
CS 3100
Data Structures and Algorithms 2

Lecture 5: Topological Sort, Connected Components

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:
• Chapter 20: Sections 20-3, 20-4, and 20-5

Announcements

• PS2 due tomorrow
• PA1 due Friday
• Office hours

• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
• TA office hours posted on our website

2

Dijkstra’s Algorithm Implementation

3

Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑! + 𝑤 𝑣, 𝑢 < 𝑑#:
 PQ. decreaseKey 𝑢, 𝑑! + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

10

2

6 11

9
5

8

3

7

3

1

8

12

90

∞

∞

∞

∞

∞
∞

∞

∞

Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the
priority queue, 𝑑A = 𝛿(𝑠, 𝑢) where 𝛿(𝑠, 𝑢) is the shortest distance
• Claim 1: There is a path of length 𝑑# (as long as 𝑑# < ∞) from 𝑠 to 𝑢 in 𝐺
• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑#

4

Graph Cuts

5

A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣B, 𝑣C ∈ 𝐸 crosses a
cut if 𝑣B ∈ 𝑆 and 𝑣C ∈ 𝑉 − 𝑆

An edge 𝑣B, 𝑣C ∈ 𝐸 respects a cut
if 𝑣B, 𝑣C ∈ 𝑆 or if 𝑣B, 𝑣C ∈ 𝑉 − 𝑆

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Notion extends naturally
to a set of edges

Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes 𝑣B = 𝑠,… , 𝑣D have been
removed from PQ, and for each of them 𝑑E! = 𝛿(𝑠, 𝑣D), and there is a
path from 𝑠 to 𝑣D with distance 𝑑E! (whenever 𝑑E! < ∞)

Base case:
• 𝑖 = 0: 𝑣$ = 𝑠
• Claim holds trivially

6

Correctness of Dijkstra’s Algorithm: Claim 1

Let 𝑢 be the 𝑖 + 1 FG node extracted
Claim 1: There is a path of length 𝑑A (as long as 𝑑A < ∞) from 𝑠 to 𝑢 in 𝐺
Proof:

• Suppose 𝑑# < ∞
• This means that PQ. decreaseKey was invoked on node 𝑢 on an earlier

iteration
• Consider the last time PQ. decreaseKey is invoked on node 𝑢
• PQ. decreaseKey is only invoked when there exists an edge 𝑣, 𝑢 ∈ 𝐸 and

node 𝑣 was extracted from PQ in a previous iteration
• In this case, 𝑑# = 𝑑% +𝑤 𝑣, 𝑢
• By the inductive hypothesis, there is a path 𝑠 → 𝑣 of length 𝑑% in 𝐺 and since

there is an edge 𝑣, 𝑢 ∈ 𝐸, there is a path 𝑠 → 𝑢 of length 𝑑# in 𝐺
7

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 FG node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑A

8

extracted nodes

𝑠
𝑢

Extracted nodes “cuts” G into
two	subsets, (𝑆, 𝑉 − 𝑆)

𝑆

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 FG node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑A

9

extracted nodes

𝑠
𝑢

𝑥
𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut

𝑤 𝑠,… , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑢 = 𝑤 𝑠,… , 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑥 ≥ 𝛿(𝑠, 𝑥) since 𝛿(𝑠, 𝑥) is weight of
shortest path from 𝑠 to 𝑥

𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 FG node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑A

10

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)
= 𝑑! + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Inductive hypothesis: since 𝑥 was extracted
before, 𝑑! = 𝛿(𝑠, 𝑥)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 FG node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑A

11

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑" + 𝑤(𝑦,… , 𝑢)
= 𝑑! + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

By construction of Dijkstra’s algorithm, when 𝑥 is
extracted, 𝑑" is updated to satisfy

𝑑" ≤ 𝑑! + 𝑤(𝑥, 𝑦)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 FG node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑A

12

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑" + 𝑤(𝑦,… , 𝑢)
≥ 𝑑# + 𝑤(𝑦,… , 𝑢)

= 𝑑! + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Greedy choice property: we always extract the
node of minimal distance so 𝑑# ≤ 𝑑"

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 FG node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑A

13

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑" + 𝑤(𝑦,… , 𝑢)
≥ 𝑑# + 𝑤(𝑦,… , 𝑢)
≥ 𝑑#

= 𝑑! + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

All edge weights assumed to be positive

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm

Conclusion: We used proof by induction to show:

When node 𝑢 is removed from the priority queue, 𝑑A = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑# (as long as 𝑑# < ∞) from 𝑠 to 𝑢 in 𝐺
• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑#

In other words, all paths 𝑠, … , 𝑢 are no shorter than 𝑑A
which makes it the shortest path (or one of equally shortest paths).

