CS 3100

Data Structures and Algorithms 2

Lecture 23: Reductions

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings from CLRS 4 ${ }^{\text {th }}$ Ed: Network flow etc. in Chapter 24 (Reductions covered in CLRS but in a context we're not studying in CS3100)

Two Ways to use Reductions

Suppose we have a "fast" reduction from A to B

1. A "fast" algorithm for B gives a fast algorithm for A

2. If we have a worst-case lower bound for A, we also have one for B

Party Problem

Draw Edges between people who don't get along
Find the maximum number of people who get along

Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph $G=(V, E)$ find the maximum independent set S

Example

Generalized Baseball

Generalized Baseball

Minimum Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph $G=(V, E)$ find the minimum vertex cover C

Example

MaxIndSet \leq_{V} MinVertCov

If \boldsymbol{A} requires time $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time then \boldsymbol{B} also requires $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time $A \leq_{V} B$

We need to build this Reduction

Reduction Idea

S is an independent set of G iff $V-S$ is a vertex cover of G

Independent Set
Vertex Cover

Reduction Idea

S is an independent set of G iff $V-S$ is a vertex cover of G

Vertex Cover

Independent Set

MaxVertCov V-Time Reducible to MinIndSet

Proof: $=$

S is an independent set of G iff $V-S$ is a vertex cover of G
Let S be an independent set

Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because other wise S would not be an independent set

Therefore $y \in V-S$, so edge (x, y) is covered by $V-S$

Proof: \Leftarrow

S is an independent set of G iff $V-S$ is a vertex cover of G
Let $V-S$ be a vertex cover

Consider any edge $(x, y) \in E$
At least one of x and y belong to $V-S$, because $V-S$ is a vertex cover

Therefore x and y are not both in S,
No edge has both end-nodes in S, thus S is an independent set

MaxIndSet V-Time Reducible to MinVertCov

Solution for MaxIndSet

Using any Algorithm for MinVertCov

Solution for MinVertCov

MinVertCov V-Time Reducible to MaxIndSet

Solution for MinVertCov

O(V) Time

MaxIndSet

"-2

Then this shows solving B is also slow

Solution for MaxIndSet

Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
- Spoiler alert: We don't know which!
- (But we think they're both slow)
- Both problems are NP-Complete

NP Complete Problems: A Short Overview

Problems and Exponential Solutions

- We've not been able to find polynomial-time algorithms for some problems
- Example graph problems
- Travelling Salesperson Problem. (Similar problem: does a graph have a Hamilton Cycle?)
- Can a graph be colored with k colors (for $\mathrm{k}>2$)?
- Max Independent Set and Min Vertex Cover
- Other examples
- Satisfiability: Given a Boolean logic expression like:
$\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5}\right)$
can we assign True or False to the Boolean variables so this is true?
https://en.wikipedia.org/wiki/List of NP-complete problems

Exponential? It's an Open Question

- Perhaps we just haven't found a polynomial algorithm yet
- Option 1: Keep trying!
- Option 2: Prove an exponential lower bound for a problem, thus showing it's impossible for the problem to have a polynomial solution
- For the problems just listed, no one's made such a lower bound proof either

- Bottom-line: We don't know if these problems are exponential or not!

Before we go further on this topic....

- This is a complex (and interesting!) topic in CS theory
- In these slides, we will approach things from a simpler viewpoint than you'd get in a CS theory course (like CS 3120)
- For example, the math and theory related to this starts with decision problems
- But we're not going to say much about that, and instead we'll be less formal than perhaps we should be

Classes of Problems: P vs NP

- P
- P is the set of problems solvable in polynomial time
- Find a solution in $O\left(n^{c}\right)$ for some number c
- NP
- Non-Deterministic Polynomial Time
- NP is the set of problems verifiable in polynomial time
- Verify a proposed solution (not find one) in $O\left(n^{c}\right)$ for some number c
- Open Problem: Does P=NP?
- Certainly $P \subseteq N P$

NP-Complete Problems

- Computer scientists have identified a group of problems we call NP-Complete
- A problem A \in NP-Complete if:
$-A \in N P$ (a solution can be verified in polynomial time)
- Any other problem in NP can be reduced to A in polynomial time, i.e. for any $B \in N P, B \leq_{p} A$
- Some consequences
- There must be a reduction between any two NP-Complete problems
- If one NP-Complete problem has a polynomial solution, all problems in NPComplete and NP are polynomial, and thus $P=N P$
- If one NP-Complete problem has an exponential lower bound, they all do and $P \neq N P$

Take-Aways for CS 3100

- What an NP-Complete Problem is
- Informally: a group of problems that are "equivalent" in that they're either all polynomial or all exponential, and we don't know which
- The big open question in CS: Does $\mathrm{P}=\mathrm{NP}$?
- Given a problem, if we can verify a solution is polynomial time, does this mean we can always solve it directly in polynomial time?
- Some problems we've studied are NP-Complete problems
- Max Independent Set, Min Vertex Cover, dynamic programming problems that are pseudo-polynomial

More about this topic in CS3120!
https://en.wikipedia.org/wiki/NP-completeness

