CS 3100 Data Structures and Algorithms 2 Lecture 5: Dijkstra's Shortest Path Algorithm

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS 4th edition:

Section 22.3

Announcements

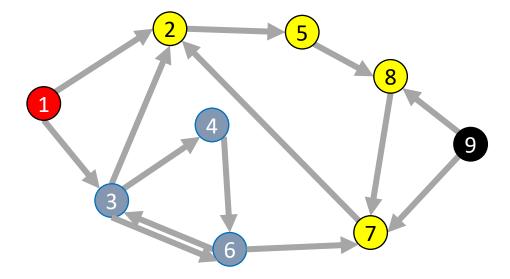
- PS2 available soon, due Wednesday
- PA1 Gradescope submission coming soon
- Office hours
 - Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
 - Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
 - TA office hours posted on our website

DFS: Recursively

```
done = [False, False, False, ...] # length matches |V|
      dfs rec(graph, s, seen, done)
def dfs rec(graph, curr, seen, done)
      mark curr as seen
      for v in neighbors(current):
             if v not seen:
                   dfs rec(graph, v, seen, done)
      mark curr as done
```

seen = [False, False, False, ...] # length matches |V|

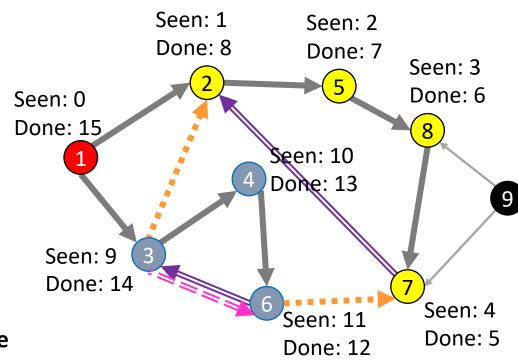
def dfs(graph, s):



Using DFS

Consider the "seen times" and "done times" Edges can be categorized:

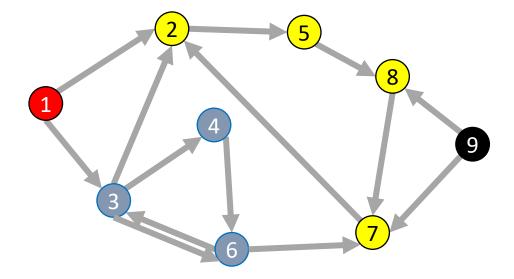
- Tree Edge
 - (a, b) was followed when pushing
 - (a, b) when b was **unseen** when we were at a
- Back Edge
 - (a, b) goes to an "ancestor"
 - a and b seen but not done when we saw (a, b)
 - $t_{seen}(b) < t_{seen}(a) < t_{done}(a) < t_{done}(b)$
- Forward Edge
 - (a, b) goes to a "descendent"
 - b was **seen** and **done** between when a was **seen** and **done**
 - $t_{seen}(a) < t_{seen}(b) < t_{done}(b) < t_{done}(a)$
- Cross Edge
 - (a, b) connects "branches" of the tree
 - b was **seen** and **done** before a was ever **seen**
 - (a,b) when $t_{done}(b) > t_{seen}(a)$ and



DFS: Cycle Detection

```
def dfs(graph, s):
         seen = [False, False, False, ...] # length matches |V|
         done = [False, False, False, ...] # length matches |V|
         dfs_rec(graph, s, seen, done)
def dfs_rec(graph, curr, seen, done)
         mark curr as seen
         for v in neighbors(current):
                  if v not seen:
                           dfs_rec(graph, v, seen, done)
         mark curr as done
```

Idea: Look for a back edge!



DFS: Cycle Detection

```
def hasCycle(graph, s):

seen = [False, False, False, ...] # length matches |V|

done = [False, False, False, ...] # length matches |V|

dfs_rec(graph, s, seen, done)
```

Idea: Look for a back edge!

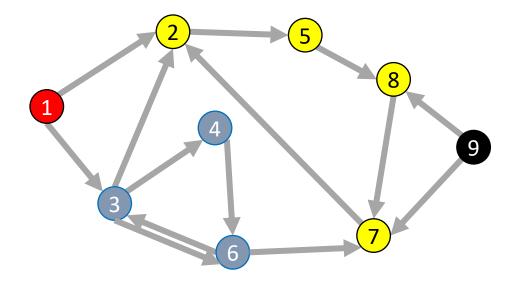
def hasCycle_rec(graph, curr, seen, done)

mark curr as seen for v in neighbors(current):

if v not seen:

dfs_rec(graph, v, seen, done)

