CS 3100

Data Structures and Algorithms 2

Lecture 22: Reductions

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings from CLRS 4t Ed: Network flow etc. in Chapter 24
(Reductions covered in CLRS but in a context we’re not studying in CS3100)

Can you fill a 8 X8 board with the corners missing using dominoes?

Can you tile this?

With these?

Can you fill a 8 X8 board with the corners missing using dominoes?

Can you tile this?

.=..==E= With these?
" . B E
H B E N

e Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

Bipartite Matching Reduction

Problem we don’t know how to solve Problem we do know how to solve
Bipartite Matching

Max Flow

Ford erson

Solution for B
47N

Must show (prove):
1) how to make construction

Reduction
\1\2) Why it works

Edge Disjoint Paths Reduction

Problem we don’t know how to solve

Edge Disjoint Paths

Solution for 4

Use edges with flow

Reduction

B

Problem we do know how to solve

Max Flow

Solution for B
47N

“~—
6

Vertex Disjoint Paths Reduction

Problem we don’t know how to solve Problem we do know how to solve
Vertex Disjoint Paths

Solution for B

Merge these back:

Reduction .

Vertex Disjoint Paths Big Picture

Vertex Disjoint Paths Edge Disjoint Paths

Max Flow

%

3

Ford Fulkerson

Solution for B

47N,
Merge these back:

Reduction Reduction .

Use edges with flow

Reductions for New Algorithms

* Create an algorithm for a new problem by using one you
already know!

 More algorithms = More opportunities!

* The problem you reduced to could itself be solved using a
reduction!

In General: Reduction

Problem we don’t know how to solve Problem we do know how to solve
Map Instances of problem A to
Instances of B
e B
a I

. : Using any Algorithm
Injective: any instance of A for B

can be mapped to some
instance of B.
o j
Map Solutions of problem B to
Solutions of A

Solution for A _
Solution for B

Y

Reduction

10

Worst Case | .ower Bound

e Definition:
— A worst case lower bound on a problem is an asymptotic lower bound on
the worst case running time of any algorithm which solves it

— If f(n) is a worst case lower bound for problem A, then the worst-case
running time of any algorithm which solves A must be Q(f(n))

— i.e. for sufficiently large values of n, for every algorithm which solves A,
there is at least one input of size n which causes the algorithm to do

Q(f(n)) steps.
 Examples:
— n is a worst-case lower bound on finding the minimum in a list
— n? is a worst-case lower bound on matrix multiplication

Another use of Reductions

Map Instances of problem A to
Instances of B

worst-case lower bound

of Q(f(n)) for A An algorithm for A

Q(f(m)) X;h(l;g);)t; must be J

Map Solutions of problem B to
Solutions of A

[Suppose | knew a

lution f
>olution for Solution for B

Y

Reduction
12

Worst-case lower-bound Proofs

Opening a door Lighting a fire
P\ (S
reduces to B).v"m ﬁ)/
o R R
Problem B

Problem A

Alcohol, wood, Keg cannon
matches battering ram
Vv can be used
to make
/i ' Algorithm for B Algorithm forA £

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X'is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

Reduction Proof Notation

f (n)-reduces to > B

Problem B

Problem A

Y can be used to make

With O(f(n)) overhead

Algorithm for B Algorithm for A

A is not a harder problem than B SRS
could have
A<B solved A
faster
If A requires time Q(f(n)) time then B also requires Q(f(n)) time using B’s

A Sf(n) B solver!)

