
CS 3100
Data Structures and Algorithms 2

Lecture 3: Graphs, Breadth First Search

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Chapter 20, through Section 2

Announcements

• PS2 available, PA1 coming next week

• Discord server is coming today, please join!

• Prof Hott Office Hours
• This week: Thursday: 3-4pm, Friday 2-3pm

• Starting next week: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours
• Mondays and Wednesdays 2:30-4:00

• TA office hours posted, check our website

2

Computer History Trivia:
What is the ARPANET?

ARPANET c.1970

ARPANET

4Radia Perlman

Graphs

5

1

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Can an edge connect
a node to itself?
Not in an undirected
graph, but OK in a
“multigraph”

Directed Graphs

6

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 3,2 , (1,3), … }

1

2

3

4

5

6
7

9

8

Weighted Graphs

7

10

2

6

11

9
5

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Some Graph Terms

Degree
• Number of “neighbors” of a vertex

Indegree
• Number of incoming edges

Outdegree
• Number of outgoing edges

Relative number of edges to nodes
• What’s the max number of edges for

an undirected graph? Directed graph?
• Complete graph
• Sparse graph vs. dense graph

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

ADT Graph Operations

To represent a Graph (i.e., build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)

Data Structures for Undirected Graphs

10

Adjacency Matrix:
A[u][v] is 1 if edge (u,v)
exists.
Note symmetrical around
diagonal. Could just store
info in one half of matrix.

Adjacency List:
Note each edge (u,v) has
an edge-node on u’s list
and also v’s list.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Data Structures for Digraphs

11

Adjacency List:
Note each directed edge
(u,v) has an edge-node on
just one vertex’s list.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Adjacency Matrix:
Not symmetrical around
diagonal for digraph.

Data Structures for Weighted Graphs

12

Adjacency Matrix:
Store weight (u,v) in matrix
cell. Use 0 or negative value
if edge not in graph.

Adjacency List:
Add a field to the the edge
node object to store the
weight.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Images are of
unweighted
graphs.

How would we
store weights?

Operation Costs: Adjacency Matrix

13

Adjacency Matrix:

1. Space to represent: Θ(?)

2. Add Edge (𝑣, 𝑤): Θ(?)

3. Remove Edge (𝑣, 𝑤): Θ(?)

4. Check if Edge (𝑣, 𝑤) Exists: Θ(?)

5. Get Neighbors (incoming) of 𝑣 : Θ(?)

6. Get Neighbors (outgoing) of 𝑣 : Θ ?

𝑉 = 𝑛
𝐸 = 𝑚

Operation Costs: Adjacency Matrix

14

Adjacency Matrix:

1. Space to represent: Θ(𝑛2)

2. Add Edge (𝑣, 𝑤): Θ(1)

3. Remove Edge (𝑣, 𝑤): Θ(1)

4. Check if Edge (𝑣, 𝑤) Exists: Θ(1)

5. Get Neighbors (incoming) of 𝑣 : Θ(𝑛)

6. Get Neighbors (outgoing) of 𝑣 : Θ 𝑛

𝑉 = 𝑛
𝐸 = 𝑚

Operation Costs: Adjacency List

Adjacency List:

1. Space to represent: Θ(?)

2. Add Edge (𝑣, 𝑤): Θ(?)

3. Remove Edge (𝑣, 𝑤): Θ(?)

4. Check if Edge (𝑣, 𝑤) Exists: Θ(?)

5. Get Neighbors (incoming) of 𝑣: Θ(?)

6. Get Neighbors (outgoing) of 𝑣: Θ(?)

15

𝑉 = 𝑛
𝐸 = 𝑚

Operation Costs: Adjacency List

Adjacency List:

1. Space to represent: Θ(𝑛 + 𝑚)

2. Add Edge (𝑣, 𝑤): Θ(1)

3. Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))

4. Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))

5. Get Neighbors (incoming) of 𝑣: Θ(𝑛 + 𝑚)

6. Get Neighbors (outgoing) of 𝑣: Θ deg 𝑣

16

𝑉 = 𝑛
𝐸 = 𝑚

Cost Comparison: Adjacency List vs Matrix

Adjacency List:

1. Space to represent: Θ(𝑛 + 𝑚)

2. Add Edge (𝑣, 𝑤): Θ(1)

3. Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))

4. Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))

5. Get Neighbors (incoming) of 𝑣: Θ(𝑛 + 𝑚)

6. Get Neighbors (outgoing) of 𝑣: Θ deg 𝑣

17

Adjacency Matrix:

1. Space to represent: Θ(𝑛2)

2. Add Edge (𝑣, 𝑤): Θ(1)

3. Remove Edge (𝑣, 𝑤): Θ(1)

4. Check if Edge (𝑣, 𝑤) Exists: Θ(1)

5. Get Neighbors (incoming) of 𝑣: Θ(𝑛)

6. Get Neighbors (outgoing) of 𝑣: Θ 𝑛

𝑉 = 𝑛
𝐸 = 𝑚

Identifying Vertices as Strings

18

Vertices may be identified
with strings not integers.

