
CS 3100
Data Structures and Algorithms 2

Lecture 8: Divide and Conquer

Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:
• Section 4.1-4.4



Announcements

• PS3 due tomorrow
• PA2 coming soon
• Office hours

• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
• TA office hours posted on our website

• Quizzes 1-2 coming February 29, 2024
• Both quizzes taken the same day
• If you have SDAC, please schedule for 1 exam (not a quiz)
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Divide and Conquer

Divide: 
• Break the problem into multiple 

subproblems, each smaller instances of the 
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively
• If the subproblems are “small”:

• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain 

solution for original problem

When is this an 
effective strategy?

[CLRS Chapter 4]



Multiplication

Want to multiply large numbers together

4

4	1	0	2
×	1	8	1	9

𝑛-digit numbers

number of digits

number of elementary operations
(single-digit multiplications)

How do we measure input size? 

What do we “count” for run time?



“Schoolbook” Multiplication

5

4	1	0	2
×	1	8	1	9
3	6	9	1	8
4	1	0	2

3	2	8	1	6
4	1	0	2
7	4	6	1	5	3	8

+

How many multiplications?

𝑛-digit numbers

𝑛 mults
𝑛 mults
𝑛 mults
𝑛 mults

𝑛 levels
⇒ Θ(𝑛!) 

What about cost 
of additions?
Θ(𝑛!) 



“Schoolbook” Multiplication
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4	1	0	2
×	1	8	1	9
3	6	9	1	8
4	1	0	2

3	2	8	1	6
4	1	0	2
7	4	6	1	5	3	8

+

How many multiplications?

𝑛-digit numbers

𝑛 mults
𝑛 mults
𝑛 mults
𝑛 mults

𝑛 levels
⇒ Θ(𝑛!) 

What about cost 
of additions?
Θ(𝑛!) 

Can we do 
better?



(                                       )

(                  )

Divide and Conquer Multiplication
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1. Break into smaller subproblems

4	1	0	2
×	1	8	1	9

𝑎 𝑏
𝑐 𝑑

𝑎 𝑏+= 10
&
'

𝑐 𝑑+= 10
&
'

(                  )

𝑎 𝑐×10&

𝑎 𝑑10
&
' × 𝑏 𝑐×+

𝑏 𝑑×

+

+
=



Divide and Conquer Multiplication

Divide: 
• Break 𝑛-digit numbers into four numbers of 𝑛/2 digits each 

(call them 𝑎, 𝑏, 𝑐, 𝑑)

Conquer:
• If 𝑛 > 1:

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑
• If 𝑛 = 1: (i.e. one digit each)

• Compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑 directly (base case)

Combine:
• 10! 𝑎𝑐 + 10!/# 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

8

For simplicity, assume 
that 𝑛 = 2"  is a 

power of 2



Divide and Conquer Multiplication

9

10& 𝑎𝑐 + 10&/' 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Recursively solve

𝑇 𝑛

2. Use recurrence relation to express recursive running time



Divide and Conquer Multiplication

10

10& 𝑎𝑐 + 10&/' 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Recursively solve

𝑇 𝑛

2. Use recurrence relation to express recursive running time

Need to compute 4 multiplications, 
each of size 𝑛/2

= 4𝑇
𝑛
2



Divide and Conquer Multiplication

11

10& 𝑎𝑐 + 10&/' 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Recursively solve

𝑇 𝑛

2. Use recurrence relation to express recursive running time

Need to compute 4 multiplications, 
each of size 𝑛/2

2 shifts and 3 additions 
on 𝑛-bit values

= 4𝑇
𝑛
2 + 5𝑛



Divide and Conquer Multiplication

12

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

3. Use asymptotic notation to simplify

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2%&'! ( ⋅ 5𝑛

…

𝑇 𝑛 = 5𝑛 &
)*+

%&'! (

2)



Divide and Conquer Multiplication
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𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

3. Use asymptotic notation to simplify

𝑇 𝑛 = 5𝑛 &
)*+

%&'! (

2)

𝑇 𝑛 = 5𝑛
2%&'! (,- − 1

2 − 1

𝑇 𝑛 = 5𝑛(2𝑛 − 1) = Θ(𝑛.) No better than the 
schoolbook method!



