
CS 3100
Data Structures and Algorithms 2

Lecture 3: Graphs, Breadth First Search

Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Chapter 20, through Section 2



Announcements

• PS2 available, PA1 coming next week

• Discord server is coming today, please join!

• Prof Hott Office Hours
• This week: Thursday: 3-4pm, Friday 2-3pm

• Starting next week: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours
• Mondays and Wednesdays 2:30-4:00

• TA office hours posted, check our website
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Computer History Trivia:
What is the ARPANET?

ARPANET c.1970



ARPANET

4Radia Perlman



Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Can an edge connect 
a node to itself?
Not in an undirected 
graph, but OK in a 
“multigraph”



Directed Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 3,2 , (1,3), … }
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Weighted Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Some Graph Terms

Degree
• Number of “neighbors” of a vertex

Indegree
• Number of incoming edges

Outdegree
• Number of outgoing edges

Relative number of edges to nodes
• What’s the max number of edges for

an undirected graph? Directed graph?
• Complete graph
• Sparse graph vs. dense graph
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ADT Graph Operations

To represent a Graph (i.e., build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)



Data Structures for Undirected Graphs
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Adjacency Matrix:
A[u][v] is 1 if edge (u,v) 
exists.
Note symmetrical around 
diagonal. Could just store 
info in one half of matrix.

Adjacency List:
Note each edge (u,v) has 
an edge-node on u’s list 
and also v’s list.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/



Data Structures for Digraphs
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Adjacency List:
Note each directed edge 
(u,v) has an edge-node on 
just one vertex’s list.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Adjacency Matrix:
Not symmetrical around 
diagonal for digraph.



Data Structures for Weighted Graphs
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Adjacency Matrix:
Store weight (u,v) in matrix 
cell. Use 0 or negative value 
if edge not in graph.

Adjacency List:
Add a field to the the edge 
node object to store the 
weight. 

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Images are of  
unweighted 
graphs. 

How would we 
store weights?



Operation Costs: Adjacency Matrix
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Adjacency Matrix:

1. Space to represent: Θ(? )

2. Add Edge (𝑣, 𝑤): Θ(? )

3. Remove Edge (𝑣, 𝑤): Θ(? )

4. Check if Edge (𝑣, 𝑤) Exists: Θ(? )

5. Get Neighbors (incoming) of 𝑣 : Θ(? )

6. Get Neighbors (outgoing) of 𝑣 : Θ ?

𝑉 = 𝑛 
𝐸 = 𝑚 



Operation Costs: Adjacency Matrix
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Adjacency Matrix:

1. Space to represent: Θ(𝑛2)

2. Add Edge (𝑣, 𝑤): Θ(1)

3. Remove Edge (𝑣, 𝑤): Θ(1)

4. Check if Edge (𝑣, 𝑤) Exists: Θ(1)

5. Get Neighbors (incoming) of 𝑣 : Θ(𝑛)

6. Get Neighbors (outgoing) of 𝑣 : Θ 𝑛

𝑉 = 𝑛 
𝐸 = 𝑚 



Operation Costs: Adjacency List

Adjacency List:

1. Space to represent: Θ(? )

2. Add Edge (𝑣, 𝑤): Θ(? )

3. Remove Edge (𝑣, 𝑤): Θ(? )

4. Check if Edge (𝑣, 𝑤) Exists: Θ(? )

5. Get Neighbors (incoming) of 𝑣: Θ(? )

6. Get Neighbors (outgoing) of 𝑣: Θ(? )
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𝑉 = 𝑛 
𝐸 = 𝑚 



Operation Costs: Adjacency List

Adjacency List:

1. Space to represent: Θ(𝑛 + 𝑚)

2. Add Edge (𝑣, 𝑤): Θ(1)

3. Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))

4. Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))

5. Get Neighbors (incoming) of 𝑣: Θ(𝑛 + 𝑚)

6. Get Neighbors (outgoing) of 𝑣: Θ deg 𝑣
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𝑉 = 𝑛 
𝐸 = 𝑚 



Cost Comparison: Adjacency List vs Matrix

Adjacency List:

1. Space to represent: Θ(𝑛 + 𝑚)

2. Add Edge (𝑣, 𝑤): Θ(1)

3. Remove Edge (𝑣, 𝑤): Θ(deg(𝑣))

4. Check if Edge (𝑣, 𝑤) Exists: Θ(deg(𝑣))

5. Get Neighbors (incoming) of 𝑣: Θ(𝑛 + 𝑚)

6. Get Neighbors (outgoing) of 𝑣: Θ deg 𝑣
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Adjacency Matrix:

1. Space to represent: Θ(𝑛2)

2. Add Edge (𝑣, 𝑤): Θ(1)

3. Remove Edge (𝑣, 𝑤): Θ(1)

4. Check if Edge (𝑣, 𝑤) Exists: Θ(1)

5. Get Neighbors (incoming) of 𝑣: Θ(𝑛)

6. Get Neighbors (outgoing) of 𝑣: Θ 𝑛

𝑉 = 𝑛 
𝐸 = 𝑚 



Identifying Vertices as Strings
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Vertices may be identified 
with strings not integers. 

(1) Could use an adjacency 
map instead of an adjacency 
list, and also store strings in 
edge-nodes

(2) Programmers often have 
an index and/or lookup table 
to convert between int’s and 
string IDs for vertices. 
Understand this example?

There are other ways to do 
this. Use your programming 
skills!