(1) Could use an adjacency
map instead of an adjacency
list, and also store strings in
edge-nodes

(2) Programmers often have
an index and/or lookup table
to convert between int’s and
string IDs for vertices.
Understand this example?

There are other ways to do
this. Use your programming
skills!

Image from
https://algs4.cs.princeton.edu/home/

Definition: Path

19

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣1 , 𝑣2 , … , 𝑣𝑘)
s.t. ∀𝑖, 1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node
appears at most once

Cycle:
A path of > 2 nodes in
which 𝑣1 = 𝑣𝑘

Acyclic graph: has no cycles
Directed Acyclic Graph (DAG):
 directed graph, no cycles

Definition: Connected Graph

20

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1 , 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

For a directed graph,
the name for this
property is
strongly connected.

An undirected graph can have more
than one connected component.

Breadth First Search

21

Traversing Graphs

22

“Traversing” means processing each vertex edge in some organized fashion by
following edges between vertices

• We speak of visiting a vertex. Might do something while there.

Recall traversal of binary trees:
• Several strategies: In-order, pre-order, post-order

• Traversal strategy implies an order of visits

• We used recursion to describe and implement these

Graphs can be used to model interesting, complex relationships
• Often traversal used just to process the set of vertices or edges

• Sometimes traversal can identify interesting properties of the graph

• Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about
the problem-instance that the graph models

BFS: Specific Input/Output

23

Input:
• A graph G
• single start vertex s

Output:
• Distance from s to each node in G

(distance = number of edges)
• Breadth-First Tree of G with root s

Strategy:

 Start with node s, visit all neighbors of s, then all neighbors of
 neighbors of s, …

Important: The paths in this BFS tree represent the shortest paths from s to
each node in G

• But edge weight’s (if any) not used, so “short” is in terms of number of edges in path

1

2

3

4

5

6
7

9

8

BFS

24

def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
 current = toVisit.dequeue()
 for v in neighbors(current):
 if v not seen:
 mark v as seen
 toVisit.enqueue(v)

1

2

3

4

5

6
7

9

8

BFS: Shortest Path

25

1

2

3

4

5

6
7

9

8

Idea: when it’s seen, remember
its “layer” depth!

def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”

 While toVisit is not empty:
 current = toVisit.dequeue()

 for v in neighbors(current):
 if v not seen:
 mark v as seen

 toVisit.enqueue(v)

BFS: Shortest Path

26

1

2

3

4

5

6
7

9

8

Idea: when it’s seen, remember
its “layer” depth!

def bfs(graph, s, t):
 toVisit.enqueue(s)
 depth[s] = 0
 While toVisit is not empty:
 current = toVisit.dequeue()
 layer = depth [current]
 for v in neighbors(current):
 if v does not have a depth:
 depth[v]=layer+1
 toVisit.enqueue(v)
 return depth[t]

BFS: Shortest Path

27

def shortest_path(graph, s, t):
 depth = [-1,-1,-1,…] # Length matches |𝑉|
 toVisit.enqueue(s)
 mark a as “seen”
 depth[s] = 0
 While toVisit is not empty:
 current = toVisit.dequeue()
 layer = depth[current]
 if current == t:
 return layer
 for v in neighbors(current):
 if v not seen:
 mark v as seen
 toVisit.enqueue(v)
 depth[v] = layer + 1

1

2

3

4

5

6
7

9

8

Idea: when it’s seen, remember
its “layer” depth!

Breadth-first search from CLRS 20.2

28

From CLRS
Vertices here have some properties:

• color = white/gray/black
• d = distance from start node
• pi = parent in tree, i.e. v.pi is vertex by

which v was connected to BFS tree

Color meanings here:
• White: haven’t seen this vertex yet
• Gray: vertex has been seen and added to

the queue for processing later
• Black: vertex has been removed from

queue and its neighbors seen and added
to the queue

Tree View of BFS Search Results

29

A

B

C

D

E

F
G

I

H

Draw BFS tree starting at A

Tree View of BFS Search Results

30

A

B

C

D

E

F
G

I

H

A

B C

DE F

G

I

H

Tree edges in red
Non-tree edges in gray

Analysis for Breadth-first search

31

For a graph having 𝑉 vertices and 𝐸 edges
• Each edge is processed once in the while loop for a cost of