(                                       )

(                  )

Karatsuba Multiplication

14

1. Break into smaller subproblems

4	1	0	2
×	1	8	1	9

𝑎 𝑏
𝑐 𝑑

𝑎 𝑏+= 10
&
'

𝑐 𝑑+= 10
&
'

(                  )

𝑎 𝑐×10&

𝑎 𝑑10
&
' × 𝑏 𝑐×+

𝑏 𝑑×

+

+
=

Recall: previous divide-
and-conquer recursively 
computed 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑



Karatsuba Multiplication

15

10& 𝑎𝑐 + 10
&
' 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Can’t avoid these This can be 
simplified!

𝑎 + 𝑏 𝑐 + 𝑑 =
𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

𝑎𝑑 + 𝑏𝑐 = 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑
One multiplicationTwo 

multiplications

a

×
b

c d



Karatsuba Multiplication
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10( 𝑎𝑐 + 10(/. 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑑

Recursively solve

𝑇 𝑛 =

2. Use recurrence relation to express recursive running time a

×
b

c d



Karatsuba Multiplication
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10( 𝑎𝑐 + 10(/. 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑑

Recursively solve

𝑇 𝑛 =

2. Use recurrence relation to express recursive running time

Need to compute 𝟑 multiplications, each 
of size 𝑛/2: 𝑎𝑐, 𝑏𝑑, (𝑎 + 𝑏)(𝑏 + 𝑐)

a

×
b

c d

3𝑇
𝑛
2



Karatsuba Multiplication
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10( 𝑎𝑐 + 10(/. 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑑

Recursively solve

𝑇 𝑛 =

2. Use recurrence relation to express recursive running time

Need to compute 𝟑 multiplications, each 
of size 𝑛/2: 𝑎𝑐, 𝑏𝑑, (𝑎 + 𝑏)(𝑏 + 𝑐)

2 shifts and 6 additions 
on 𝑛-bit values

a

×
b

c d

3𝑇
𝑛
2
+ 8𝑛



Karatsuba Multiplication

Divide: 
• Break 𝑛-digit numbers into four numbers of  ⁄! # digits each 

(call them 𝑎, 𝑏, 𝑐, 𝑑)

Conquer:
• If 𝑛 > 1:

• Recursively compute 𝑎𝑐, 𝑏𝑑, 𝑎 + 𝑏 𝑐 + 𝑑
• If 𝑛 = 1:

• Compute 𝑎𝑐, 𝑏𝑑, 𝑎 + 𝑏 𝑐 + 𝑑 directly (base case)

Combine:
• 10! 𝑎𝑐 + 10 ⁄! # 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑑

19

a

×
b

c d



Karatsuba Multiplication

20

1.Recursively compute: 𝑎𝑐, 𝑏𝑑, (𝑎 + 𝑏)(𝑐 + 𝑑)
2. 𝑎𝑑 + 𝑏𝑐 = 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑
3. Return 10# 𝑎𝑐 + 10

!
" 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

1. 𝑥 ← 	Karatsuba(𝑎, 𝑐)
2. 𝑦 ← 	Karatsuba(𝑎, 𝑑)
3. 𝑧 ← 	Karatsuba(𝑎 + 𝑏, 𝑐 + 𝑑) − 𝑥 − 𝑦
4. Return 10#𝑥	 + 10 ⁄# !𝑧 + 𝑦

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

Pseudocode:

a

×
b

c d



Karatsuba Multiplication
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1.Recursively compute: 𝑎𝑐, 𝑏𝑑, (𝑎 + 𝑏)(𝑐 + 𝑑)
2. 𝑎𝑑 + 𝑏𝑐 = 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑
3. Return 10# 𝑎𝑐 + 10

!
" 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

1. 𝑥 ← 	Karatsuba(𝑎, 𝑐)
2. 𝑦 ← 	Karatsuba(𝑎, 𝑑)
3. 𝑧 ← 	Karatsuba(𝑎 + 𝑏, 𝑐 + 𝑑) − 𝑥 − 𝑦
4. Return 10#𝑥	 + 10 ⁄# !𝑧 + 𝑦

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

Pseudocode:

a

×
b

c d



Karatsuba
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𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

3. Use asymptotic notation to simplify

𝑛 8𝑛

8𝑛
2

8𝑛
2

8𝑛
2

𝑛
2

𝑛
2

𝑛
2

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4…𝑛

4
𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

8 8 8 8 8 8 8 8 8 8

… … … … … …

1 1 1 1 1 1 1 1 1 1…

8𝑛 ⋅ 1

8𝑛 ⋅
3
2

8𝑛 ⋅
9
4

8𝑛 ⋅
3%&'! (

2%&'! (

…

𝑇 𝑛 = 8𝑛 &
)*+

%&'! (

( 83 2)
)