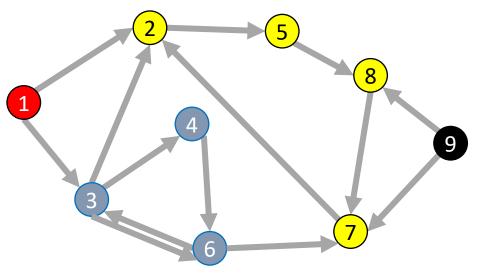
mark curr as done



DFS: Cycle Detection

```
def hasCycle(graph, s):
         seen = [False, False, False, ...] # length matches |V|
         done = [False, False, False, ...] # length matches |V|
         return hasCycle_rec(graph, s, seen, done)
def hasCycle _rec(graph, curr, seen, done):
         cycle = False
         mark curr as seen
         for v in neighbors(current):
                  if v seen and v not done:
                           cycle = True
                  elif v not seen:
                           cycle = dfs_rec(graph, v, seen, done) or cycle
         mark curr as done
         return cycle
```

Idea: Look for a back edge!



Back Edges in Undirected Graphs

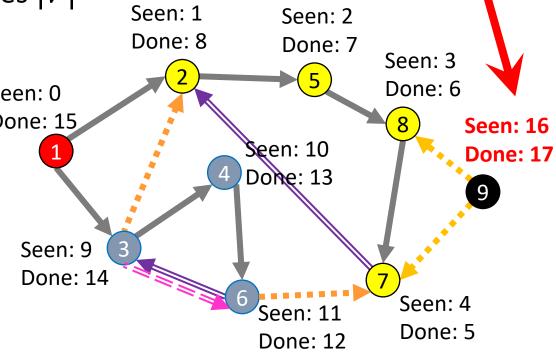
Finding back edges for an undirected graph is not quite this simple:

- The parent node of the current node is **seen** but not **done**
- Not a cycle, is it? It's the same edge you just traversed

Question: how would you modify our code to recognize this?

DFS "Sweep" to Process All Nodes

```
def dfs_sweep(graph): # no start node given
       seen = [False, False, False, ...] # length matches |V|
       done = [False, False, False, ...] # length matches |V|
                                                                 Seen: 1
       for s in graph: # do DFS at every vertex
                                                                 Done: 8
           if s not seen:
                                                      Seen: 0
              dfs_rec(graph, s, seen, done)
                                                      Done: 15
def dfs_rec(graph, curr, seen, done) # unchanged
        mark curr as seen
                                                        Seen: 9
       for v in neighbors(current):
                                                         Done: 14
               if v not seen:
                       dfs_rec(graph, v, seen, done)
        mark curr as done
```



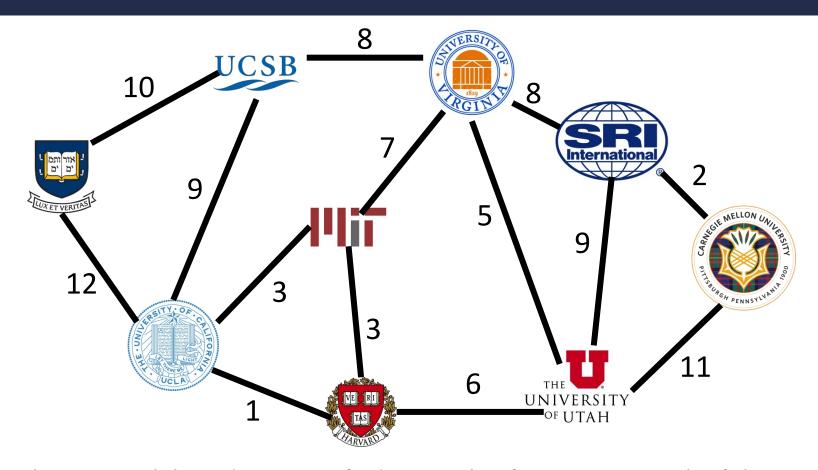
Time Complexity of DFS

For a digraph having V vertices and E edges

- Each edge is processed once in the while loop of dfs_rec() for a cost of $\Theta(E)$
 - Think about adjacency list data structure.
 - Traverse each list exactly once. (Never back up)
 - There are a total of **E** nodes in all the lists
- The non-recursive dfs() algorithm will do $\Theta(V)$ work even if there are no edges in the graph
- Thus over all time-complexity is $\Theta(V+E)$
 - Remember: this means the larger of the two values
 - Reminder: This is considered "linear" for graphs since there are two size parameters for graphs.
- Extra space is used for seen/done (or color) array.
 - Space complexity is $\Theta(V)$