Θ(𝐸)
• Each vertex is put into the queue once and removed from the

queue and processed once, for a cost Θ(𝑉)
• Also, cost of initializing colors or depth arrays is Θ(𝑉)

Total time-complexity: Θ(𝑉 + 𝐸)
• For graph algorithms this is called “linear”

Space complexity: extra space is used for queue and also
depth/color arrays, so Θ(𝑉)

BFS

32

def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
 current = toVisit.dequeue()
 for v in neighbors(current):
 if v not seen:
 mark v as seen
 toVisit.enqueue(v)

1

2

3

4

5

6
7

9

8

Definition: Bipartite

A (undirected) graph is Bipartite provided every vertex can be assigned
to one of two teams such that every edge “crosses” teams

• Alternative: Every vertex can be given one of two colors such that no edges
connect same-color nodes

33

1

2

3

4

5

6
7

9

8
1

2

3

4

5

6
7

9

8

Bipartite!
Not Bipartite!

Odd Length Cycles

A graph is bipartite if and only if it has no odd length cycles

34

1

2

3

4

5

6
7

9

8
1

2

3

4

5

6
7

9

8

Bipartite!
Not Bipartite!

BFS: Bipartite Graph?

35

def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
 current = toVisit.dequeue()
 for v in neighbors(current):
 if v not seen:
 mark v as seen
 toVisit.enqueue(v)

Idea: Check for edges in
the same layer!

1

2

3

4

5

6
7

9

8

BFS: Bipartite Graph?

36

def isBipartite(graph, s):

 toVisit.enqueue(s)

 mark s as “seen”
 While toVisit is not empty:
 current = toVisit.dequeue()

 for v in neighbors(current):
 if v not seen:

 mark v as seen
 toVisit.enqueue(v)

Idea: Check for edges in
the same layer!

1

2

3

4

5

6
7

9

8

BFS: Bipartite Graph?

37

def isBipartite(graph, s):
 depth = [-1,-1,-1,…] # Length matches |𝑉|
 toVisit.enqueue(s)
 depth[s] = 0
 While toVisit is not empty:
 current = toVisit.dequeue()
 layer = depth[current]
 for v in neighbors(current):
 if v not seen:
 depth[v] = layer+1
 toVisit.enqueue(v)
 elif depth[v] == depth[current]:
 return False
 return True

Idea: Check for edges in
the same layer!

1

2

3

4

5

6
7

9

8

BFS Tree for a Bipartite Graph

38

A

B

C

D

E

F
G

I

H

A

B C

DE F

G

I

H

Tree edges in red
Non-tree edges in gray

BFS Tree for a Non-Bipartite Graph

39

A

B

C

D

E

F
G

I

H

A

B C

DE F

G

I

H

Tree edges in red
Non-tree edges in gray

What’s Next?

Depth-first Search, another traversal strategy

And problems DFS can solve for us

40

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 3: Graphs, Breadth First Search
	Slide 2: Announcements
	Slide 3: Computer History Trivia: What is the ARPANET?
	Slide 4: ARPANET
	Slide 5: Graphs
	Slide 6: Directed Graphs
	Slide 7: Weighted Graphs
	Slide 8: Some Graph Terms
	Slide 9: ADT Graph Operations
	Slide 10: Data Structures for Undirected Graphs
	Slide 11: Data Structures for Digraphs
	Slide 12: Data Structures for Weighted Graphs
	Slide 13: Operation Costs: Adjacency Matrix
	Slide 14: Operation Costs: Adjacency Matrix
	Slide 15: Operation Costs: Adjacency List
	Slide 16: Operation Costs: Adjacency List
	Slide 17: Cost Comparison: Adjacency List vs Matrix
	Slide 18: Identifying Vertices as Strings
	Slide 19: Definition: Path
	Slide 20: Definition: Connected Graph
	Slide 21: Breadth First Search
	Slide 22: Traversing Graphs
	Slide 23: BFS: Specific Input/Output
	Slide 24: BFS
	Slide 25: BFS: Shortest Path
	Slide 26: BFS: Shortest Path
	Slide 27: BFS: Shortest Path
	Slide 28: Breadth-first search from CLRS 20.2
	Slide 29: Tree View of BFS Search Results
	Slide 30: Tree View of BFS Search Results
	Slide 31: Analysis for Breadth-first search
	Slide 32: BFS
	Slide 33: Definition: Bipartite
	Slide 34: Odd Length Cycles
	Slide 35: BFS: Bipartite Graph?
	Slide 36: BFS: Bipartite Graph?
	Slide 37: BFS: Bipartite Graph?
	Slide 38: BFS Tree for a Bipartite Graph
	Slide 39: BFS Tree for a Non-Bipartite Graph
	Slide 40: What’s Next?