Karatsuba
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𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

3. Use asymptotic notation to simplify

𝑇 𝑛 = 8𝑛 &
)*+

%&'! (

( 83 2)
)

𝑇 𝑛 = 8𝑛
( 83 2)

%&'! (,-−1

83 2 − 1
Math, math, and more math…(on board, see lecture supplement)



Karatsuba

24



Karatsuba

25



Karatsuba Multiplication

26

How to simplify this
(using asymptotic notation)?

Drop constant multiples

𝑇 𝑛 = 8𝑛
( 83 2)

%&'! (,-−1

83 2 − 1



Karatsuba Multiplication

27

How to simplify this
(using asymptotic notation)?

Drop constant multiples

𝑇 𝑛 = 8𝑛
( 83 2)

%&'! (,-−1

83 2 − 1

= Θ 𝑛 83 2
%&'! (,- − 1

= Θ
3
2
𝑛 ⋅ 83 2

%&'! ( − 𝑛 Distribute terms



Karatsuba Multiplication
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How to simplify this
(using asymptotic notation)?

Drop constant multiples

𝑇 𝑛 = 8𝑛
( 83 2)

%&'! (,-−1

83 2 − 1

= Θ 𝑛 83 2
%&'! (,- − 1

= Θ
3
2
𝑛 ⋅ 83 2

%&'! ( − 𝑛

= Θ 𝑛 ⋅ 83 2
%&'! (

Distribute terms

Drop constants and low-
order terms



Karatsuba Multiplication
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How to simplify this
(using asymptotic notation)?𝑇 𝑛 = Θ 𝑛 ⋅ 83 2

%&'! (

Properties of logarithms:

2%&'" # = 𝑛

3%&'" #

2%&'" # = 𝑛 log 𝑎( = 𝑏 log 𝑎

𝑎() = 𝑎(
)

2%&'" # = 𝑛

= 𝑛%&'" *= 2%&'" #
%&'" *= 2(%&'" #)(%&'" *)= 2%&'" *#$%" !



Karatsuba Multiplication

How to simplify this
(using asymptotic notation)?𝑇 𝑛 = Θ 𝑛 ⋅ 83 2

%&'! (

= Θ 𝑛 ⋅
3%&'! (

2%&'! (

= Θ 𝑛 ⋅
𝑛%&'! 1

𝑛

2%&'" # = 𝑛
3%&'" # = 𝑛%&'" *

= Θ 𝑛%&'! 1 ≈ Θ(𝑛-.343) Strictly better than 
schoolbook method!



31

𝑛.

𝑛-.343



Analyzing Divide and Conquer

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

Divide: 𝐷(𝑛) time
Conquer: Recurse on smaller problems of size 𝑠-, … , 𝑠5
Combine: 𝐶(𝑛) time
Recurrence: 
• 𝑇 𝑛 = 𝐷 𝑛 + ∑*∈[-]𝑇(𝑠*) + 𝐶(𝑛)



Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution

get a picture of recursion

guess and use induction to prove

MAGIC!

substitute in to simplify



Recurrence Solving Techniques

34

(induction)

Tree

? Guess/Check

“Cookbook”

Substitution



Guess and Check Blueprint

Show: 𝑇 𝑛 = 𝑂(𝑔 𝑛 )
Consider: 𝑔∗ 𝑛 = 𝑐 ⋅ 𝑔(𝑛) for some constant 𝑐
Goal: show ∃𝑛+ such that ∀𝑛 > 𝑛+, 𝑇 𝑛 ≤ 𝑔∗(𝑛)
• (definition of big-O)

Technique: Induction
• Base cases: 

• Show 𝑇 1 ≤ 𝑔∗ 1 (sometimes, may need to consider additional base cases)
• Hypothesis: 

• ∀𝑛 ≤ 𝑥", 𝑇 𝑛 ≤ 𝑔∗(𝑛)
• Inductive step:

• Show that 𝑇 𝑥" + 1 ≤ 𝑔∗ 𝑥" + 1

35

Need to ensure that in inductive 
step, can either appeal to a base 

case or to the inductive hypothesis



Mergesort Guess and Check

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛



Karatsuba Analysis using Guess and Check

37

𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛

Goal:   𝑇 𝑛 ≤ 3000	𝑛/.1 = 𝑂(𝑛/.1)