Shortest Path

Single-Source Shortest Path Problem



Find the <u>shortest path</u> based on sum of edge-weights from UVA to each of these other places. **The problem:** Given a graph G = (V, E) and a start node (i.e., source) $s \in V$, for each $v \in V$ find the minimum-weight path from $s \to v$ (call this weight $\delta(s, v)$) Assumption (for this unit): all edge weights are positive

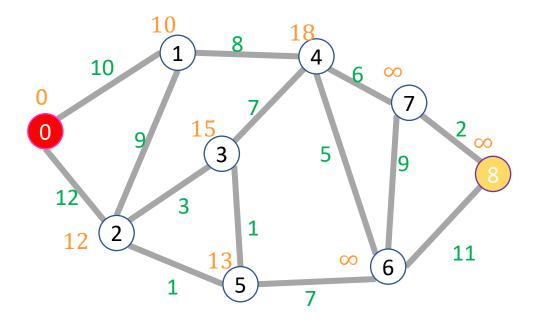
Input: graph with **no negative edge weights**, start node s, end node t

Behavior: Start with node s, repeatedly go to the incomplete node

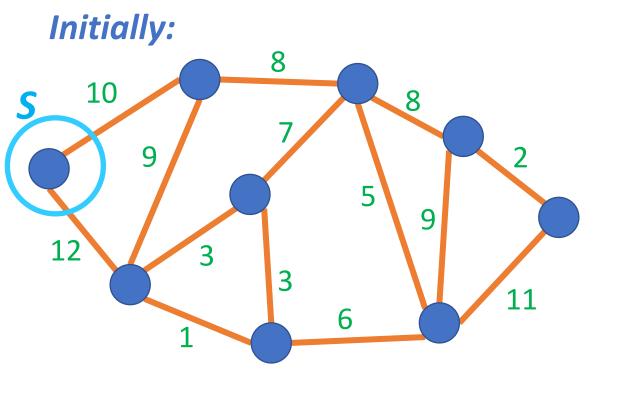
"nearest" to s, stop when

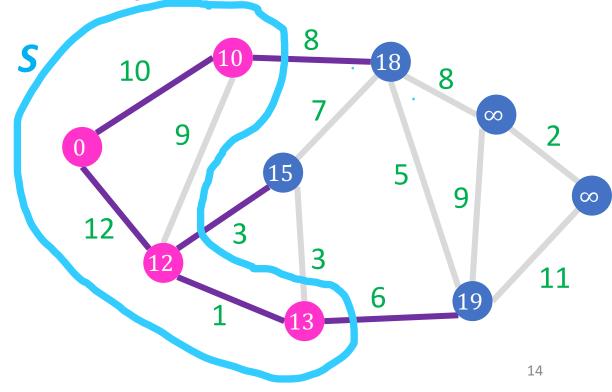
Output:

- Distance from start to end
- Distance from start to every node



- 1. Start with an empty tree *S* and add the source to *S*
- 2. Repeat |V| 1 times:
 - At each step, add the node "nearest" to the source not yet in S to S





Data Structure to Store Nodes

The strategy: At every step, choose node not in *S* that's closest to source To do this efficiently, we need a data structure that:

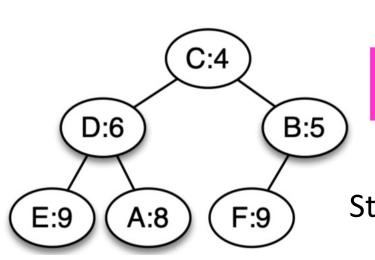
- Stores a set of (node, distance) pairs
- Allows efficient removal of the pair with smallest distance
- Allows efficient additions and updates

This is the **Priority Queue** ADT (Abstract Data Type)!
Remember the **binary heap** data structure?
We'll need a **min-heap** (node with smallest priority at the root)

Review: Storing a Heap in an Array

Min-heap

stored in array



Must store the key (priority) value, and maybe other info (e.g. node ID)

Store the elements in a one-dimensional array in strict left-to-right, level order

That is, we store all of the nodes on the tree's level i from left to right before storing the nodes on level i + 1.

- Usually we ignore index position 0
- Simple formulas to find children, siblings,...
 - 2i: left child, 2i+1: right child
 - floor(i/2): parent

6

F:9

Review: Heap Operations

extractMin() perhaps called poll() in CS 2100

- Returns and removes the item with the min key (e.g. the heap's root)
- Move last item to root and "bubble it down" to correct location
- Complexity: O(log n)

insert(item, key) perhaps called push() in CS 2100

- Add new item at end of array and "bubble it up" to correct location
- Complexity: O(log n)

decreaseKey(item, newKey) not covered in CS 2100!

