CS 3100 Data Structures and Algorithms 2 Lecture 9: D&C: Closest Pair of Points

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS 4th edition:

Section 4.5

Announcements

- PS4 coming soon
- Office hours
 - Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
 - Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
 - TA office hours posted on our website
- Quizzes 1-2 coming February 29, 2024
 - Both quizzes taken the same day
 - If you have SDAC, please schedule for 1 exam (not a quiz)

Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

 Merge solutions to subproblems to obtain solution for original problem

Observation

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \dots, s_k

Combine: C(n) time

Recurrence:

• $T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$

Many divide and conquer algorithms have recurrences are of form:

•
$$T(n) = a \cdot T(n/b) + f(n)$$

a and b are constants

Mergesort: T(n) = 2T(n/2) + n

Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n

Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

General Recurrence

General Recurrence

Three Cases

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on f	Implication
Case 1	$f(n) \in O(n^{\delta - \varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on f	Implication
Case 1	$f(n) \in O(n^{\delta - \varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on f	Implication
Case 1	$f(n) \in O(n^{\delta - \varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta+\varepsilon})$ for some constant $\varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and sufficiently large } n$	$T(n) \in \Theta(f(n))$

Master Theorem Example 1

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$ Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$ Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Case 2

$$\Theta(n^{\log_2 2} \log n) = \Theta(n \log n)$$

Tree method

Master Theorem Example 2

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Case 1

$$\Theta(n^{\log_2 4}) = \Theta(n^2)$$

Tree method

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Tree method

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Cost is <u>increasing</u> with the recursion depth (due to large number of subproblems)

Most of the work happening in the leaves

Master Theorem Example 3

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Case 1

$$\Theta(n^{\log_2 3}) \approx \Theta(n^{1.585})$$

Karatsuba

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Master Theorem Example 4

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$ Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$ Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$

Case 3

Master Theorem Example 4

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$

Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$

Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$

Case 3

$$\Theta(n^3)$$

Important: For Case 3, need to additionally check that $2f(n/2) \le cf(n)$ for constant c < 1 and sufficiently large n

$$2f(n/2) = 30(n/2)^3 = \frac{30}{8}n^3 \le \frac{1}{4}(15n^3)$$

Master Theorem Example 4 (Visually)

Master Theorem Example 4 (Visually)

$$T(n) = 2T(n/2) + 15n^3$$

Cost is <u>decreasing</u> with the recursion depth (due to high *non-recursive* cost)

Most of the work happening at the top

Robbie's Yard

There Has to be an Easier Way!

Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

Closest Pair of Points

Given: A list of points

Return: Pair of points with smallest distance apart

Closest Pair of Points: Naïve

Given: A list of points

Return: Pair of points with

smallest distance apart

Algorithm: Test every pair of points, return the closest

Running Time: $O(n^2)$

Goal: $O(n \log n)$

Divide: How?

At median *x* coordinate

Divide:

At median *x* coordinate

Conquer:

Recursively find closest pairs from LeftPoints and RightPoints

Divide:

At median *x* coordinate

Conquer:

Recursively find closest pairs from LeftPoints and RightPoints

Combine:

Return smaller of left and right pairs Problem?

Combine:

Case 1: Closest pair is completely in LeftPoints or RightPoints

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Compare all pairs of points within $d = \min\{d_L, d_R\}$ of the cut

How many are there?

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Compare all pairs of points within $d = \min\{d_L, d_R\}$ of the cut

How many are there?

In the worst case, all of the points!

$$T(n) = 2T\left(\frac{n}{2}\right) + \Omega(n^2) \in \Omega(n^2)$$

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Compare all $d = \min\{d_L, p\}$

How many ar

Do we need to test every pair of points in the boundary region (runway)?

In the worst case, all of the points!

$$T(n) = 2T\left(\frac{n}{2}\right) + \Omega(n^2) \in \Omega(n^2)$$

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Observation: We don't need to test all pairs!

Only need to test points within distance d of each another

Reducing Search Space

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Divide the runway into squares with dimension d/2

How many points can be in a square? at most 1

Reducing Search Space

Case 2: Closest pair spans our "cut"

Need to test points across the cut

Divide the runway into squares with dimension d/2

How many squares can contain a point < d away?

at most 15

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by x-coordinate

Divide. Partition points into two lists of points

Looks like another $O(n \log n)$ algorithm – combine step is still too expensive

Combine:

- Construct list of points in the boundary
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points

based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Solution: Maintain additional information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to ycoordinate

Sorting runway points by *y*-coordinate now becomes a **merge**

Listing Points in the Boundary

LeftPoints:

Closest Pair: (1, 5), $d_{1,5}$

Sorted Points: [3,7,5,1]

RightPoints:

Closest Pair: (4,6), $d_{4,6}$

Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]

Runway Points: [8,7,6,5,2]

Both of these lists can be computed by a *single* pass over the lists

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points

based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by y-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

What is the running time?

$$\Theta(n \log n)$$

$$T(n) = 2T(n/2) + \Theta(n)$$

Case 2 of Master's Theorem:

$$T(n) = \Theta(n \log n)$$

$$\Theta(n \log n)$$

Initialization: Sort points by x-coordinate

$$\Theta(1)$$

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

$$\Theta(n)$$

$$\Theta(1)$$

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by *y*-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points