search Space

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Divide the runway into squares with dimension $d / 2$

How many squares can contain a point < d away?

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Dividn. Dartitinn nonintc intotwn lictc of noints
Looks like another $O(n \log n)$ algorithm - combine step is still too expensive

Combine:

- Construct list of points in th Noundary
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Solution: Maintain additional information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to y coordinate

Sorting runway points by y -
coordinate now becomes a merge

Listing Points in the Boundary

LeftPoints:

Closest Pair: $(1,5), d_{1,5}$
Sorted Points: [3,7,5,1]
RightPoints:
Closest Pair: $(4,6), d_{4,6}$
Sorted Points: [8,6,4,2]
Merged Points: [8,3,7,6,4,5,1,2]
Runway Points: [8,7,6,5,2]
Both of these lists can be computed by a single pass over the lists

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Closest Pair of Points: Divide and Conquer

What is the running time?

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

Case $\mathbf{2}$ of Master's Theorem: $T(n)=\Theta(n \log n)$
$\Theta(n \log n)$
$\Theta(n \log n)$ Initialization: Sort points by x-coordinate

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