- Find item in min-heap, decrease its key, and "bubble it up" to correct location
- Complexity: uh oh! Can we find item quickly, i.e. in O(log n)?
- Could sequential search the array. Then complexity is O(n)
- We can do this in O(log n) if we use indirect heaps (details later)

- 1. Start with an empty tree *S* and add the source to *S*
- 2. Repeat |V| 1 times:
 - Add the node to S that's not yet in S and that's "nearest" to source

Implementation:

```
initialize d_v = \infty for each node v add all nodes v \in V to the priority queue PQ, using d_v as the key set d_s = 0 while PQ is not empty: v = PQ. extractMin() for each u \in V such that (v, u) \in E: if u \in PQ and d_v + w(v, u) < d_u: key: PQ. decreaseKey(u, d_v + w(v, u)) s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s
```

each node also maintains a parent, initially NULL

key: length of shortest path $s \rightarrow u$ using nodes in PQ

Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                8
             if u \in PQ and d_v + w(v, u) < d_u:
                                                               10
                      PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
                                                                                               9
                                                                                       6
```

Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                 8
             if u \in PQ and d_v + w(v, u) < d_u:
                                                                10
                       PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
                                                                                               9
                                                                                       6
                                                                                                      20
```

Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                 8
             if u \in PQ and d_v + w(v, u) < d_u:
                                                               10
                      PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
                                                                                               9
                                                                                                       11
                                                                                       6
```

Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                 8
             if u \in PQ and d_v + w(v, u) < d_u:
                                                               10
                      PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
                                                                                               9
                                                                                                       11
                                                                                       6
```

Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
             if u \in PQ and d_v + w(v, u) < d_u:
                                                               10
                      PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
                                                                                               9
                                                                                                       11
                                                                                       6
```

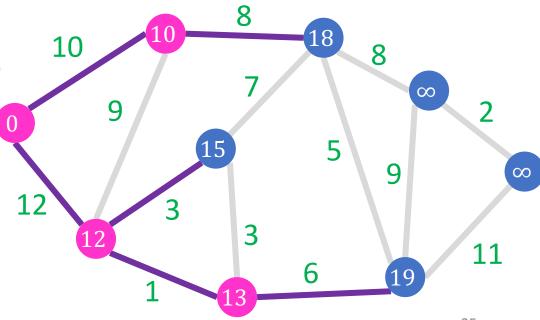
Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
             if u \in PQ and d_v + w(v, u) < d_u:
                                                                10
                       PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
                                                                                               9
                                                                                                        11
                                                                                       6
                                                                                                      24
```

Implementation:

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
              if u \in PQ and d_v + w(v, u) < d_u:
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u. parent = v
```



Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
             if u \in PQ and d_v + w(v, u) < d_u:
                                                               10
                      PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
```

Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
             if u \in PQ and d_v + w(v, u) < d_u:
                                                               10
                      PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
                                                                                               9
```

Implementation:

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                 10
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u. parent = v
                                                                                                 9
                                                                                                        28
```

Implementation:

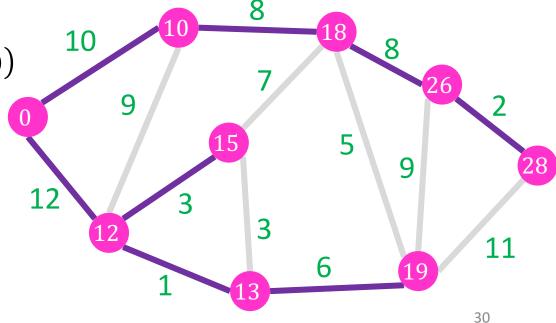
```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
              if u \in PQ and d_v + w(v, u) < d_u:
                                                                10
                       PQ. decreaseKey(u, d_v + w(v, u))
                       u. parent = v
                                                                                                 9
```

Implementation:

```
initialize d_v = \infty for each node v add all nodes v \in V to the priority queue PQ, using d_v as the key set d_s = 0 while PQ is not empty: v = \text{PQ}. extractMin() for each u \in V such that (v, u) \in E: if u \in \text{PQ} and d_v + w(v, u) < d_u: PQ. decreaseKey(u, d_v + w(v, u)) u. parent v
```

Observe: shortest paths from a source forms a <u>tree</u>, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest path. (This is called the *optimal substructure property*.)



