
CS 3100
Data Structures and Algorithms 2

Lecture 9: D&C: Closest Pair of Points

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:
• Section 4.5

Announcements

• PS4 coming soon
• Office hours

• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
• TA office hours posted on our website

• Quizzes 1-2 coming February 29, 2024
• Both quizzes taken the same day
• If you have SDAC, please schedule for 1 exam (not a quiz)

2

Divide and Conquer

Divide:
• Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively
• If the subproblems are “small”:

• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain

solution for original problem

[CLRS Chapter 4]

Observation

Divide: 𝐷(𝑛) time
Conquer: Recurse on smaller problems of size 𝑠!, … , 𝑠"
Combine: 𝐶(𝑛) time
Recurrence:

• 𝑇 𝑛 = 𝐷 𝑛 + ∑!∈[$]𝑇(𝑠!) + 𝐶(𝑛)

Many divide and conquer algorithms have recurrences are of form:
• 𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛/𝑏) + 𝑓(𝑛)

Mergesort: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛
Divide and Conquer Multiplication: 𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛
Karatsuba Multiplication: 𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛

4

𝑎 and 𝑏 are constants

General Recurrence

5

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)

𝑛 𝑓(𝑛)

𝑓
𝑛
𝑏

𝑓
𝑛
𝑏𝑓

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑓
𝑛
𝑏! 𝑓

𝑛
𝑏! 𝑓

𝑛
𝑏! 𝑓

𝑛
𝑏!…𝑛

𝑏6
𝑛
𝑏6

𝑛
𝑏6

𝑛
𝑏6

𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1)

… … … … … …

1 1 1 1 1 1 1…

…

… …

1

𝑎

𝑎6

𝑎7

Cost of
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏6

Number of
subproblems

𝑘 levels

𝑓 ⁄𝑛 𝑏7

General Recurrence

6

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)

𝑛 𝑓(𝑛)

𝑓
𝑛
𝑏

𝑓
𝑛
𝑏𝑓

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑓
𝑛
𝑏! 𝑓

𝑛
𝑏! 𝑓

𝑛
𝑏! 𝑓

𝑛
𝑏!…𝑛

𝑏6
𝑛
𝑏6

𝑛
𝑏6

𝑛
𝑏6

𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1)

… … … … … …

1 1 1 1 1 1 1…

…

… …

1

𝑎

𝑎6

𝑎9:;!<	
= 𝑛9:;! >

Cost of
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏6

Number of
subproblems

𝑘 levels

𝑓 ⁄𝑛 𝑏7

Three Cases

7

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎)𝑓

𝑛
𝑏)

+ 𝑎*𝑓
𝑛
𝑏*

+⋯+ 𝑎"𝑓
𝑛
𝑏"

Case 1:
Most work happens

at the leaves

Case 2:
Work happens

consistently throughout

Case 3:
Most work happens

at top of tree

𝑘 = log? 𝑛

Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log! 𝑎

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛@AB for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛@

Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log! 𝑎

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛@AB for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛@

Case 2 𝑓 𝑛 ∈ Θ 𝑛@ 𝑇 𝑛 ∈ Θ 𝑛@ log 𝑛

Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log! 𝑎

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛@AB for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛@

Case 2 𝑓 𝑛 ∈ Θ 𝑛@ 𝑇 𝑛 ∈ Θ 𝑛@ log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛@CB for some constant 𝜀 > 0
AND

𝑎𝑓 <
?
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

Master Theorem Example 1

Case 1: if 𝑓 𝑛 = 𝑂(𝑛&'(!) *+) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛&'(!))
Case 2: if 𝑓 𝑛 = Θ(𝑛&'(!)), then 𝑇 𝑛 = Θ(𝑛&'(!) log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛&'(!),+) for some constant 𝜀 > 0, and if 𝑎𝑓 -
.
≤ 𝑐𝑓(𝑛) for some constant

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

11

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

Case 2
Θ 𝑛9:;" 6 log 𝑛 = Θ(𝑛 log 𝑛)

Tree method

12

𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
	 + 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛/2 𝑛/2