Base case:  𝑇 1 = 8 ≤ 3000 

Hypothesis:  ∀𝑛 ≤ 𝑥2, 	𝑇 𝑛 ≤ 3000𝑛/.1  

Inductive step:  Show 𝑇 𝑥2 + 1 ≤ 3000 𝑥2 + 1 /.1



Karatsuba Guess and Check (Loose)

38

Show: 𝑇 𝑥+ + 1 ≤ 3000 𝑥+ + 1 -.A

𝑇 𝑥+ + 1

Hypothesis: ∀𝑛 ≤ 𝑥+: 	𝑇 𝑛 ≤ 3000𝑛-.A

= 3𝑇
𝑥+ + 1
2

+ 8 𝑥+ + 1

≤ 3 3000
𝑥+ + 1
2

-.A

+ 8 𝑥+ + 1

Recurrence definition

Inductive hypothesis

𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛



Karatsuba Guess and Check (Loose)



Karatsuba Guess and Check (Loose)

40Show: 𝑇 𝑥2 + 1 ≤ 3000 𝑥2 + 1 /.1

𝑇 𝑥2 + 1 = 3𝑇
𝑥2 + 1
2

+ 8 𝑥2 + 1

≤ 3 3000
𝑥2 + 1
2

/.1
+ 8 𝑥2 + 1

Recurrence definition

Inductive hypothesis

≤ 3 3000
𝑥2 + 1
2

/.1
+ 8 𝑥2 + 1 /.1 ∀𝑥 ≥ 0: 𝑥/.1 ≥ 𝑥

=
9000
2/.1 + 8 𝑥2 + 1 /.1 Distributive property

≤ 3000 𝑥2 + 1 /.1 9000
2/.1

+ 8 ≤ 3000



Recurrence Solving Techniques
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Tree

? Guess/Check

“Cookbook”

Substitution



Observation

Divide: 𝐷(𝑛) time
Conquer: Recurse on smaller problems of size 𝑠/, … , 𝑠-
Combine: 𝐶(𝑛) time
Recurrence: 

• 𝑇 𝑛 = 𝐷 𝑛 + ∑#∈[&]𝑇(𝑠#) + 𝐶(𝑛)

Many divide and conquer algorithms have recurrences are of form:
• 𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛/𝑏) + 𝑓(𝑛)

Mergesort: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛
Divide and Conquer Multiplication: 𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛
Karatsuba Multiplication: 𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛

42

𝑎 and 𝑏 are constants



General Recurrence

43

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)

𝑛 𝑓(𝑛)

𝑓
𝑛
𝑏

𝑓
𝑛
𝑏𝑓

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑓
𝑛
𝑏! 𝑓

𝑛
𝑏! 𝑓

𝑛
𝑏! 𝑓

𝑛
𝑏!…𝑛

𝑏.
𝑛
𝑏.

𝑛
𝑏.

𝑛
𝑏.

𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1)

… … … … … …

1 1 1 1 1 1 1…

…

… …

1

𝑎

𝑎.

𝑎5

Cost of 
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏.

Number of 
subproblems

𝑘 levels

𝑓 ⁄𝑛 𝑏5

𝑇 𝑛 = &
)*+

%&'" (

𝑎) ⋅ 𝑓
𝑛
𝑏)



General Recurrence

𝑘 = log! 𝑛

An aside:

𝑎"#$& % =



Three Cases

45

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎#𝑓

𝑛
𝑏#

+ 𝑎8𝑓
𝑛
𝑏8

+⋯+ 𝑎-𝑓
𝑛
𝑏-

Case 1:
Most work happens 

at the leaves

Case 2:
Work happens  

consistently throughout

Case 3:
Most work happens 

at top of tree

𝑘 = logP 𝑛



Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log! 𝑎 

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛QRS for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛Q



Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log! 𝑎 

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛QRS for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛Q

Case 2 𝑓 𝑛 ∈ Θ 𝑛Q 𝑇 𝑛 ∈ Θ 𝑛Q log 𝑛



Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log! 𝑎 

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛QRS for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛Q

Case 2 𝑓 𝑛 ∈ Θ 𝑛Q 𝑇 𝑛 ∈ Θ 𝑛Q log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛Q,S for some constant 𝜀 > 0
AND