Image from
https://algs4.cs.princeton.edu/home/



Definition: Path
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A sequence of nodes (𝑣1 , 𝑣2 , … , 𝑣𝑘) 
s.t. ∀𝑖, 1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node 
appears at most once

Cycle:
A path of > 2 nodes in 
which 𝑣1 = 𝑣𝑘

Acyclic graph: has no cycles
Directed Acyclic Graph (DAG):
   directed graph, no cycles



Definition: Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1 , 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
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For a directed graph, 
the name for this 
property is
strongly connected.

An undirected graph can have more 
than one connected component.



Breadth First Search
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Traversing Graphs
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“Traversing” means processing each vertex edge in some organized fashion by 
following edges between vertices

• We speak of visiting a vertex.  Might do something while there.

Recall traversal of binary trees:
• Several strategies: In-order, pre-order, post-order

• Traversal strategy implies an order of visits

• We used recursion to describe and implement these

Graphs can be used to model interesting, complex relationships
• Often traversal used just to process the set of vertices or edges

• Sometimes traversal can identify interesting properties of the graph

• Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about 
the problem-instance that the graph models



BFS: Specific Input/Output
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Input: 
• A graph G
• single start vertex s

Output:
• Distance from s to each node in G 

(distance = number of edges)
• Breadth-First Tree of G with root s

Strategy:

 Start with node s, visit all neighbors of s, then all neighbors of
 neighbors of s, …

Important: The paths in this BFS tree represent the shortest paths from s to 
each node in G

• But edge weight’s (if any) not used, so “short” is in terms of number of edges in path
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BFS
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def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
  current = toVisit.dequeue()
  for v in neighbors(current):
   if v not seen:
    mark v as seen
    toVisit.enqueue(v)   
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BFS: Shortest Path
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Idea: when it’s seen, remember 
its “layer” depth!

def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”

 While toVisit is not empty:
  current = toVisit.dequeue()

  for v in neighbors(current):
   if v not seen:
    mark v as seen

    toVisit.enqueue(v)   
 



BFS: Shortest Path
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Idea: when it’s seen, remember 
its “layer” depth!

def bfs(graph, s, t):
 toVisit.enqueue(s)
 depth[s] = 0
 While toVisit is not empty:
  current = toVisit.dequeue()
  layer = depth [current]
  for v in neighbors(current):
   if v does not have a depth:
    depth[v]=layer+1
    toVisit.enqueue(v)   
 return depth[t] 



BFS: Shortest Path
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def shortest_path(graph, s, t):
 depth = [-1,-1,-1,…]  # Length matches |𝑉|
 toVisit.enqueue(s)
 mark a as “seen”
 depth[s] = 0
 While toVisit is not empty:
  current = toVisit.dequeue()
  layer = depth[current]
  if current == t:
   return layer
  for v in neighbors(current):
   if v not seen:
    mark v as seen
    toVisit.enqueue(v)
    depth[v] = layer + 1   
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Idea: when it’s seen, remember 
its “layer” depth!



Breadth-first search from CLRS 20.2
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From CLRS
Vertices here have some properties:

• color = white/gray/black
• d = distance from start node
• pi = parent in tree, i.e. v.pi is vertex by 

which v was connected to BFS tree

Color meanings here:
• White: haven’t seen this vertex yet
• Gray: vertex has been seen and added to 

the queue for processing later
• Black: vertex has been removed from 

queue and its neighbors seen and added 
to the queue 



Tree View of BFS Search Results
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Draw BFS tree starting at A



Tree View of BFS Search Results
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Analysis for Breadth-first search
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For a graph having 𝑉 vertices and 𝐸 edges
• Each edge is processed once in the while loop for a cost of 

Θ(𝐸)
• Each vertex is put into the queue once and removed from the 

queue and processed once, for a cost Θ(𝑉)
• Also, cost of initializing colors or depth arrays is Θ(𝑉)

Total time-complexity: Θ(𝑉 + 𝐸)
• For graph algorithms this is called “linear”

Space complexity: extra space is used for queue and also 
depth/color arrays, so Θ(𝑉)



BFS
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def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
  current = toVisit.dequeue()
  for v in neighbors(current):
   if v not seen:
    mark v as seen
    toVisit.enqueue(v)   
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Definition: Bipartite

A (undirected) graph is Bipartite provided every vertex can be assigned 
to one of two teams such that every edge “crosses” teams

• Alternative: Every vertex can be given one of two colors such that no edges 
connect same-color nodes
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Not Bipartite!



Odd Length Cycles

A graph is bipartite if and only if it has no odd length cycles
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BFS: Bipartite Graph?
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def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
  current = toVisit.dequeue()
  for v in neighbors(current):
   if v not seen:
    mark v as seen
    toVisit.enqueue(v)   
 

Idea: Check for edges in 
the same layer!
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BFS: Bipartite Graph?
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def isBipartite(graph, s):

 toVisit.enqueue(s)

 mark s as “seen”
 While toVisit is not empty:
  current = toVisit.dequeue()

  for v in neighbors(current):
   if v not seen:

    mark v as seen
    toVisit.enqueue(v)   
 

Idea: Check for edges in 
the same layer!
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BFS: Bipartite Graph?
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def isBipartite(graph, s):
 depth = [-1,-1,-1,…]  # Length matches |𝑉|
 toVisit.enqueue(s)
 depth[s] = 0
 While toVisit is not empty:
  current = toVisit.dequeue()
  layer = depth[current]
  for v in neighbors(current):
   if v not seen:
    depth[v] = layer+1
    toVisit.enqueue(v)
   elif depth[v] == depth[current]:
    return False
 return True

Idea: Check for edges in 
the same layer!
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BFS Tree for a Bipartite Graph
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BFS Tree for a Non-Bipartite Graph
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What’s Next?

Depth-first Search, another traversal strategy

And problems DFS can solve for us
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