𝑛/4 𝑛/4 𝑛/4 𝑛/4

1 1 1 11 1

𝑛

𝑛

𝑛

𝑛

+

+ + +

+ + + + +

log6 𝑛

Master Theorem Example 2

13

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

Case 1
Θ 𝑛9:;" Q = Θ(𝑛6)

Case 1: if 𝑓 𝑛 = 𝑂(𝑛&'(!)	*+) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛&'(!))
Case 2: if 𝑓 𝑛 = Θ(𝑛&'(!)), then 𝑇 𝑛 = Θ(𝑛&'(!) log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛&'(!),+) for some constant 𝜀 > 0, and if 𝑎𝑓 -
.
≤ 𝑐𝑓(𝑛) for some constant

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

Tree method

14

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

29:;" < ⋅ 5𝑛

…

Tree method

15

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

29:;" < ⋅ 5𝑛

…

Cost is increasing with the recursion depth
(due to large number of subproblems)

Most of the work happening in the leaves

Master Theorem Example 3

16

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

Case 1
Θ 𝑛9:;" R ≈ Θ(𝑛S.UVU)

Case 1: if 𝑓 𝑛 = 𝑂(𝑛&'(!)	*+) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛&'(!))
Case 2: if 𝑓 𝑛 = Θ(𝑛&'(!)), then 𝑇 𝑛 = Θ(𝑛&'(!) log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛&'(!),+) for some constant 𝜀 > 0, and if 𝑎𝑓 -
.
≤ 𝑐𝑓(𝑛) for some constant

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

Karatsuba

17

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

𝑛 8𝑛

8𝑛
2

8𝑛
2

8𝑛
2

𝑛
2

𝑛
2

𝑛
2

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4…𝑛

4
𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

8 8 8 8 8 8 8 8 8 8

… … … … … …

1 1 1 1 1 1 1 1 1 1…

8 ⋅ 1𝑛

8
2
⋅ 3𝑛

8
4
⋅ 9𝑛

8
29:;" <

⋅ 39:;" <𝑛

…

Master Theorem Example 4

18

𝑇 𝑛 = 2𝑇
𝑛
2
+ 15𝑛R

Case 3

Case 1: if 𝑓 𝑛 = 𝑂(𝑛&'(!)	*+) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛&'(!))
Case 2: if 𝑓 𝑛 = Θ(𝑛&'(!)), then 𝑇 𝑛 = Θ(𝑛&'(!) log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛&'(!),+) for some constant 𝜀 > 0, and if 𝑎𝑓 -
.
≤ 𝑐𝑓(𝑛) for some constant

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

Master Theorem Example 4

19

𝑇 𝑛 = 2𝑇
𝑛
2
+ 15𝑛R

Case 3
Θ 𝑛R

Case 1: if 𝑓 𝑛 = 𝑂(𝑛&'(!)	*+) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛&'(!))
Case 2: if 𝑓 𝑛 = Θ(𝑛&'(!)), then 𝑇 𝑛 = Θ(𝑛&'(!) log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛&'(!),+) for some constant 𝜀 > 0, and if 𝑎𝑓 -
.
≤ 𝑐𝑓(𝑛) for some constant

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

Important: For Case 3, need to additionally check
that 2𝑓 ⁄𝑛 2 ≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and
sufficiently large 𝑛

2𝑓 ⁄𝑛 2 = 30 ⁄𝑛 2 R =
30
8
𝑛R ≤

1
4
15𝑛R

Master Theorem Example 4 (Visually)

𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …
1 1 1 … 1 1 1

15𝑛"

15
𝑛
2

"
15

𝑛
2

"

15
𝑛
4

"
15

𝑛
4

"
15

𝑛
4

"

15
𝑛
4

"

15 15 15 1515 15

15𝑛*

15𝑛*

4
15𝑛*

16

15 log) 𝑛

log6 𝑛

20

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛!

Master Theorem Example 4 (Visually)

15𝑛*

15𝑛*

4
15𝑛*

16

15 log) 𝑛

log6 𝑛

21

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛!

Cost is decreasing with the recursion depth
(due to high non-recursive cost)

Most of the work happening at the top

Robbie’s Yard

22

There Has to be an Easier Way!