𝑎𝑓 (
P
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 1

Case 1: if 𝑓 𝑛 = 𝑂(𝑛()*! + ,-) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛()*! +)
Case 2: if 𝑓 𝑛 = Θ(𝑛()*! +), then 𝑇 𝑛 = Θ(𝑛()*! + log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛()*! +.-) for some constant 𝜀 > 0, and if 𝑎𝑓 /
0
≤ 𝑐𝑓(𝑛) for some constant 

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

49

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

Case 2
Θ 𝑛%&'! . log 𝑛 = Θ(𝑛 log 𝑛)



Tree method
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𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
	 + 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛/2 𝑛/2

𝑛/4 𝑛/4 𝑛/4 𝑛/4

1 1 1 11 1

𝑛

𝑛

𝑛

𝑛

+

+ + +

+ + + + +

log. 𝑛
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𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

Case 1
Θ 𝑛%&'! ^ = Θ(𝑛.)

Case 1: if 𝑓 𝑛 = 𝑂(𝑛()*! +	,-) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛()*! +)
Case 2: if 𝑓 𝑛 = Θ(𝑛()*! +), then 𝑇 𝑛 = Θ(𝑛()*! + log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛()*! +.-) for some constant 𝜀 > 0, and if 𝑎𝑓 /
0
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Tree method
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𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2%&'! ( ⋅ 5𝑛

…
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𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2%&'! ( ⋅ 5𝑛

…

Cost is increasing with the recursion depth 
(due to large number of subproblems)

Most of the work happening in the leaves
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𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

Case 1
Θ 𝑛%&'! 1 ≈ Θ(𝑛-.343)

Case 1: if 𝑓 𝑛 = 𝑂(𝑛()*! +	,-) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛()*! +)
Case 2: if 𝑓 𝑛 = Θ(𝑛()*! +), then 𝑇 𝑛 = Θ(𝑛()*! + log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛()*! +.-) for some constant 𝜀 > 0, and if 𝑎𝑓 /
0
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)
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𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

𝑛 8𝑛

8𝑛
2

8𝑛
2

8𝑛
2

𝑛
2

𝑛
2

𝑛
2

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4…𝑛

4
𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

8 8 8 8 8 8 8 8 8 8

… … … … … …

1 1 1 1 1 1 1 1 1 1…

8 ⋅ 1𝑛

8
2
⋅ 3𝑛

8
4
⋅ 9𝑛

8
2%&'! (

⋅ 3%&'! (𝑛

…
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𝑇 𝑛 = 2𝑇
𝑛
2
+ 15𝑛1

Case 3

Case 1: if 𝑓 𝑛 = 𝑂(𝑛()*! +	,-) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛()*! +)
Case 2: if 𝑓 𝑛 = Θ(𝑛()*! +), then 𝑇 𝑛 = Θ(𝑛()*! + log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛()*! +.-) for some constant 𝜀 > 0, and if 𝑎𝑓 /
0
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)
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𝑇 𝑛 = 2𝑇
𝑛
2
+ 15𝑛1

Case 3
Θ 𝑛1

Case 1: if 𝑓 𝑛 = 𝑂(𝑛()*! +	,-) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛()*! +)
Case 2: if 𝑓 𝑛 = Θ(𝑛()*! +), then 𝑇 𝑛 = Θ(𝑛()*! + log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛()*! +.-) for some constant 𝜀 > 0, and if 𝑎𝑓 /
0
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

Important: For Case 3, need to additionally check 
that 2𝑓 ⁄𝑛 2 ≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 
sufficiently large 𝑛 

2𝑓 ⁄𝑛 2 = 30 ⁄𝑛 2 1 =
30
8
𝑛1 ≤

1
4
15𝑛1



Master Theorem Example 4 (Visually)

𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …
1 1 1 … 1 1 1

15𝑛"

15
𝑛
2

"
15

𝑛
2

"

15
𝑛
4

"
15

𝑛
4

"
15

𝑛
4

"

15
𝑛
4

"

15 15 15 1515 15

15𝑛8

15𝑛8

4
15𝑛8

16

15 log# 𝑛

log. 𝑛
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𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛!



Master Theorem Example 4 (Visually)

15𝑛8

15𝑛8

4
15𝑛8

16

15 log# 𝑛

log. 𝑛
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𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛!

Cost is decreasing with the recursion depth
(due to high non-recursive cost)

Most of the work happening at the top