Dijkstra's Algorithm Running Time

Implementation:

```
initialize d_v = \infty for each node v
                                                                             Initialization:
add all nodes v \in V to the priority queue PQ, using d_v as the key
                                                                                      O(|V|)
set d_s = 0
                                                                              |V| iterations
while PQ is not empty:
    v = PQ. extractMin()
                                                                              O(\log|V|)
    for each u \in V such that (v, u) \in E:
                                                                              |E| iterations total
             if u \in PQ and d_v + w(v, u) < d_u:
                       PQ. decreaseKey(u, d_v + w(v, u))
                                                                              ?? O(\log|V|) if we use
                                                                              indirect heaps
                       u. parent = v
```

Overall running time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$ or, $O(m \log n)$

$$|V| = n$$

$$|E| = m$$

Python-like Code for Dijkstra's Algorithm

```
def Dijkstras(graph, start, end):
        distances = [\infty, \infty, \infty, ...] # one index per node
        done = [False,False,False,...] # one index per node
                                                                      10
        PQ = priority queue # e.g. a min heap
        PQ.insert((0, start))
        distances[start] = 0
        while PQ is not empty:
                current = PQ.extractmin()
                 if done[current]: continue
                 done[current] = True
                for each neighbor of current:
                         if not done[neighbor]:
                                  new_dist = distances[current]+weight(current,neighbor)
                                  if new dist < distances[neighbor]:</pre>
                                          distances[neighbor] = new_dist
                                          PQ.insert((new_dist,neighbor))
```

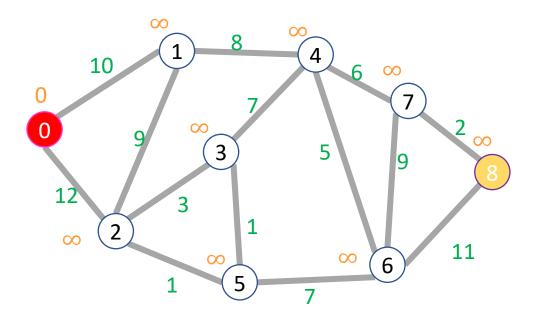
return distances[end]

Start: 0

End: 8

Node	Done?
0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

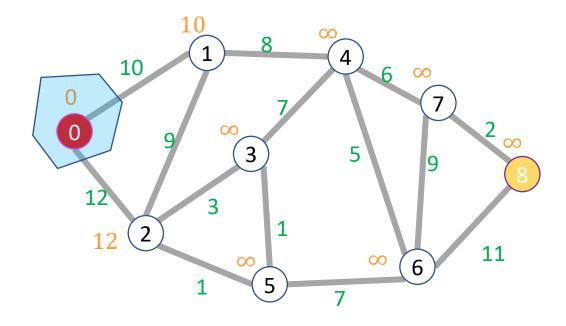


Start: 0

End: 8

Node	Done?
0	Т
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

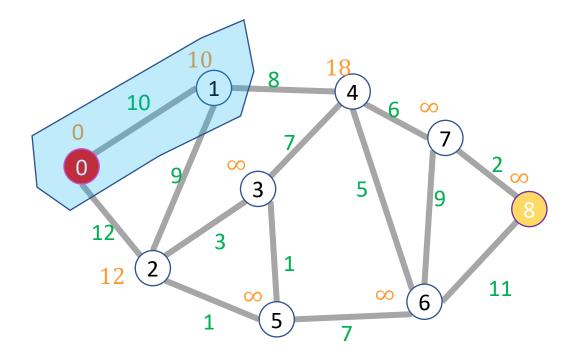


Start: 0

End: 8

Node	Done?
0	Т
1	Т
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	∞
4	18
5	∞
6	∞
7	∞
8	∞

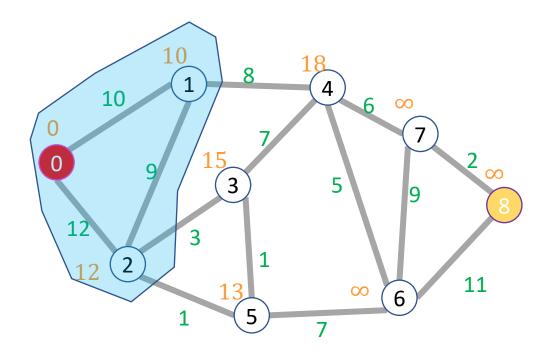


Start: 0

End: 8

Node	Done?
0	Т
1	Т
2	Т
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	15
4	18
5	13
6	∞
7	∞
8	∞