14

Topological Sort

15

Topological Sort

A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

16

1

2

3

4

5

6
7

9

8
1 23 4 56 79 8

Topological Sort

17

What are allowable orderings I can take all these CS classes?
• Note there are many possible orderings
• Unlike sorting a list

Topological Sort

Underwear Socks

ShoesPants

Belt

Shirt

Watch

Tie

Jacket

Getting dressed

Topologically sorted vertices appear in reverse order of their finish times!

We Can Use DFS and Finish Times

This is the same graph
with a different layout.

Notes:
• “Finish” time same as “done” time.
• dfs_sweep() used to visit all nodes
in the digraph.

DFS: Topological sort

20

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done):
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

Idea: List in reverse
order by finish time

1

2

3

4

5

6
7

9

8

DFS: Topological sort

22

def top_sort(graph): # has loop like dfs_sweep
 seen = [False, False, False, …] # length matches |𝑉|
 finished = []
 for s in graph:
 if s not seen:
 finish_time(graph, s, seen, finished)
 return reverse(finished)

def finish_time(graph, curr, seen, finished):
 seen[curr] = True
 for v in neighbors(current):
 if v not seen:
 finish_time(graph, v, seen, finished)
 finished.append(curr)

Idea: List in reverse order
by done/finish time

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5

1

2

3

4

5

6
7

9

8

Seen: 9
Done: 14

Seen: 10
Done: 13

Seen: 11
Done: 12

Seen: 16
Done: 17

Strongly Connected Components

Readings: CLRS 20.5, but you can ignore the proof-y parts

28

Strongly Connected Components (SCCs)

In a digraph, Strongly Connected Components (SCCs) are subgraphs
where all vertices in each SCC are reachable from one another
• Thus vertices in an SCC are on a directed cycle
• Any vertex not on a directed cycle is an SCC all by itself

Common need: decompose a digraph into its SCCs
• Perhaps then operate on each, combine results based on connections

between SCCs

29

Real-world Example: Social Networks

Model a social network of users
• Directed edge u->v means u follows v

We want to identify a group of users
who follow each other
• Maybe not directly
• OK if it’s indirect, i.e. if there’s a path

connecting any pair in the group

In this example, the group of solid-colored users is an SCC
Note: if all pairs had to follow each other, we call this a clique

30

SCC Example

Example: digraph below has 3 SCCs
• Note here each SCC has a cycle. (Possible to have a single-node SCC.)
• Note connections to other SCCs, but no path leaves a SCC and comes back
• Note there’s a unique set of SCCs for a given digraph

31

Component Graph

Sometimes for a problem it’s useful to consider digraph G’s component
graph, GSCC

• It’s like we ”collapse” each SCC into one node
• Might need a topological ordering between SCCs

32

How to Decompose Digraph into SCCs

Several algorithms do this using DFS
We’ll use CLRS’s choice (by Kosaraju and Sharir)
Algorithm works as follows:

1. Call dfs_sweep(G) to find finishing times u.f for each vertex u in G.
2. Compute GT, the transpose of digraph G.

(Reminder: transpose means same nodes, edges reversed.)
3. Call dfs_sweep(GT) but do the recursive calls on nodes in the order

of decreasing u.f from Step 1. (Start with the vertex with largest
finish time in G’s DFS tree,…)

4. The DFS forest produced in Step 3 is the set of SCCs

33

Why Do We Care about the Transpose?
If we call DFS on a node in an SCC, it will visit all nodes in that SCC

• But it could leave the SCC and find other nodes L
• Could we prevent that somehow?

Note that a digraph and its transpose have the same SCCs
• Maybe we can use the fact that edge-directions are reversed in GT to stop DFS from

leaving an SCC?
• But this depends on the order you choose vertices to do dfs_sweep() in GT

34

Why Do We Care About Finish Times?

Our algorithm first finds DFS finish times in G
Then calls recursive DFS on transpose GT from vertex with largest finish
time (here, B)
• Reversed edges in GT stop it visiting nodes in other SCCs

35

Why Do We Care About Finish Times?

After recursive DFS on transpose GT finds SCC containing B,
next DFS will start from C
• Nodes in previously found SCC(s) have been visited
• Reversed edges in GT stop it visiting nodes in SCCs yet to be found

36

Ties to Topological Sorting

Formal proof of correctness in CLRS, but hopefully from previous slides you’re
convinced it works!
Note how the use of finish times makes this seem like topological sort. And it is,
if you think of topological ordering for GSCC

• Cycles in G, but no cycles in GSCC so we could sort that
• Topological sort controls the order we do things, and DFS finds all the reachable nodes in

an SCC

37

Final Thoughts

There are many interesting problems involving digraphs and DAGs
They can model real-world situations
• Dependencies, network flows, …

DFS is often a valuable strategy to tackle such problems
• For DAGs, not interested in back-edges, since DAGs are acyclic
• Ordering, reachability from DFS can be useful

38