23

Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

1
2

3

4
5

6

7

8

ROBO

M
ulcher

3000

Closest Pair of Points

25

1
2

3

4
5

6

7

8

Given: A list of points

Return: Pair of points with
smallest distance apart

Algorithm: Test every
pair of points, return the
closest

Closest Pair of Points: Naïve

26

1
2

3

4
5

6

7

8

Given: A list of points

Return: Pair of points with
smallest distance apart

𝑂(𝑛6)Running Time:
Goal: 𝑂 𝑛 log 𝑛

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

Divide: How?
At median 𝑥 coordinate

27

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

Conquer:

LeftPoints RightPoints

Recursively find closest pairs
from LeftPoints and RightPoints

28

Divide:
At median 𝑥 coordinate

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:
Return smaller of left
and right pairs Problem? ?

29

Conquer:

Divide:
At median 𝑥 coordinate

Recursively find closest pairs
from LeftPoints and RightPoints

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:

?

Case 1: Closest pair is
completely in LeftPoints or
RightPoints

Case 2: Closest pair spans our
“cut”

Need to test points across the
cut

30

Spanning the Cut

1
2

3

4
5

6

7

8

LeftPoints RightPoints

𝑑W

𝑑X

2𝑑
31

Case 2: Closest pair spans our
“cut”

Need to test points across the
cut

Compare all pairs of points within
𝑑 = min{𝑑0, 𝑑1} of the cut

How many are there?

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

𝑑W

𝑑X

2𝑑
𝑇 𝑛 = 2𝑇

𝑛
2
+ Ω 𝑛) ∈ Ω 𝑛)

32

Compare all pairs of points within
𝑑 = min{𝑑0, 𝑑1} of the cut

How many are there?

Case 2: Closest pair spans our
“cut”

Need to test points across the
cut

In the worst case, all of the points!

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

𝑑W

𝑑X

2𝑑
𝑇 𝑛 = 2𝑇

𝑛
2
+ Ω 𝑛) ∈ Ω 𝑛)

33

Compare all pairs of points within
𝑑 = min{𝑑0, 𝑑1} of the cut

How many are there?

Case 2: Closest pair spans our
“cut”

Need to test points across the
cut

In the worst case, all of the points!

Do we need to test every
pair of points in the

boundary region (runway)?

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

𝑑W

𝑑X

2𝑑
34

Case 2: Closest pair spans our
“cut”

Need to test points across the
cut

Observation: We don’t need
to test all pairs!

Only need to test points within
distance 𝑑 of each another

Reducing Search Space
2 ⋅ 𝑑

𝑑
2

𝑑
2

Divide the runway into
squares with dimension ⁄𝑑 2

How many points can be in a
square?

35

Case 2: Closest pair spans our
“cut”

Need to test points across the
cut

at most 1

𝑑
2

Reducing Search Space

Divide the runway into
squares with dimension ⁄𝑑 2

36

Case 2: Closest pair spans our
“cut”

Need to test points across the
cut

2 ⋅ 𝑑

7
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

How many squares can contain a
point < 𝑑 away?

at most 15

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Looks like another 𝑂 𝑛 log 𝑛
algorithm – combine step is still

too expensive

Closest Pair of Points: Divide and Conquer

Solution: Maintain additional
information in the recursion
• Minimum distance among pairs of

points in the list
• List of points sorted according to 𝑦-

coordinate

Sorting runway points by 𝑦-
coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

Listing Points in the Boundary

1
2

3

4
5

6

7

8

41

LeftPoints:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝑑!,#
Sorted Points: [3,7,5,1]

RightPoints:
Closest Pair: (4,6), 𝑑$,%
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed
by a single pass over the lists

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Construct list of points in the boundary
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Merge sorted list of points by 𝑦-coordinate

and construct list of points in the runway
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points
above it and save the closest pair

• Output closest pair among left, right, and
runway points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Merge sorted list of points by 𝑦-coordinate

and construct list of points in the runway
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points
above it and save the closest pair

• Output closest pair among left, right, and
runway points

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem:
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)