Dijkstra's Algorithm

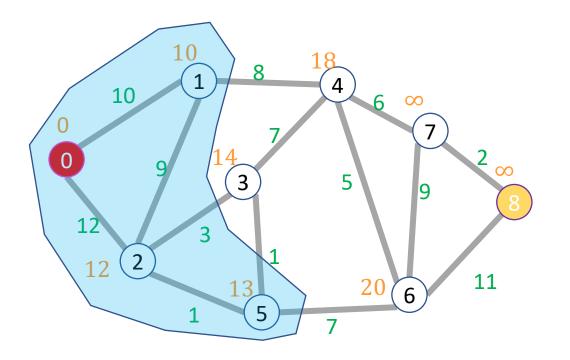
Start: 0

End: 8

Node	Done?
0	Т
1	Т
2	Т
3	F
4	F
5	Т
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	14
4	18
5	13
6	∞
7	20
8	∞

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path



Dijkstra's Algorithm Implementation

Implementation:

initialize $d_v = \infty$ for each node v

```
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
    v = PQ. extractMin()
    for each u \in V such that (v, u) \in E:
                                                                                 8
             if u \in PQ and d_v + w(v, u) < d_u:
                                                               10
                       PQ. decreaseKey(u, d_v + w(v, u))
                      u. parent = v
                                                                                               9
                                                                                       6
                                                                                                      38
```

Dijkstra's Algorithm Proof Strategy

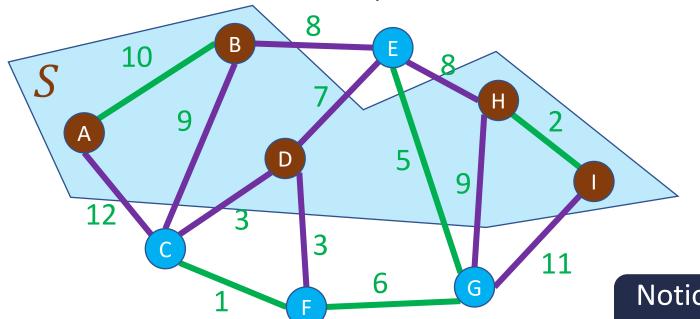
Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_u = \delta(s, u)$ where $\delta(s, u)$ is the shortest distance

- Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G
- Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$

Graph Cuts

A **cut** of a graph G = (V, E) is a partition of the nodes into two sets, S and V - S



Notion extends naturally to a set of edges

An edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$

An edge $(v_1, v_2) \in E$ respects a cut if $v_1, v_2 \in S$ or if $v_1, v_2 \in V - S$

Inductive hypothesis: Suppose that nodes $v_1 = s, ..., v_i$ have been removed from PQ, and for each of them $d_{v_i} = \delta(s, v_i)$, and there is a path from s to v_i with distance d_{v_i} (whenever $d_{v_i} < \infty$)

Base case:

- i = 0: $v_1 = s$
- Claim holds trivially

Let u be the $(i + 1)^{st}$ node extracted

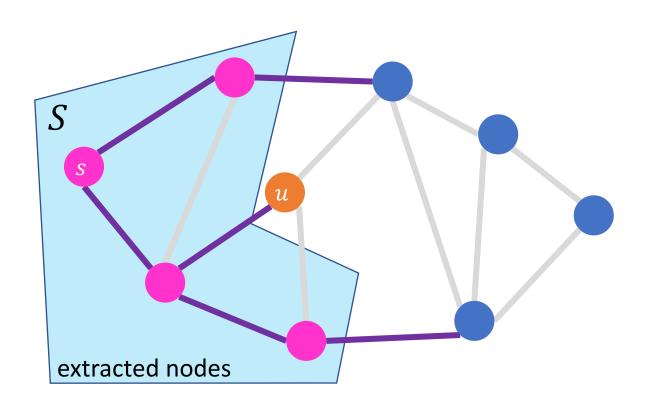
Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G

Proof:

- Suppose $d_u < \infty$
- This means that PQ. decrease Key was invoked on node u on an earlier iteration
- Consider the last time PQ. decrease Key is invoked on node u
- PQ. decreaseKey is only invoked when there exists an edge $(v, u) \in E$ and node v was extracted from PQ in a previous iteration
- In this case, $d_u = d_v + w(v, u)$
- By the inductive hypothesis, there is a path $s \to v$ of length d_v in G and since there is an edge $(v, u) \in E$, there is a path $s \to u$ of length d_u in G

Let u be the $(i + 1)^{st}$ node extracted

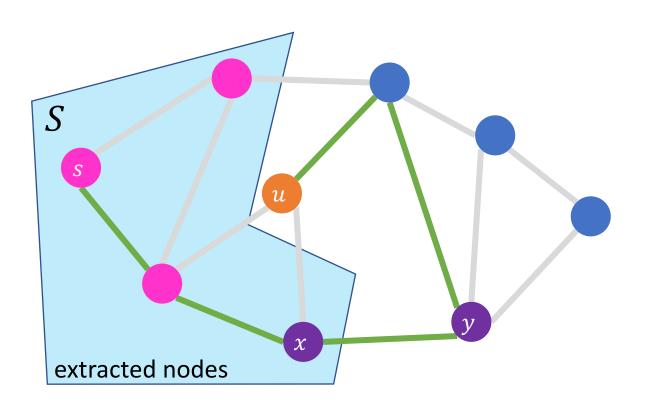
Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$



Extracted nodes "cuts" G into two subsets, (S, V - S)

Let u be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$



Extracted nodes "cuts" G into (S, V - S)

Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

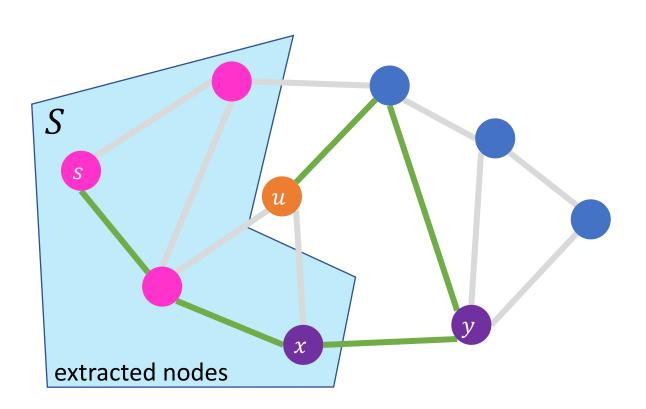
 Let (x, y) be last edge in the path that crosses the cut

$$w(s,...,u) \ge \delta(s,x) + w(x,y) + w(y,...,u)$$

 $w(s,...,u) = w(s,...,x) + w(x,y) + w(y,...,u)$
 $w(s,...,x) \ge \delta(s,x)$ since $\delta(s,x)$ is weight of shortest path from s to x

Let u be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$



Extracted nodes "cuts" G into (S, V - S)

Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

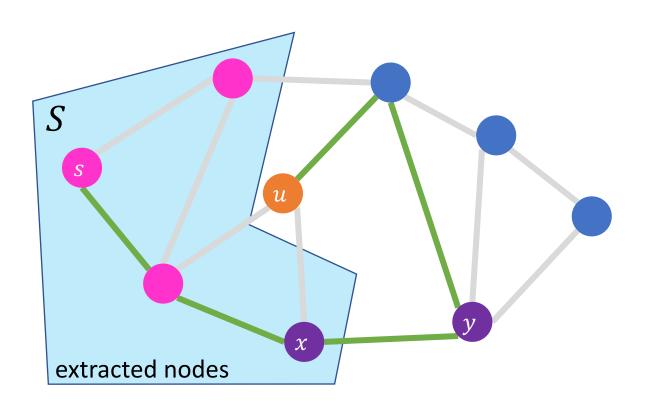
$$w(s,...,u) \ge \delta(s,x) + w(x,y) + w(y,...,u)$$

= $d_x + w(x,y) + w(y,...,u)$

Inductive hypothesis: since x was extracted before, $d_x = \delta(s, x)$

Let u be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$



Extracted nodes "cuts" G into (S, V - S)

Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

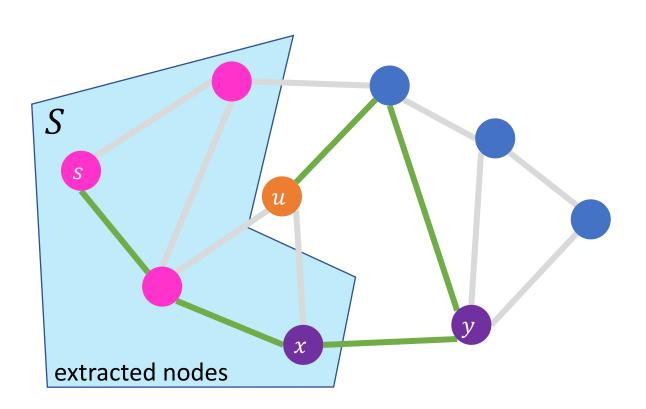
$$w(s,...,u) \geq \delta(s,x) + w(x,y) + w(y,...,u)$$
$$= d_x + w(x,y) + w(y,...,u)$$
$$\geq d_y + w(y,...,u)$$

By construction of Dijkstra's algorithm, when x is extracted, $d_{\mathcal{Y}}$ is updated to satisfy

$$d_y \le d_x + w(x, y)$$

Let u be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$



Extracted nodes "cuts" G into (S, V - S)

Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s,...,u) \geq \delta(s,x) + w(x,y) + w(y,...,u)$$

$$= d_x + w(x,y) + w(y,...,u)$$

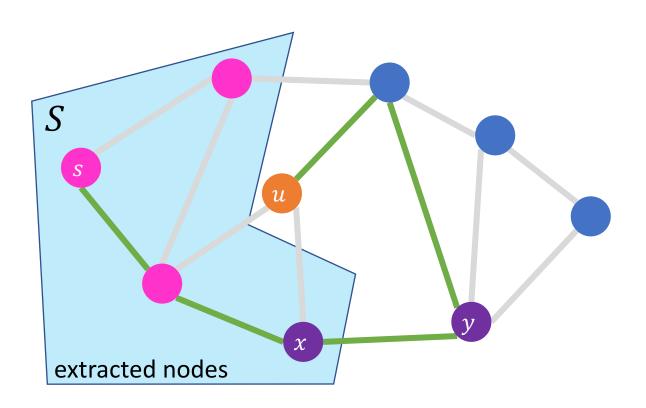
$$\geq d_y + w(y,...,u)$$

$$\geq d_u + w(y,...,u)$$

Greedy choice property: we always extract the node of minimal distance so $d_u \le d_v$

Let u be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$



Extracted nodes "cuts" G into (S, V - S)

Take any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s,...,u) \geq \delta(s,x) + w(x,y) + w(y,...,u)$$

$$= d_x + w(x,y) + w(y,...,u)$$

$$\geq d_y + w(y,...,u)$$

$$\geq d_u + w(y,...,u)$$

$$\geq d_u$$

All edge weights assumed to be positive

Conclusion: We used proof by induction to show:

When node u is removed from the priority queue, $d_u = \delta(s, u)$

- Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G
- Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$

In other words, all paths (s, ..., u) are no shorter than d_u which makes it the shortest path (or one of equally shortest paths).

Indirect Heaps

The Concern: Make decreaseKey O(log n)

Indirect heaps are an example of the common computing principle of *indirection*:

- Simple example: an implementation of *FindMax(anArray)* that returns the <u>array index</u> of the max value instead of the value itself
- Pointers in languages like C and C++
- Object references in Java and Python
- A short read: https://en.wikipedia.org/wiki/Indirection

Indirect heaps:

- The idea: have some kind of "index" that, given a node's "ID", you can quickly find where that node is in the heap's tree
- Several ways to implement these
- What's shown in the next slides works well if you identify nodes with strings and you can easily use a good hashtable (dictionary)

Indirect Heap Uses >1 Data Structure

item_at_posn[i] - an array that
tells us what item is stored at
the position i in the tree

posn_of_item[item] - a hashtable
that gives the position in the tree
where a given item ID is stored

0	1	2	3	4	5	6
:-1	C:4	D:6	B:5	E:9	A:8	F:9

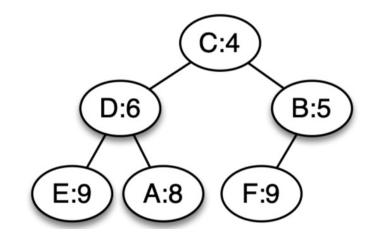
Α	В	С	D	Е	F
5	3	1	2	4	6

Example usage:

- What's the item at the root? item_at_posn[1] → 'C'
- Where in the tree is E? posn_of_item['E'] → 4
- What item is E's parent?

item_at_posn[posn_of_item['E']/2] = item_at_posn[2] → 'D'

There will be some way of getting the PQ key value from the item, which we'll show as item.key. E.g. the min key is item_at_posn[1].key \rightarrow 4



Is decreaseKey more efficient now?

This code shows the idea: decrease B's key and bubble it up one level:

```
item = 'B'
item.key = 3 # it was 5
itemPosn = posn_of_item[item] # 3
parentPosn = itemPosn / 2 # 1
parent = item_at_posn[parentPosn] # 'C'
```

B:5

D:6

Assuming hashtable lookup is O(1), everything here is O(1). decreaseKey() might have to do this for the height of the tree, so O(log n) overall.

```
if item.key < parent.key: # need to swap?
  item_at_posn[parentPosn] = item  # item_at_posn[1] = 'B'
  item_at_posn[itemPosn] = parent  # item_at_posn[3] = 'C'
  posn_of_item[parent] = itemPosn  # posn_of_item['C'] = 3
  posn_of_item[item] = parentPosn  # posn_of_item['B'] = 1</pre>
```