15

Two Ways to use Reductions

Suppose we have a “fast” reduction from A to

B

1. A “fast” algorithm for £ gives a fast algorithm for A

IEIB If B is fast
Then A is fast - —

2. If we have a worst-case lower bound for A, we also have one

for £ Ads slow . p
Then B is slow

Bipartite Matching Reduction

Problem we don’t know how to solve

Problem we do know how to solve

Bipartite Matching

% e X

~ : <
g
i

Then this is fast

Solution for 4

Max Flow

B

3

Ford Fulkerson

If this is fast

Solution for B
4N,

Reduction

17

Bipartite Matching Reduction

Problem we don’t know how to solve

Problem we do know how to solve

Bipartite Matching

% e X

If this is slow

Solution for 4

B

Max Flow

3

Ford Fulkerson

Then this is slow

Reduction

Solution for B
4N,

18

Worst-case Lower-Bound Using Reductions

©
* Closest Pair of points .o
— D&C algorithm: ©(nlogn)
— Can we do better? ©
©

* |dea: Show that doing closest pair in o(nlogn) enables an
impossibly fast algorithm for another problem

Reductions for Lower-Bounds

Problem we know is “Hard” Problem we want to show is “Hard”

Quickly Map Instances of
roblem A to Instances o

[and this must be slow,)

If this is quick, J

B

then this this can’t be
fast!

Some rithm for B

“Hard” means this
ust be slow

Quickly Map Solutions of

problem B to Solutions of 4
Solution for A

Solution for B

\ J Y

and this is quick,

Reduction

20

Reductions for Lower-Bound on CPP

Problem we know is Q(nlogn) Problem we want to show is Q(nlogn)
Map Instances of problem A to = s _
Instances of CPP in o(nlogn) ° . CIose.st Pair
Then this can be done ° of Points
ino(nlogn) 0 .
Some]Algorithm for CPP
Q(nlogn)
uti £ CPP If this could be done in
oo |Mesclstenscihrte ooogn)
olution fo olutions of Ain o(nlogn Solution for B
)
o o
o
° o
Reduction
21

A "Hard” Problem: Element Unigueness

113|901 | 555|512 | 245|800 | 018|121

True

* |nput:

— A list of integers
* Qutput:

— True if all values are unique, False otherwise

103 | 801 | 401 | 323 | 255|323 | 999 | 101 | False

* Can this be solved in O(nlogn) time?
— Yes! Sort, then check if any adjacent elements match

* Can this be solved in o(nlogn) time?
— No! (we’re going to skip this Proof)

https://en.wikipedia.org/wiki/Element_distinctness_problem

Reductions for Lower-Bound on CPP

Problem we know is Q(nlogn) Problem we want to show is Q(nlogn)
Element Uniqueness Map Instances of problem 4 to 5
— ° . Closest Pair
| \7 o .
Then this can be done il ° of Points
ino(nlogn) 3 6| 9 o * o
Some]Algorithm for CPP
Q(nlogn)
| £ CPP If this could be done in
. Map .So |ons.o to o(nlogn)
Solution for A Solutions of A in o(nlogn)

Solution for B

Reduction
23

Two Ways to use Reductions

Suppose we have a “fast” reduction from A to

B

1. A “fast” algorithm for £ gives a fast algorithm for A

—
Then A is fast I@IB If B is fast
S I

2. If we have a worst-case lower bound for A, we also have one

for
If Ais slow B |Then B is slow
by Qo .

Party Problem

Draw Edges between people who don’t get along
Find the maximum number of people who get along

33

Maximum Independent Set

* Independentset: S € I/ is an independent set if no two nodes
in S share an edge

* Maximum Independent Set Problem: Given a graph G = (V, E)
find the maximum independent set S

34

Independent set of size 6

35

Generalized Baseball

0 @
MT | \T

—

Generalized Baseball

Need to place defenders on bases
such that every edge is defended

What's the fewest number of
defenders needed?

37

Minimum Vertex Cover

* Vertex Cover: C € V is a vertex cover if every edge in E has
one of its endpoints in C

* Minimum Vertex Cover: Given a graph ¢ = (V, E) find the
minimum vertex cover C

38

Vertex cover of size 5

39

Maxindset<,MinVertCov

O (V)-reduces to > B

Problem B

Problem A

Y can be used to make >
With O (V) overhead

Algorithm for B

Algorithm for A

If A requires time Q(f(n)) time then B also requires Q(f(n)) time
A<yB

40

We need to build this

MaxIndSet

Solution for MaxIindSet

O(V) Time

Relate Instances of MaxindSet
to Instances of MinVertCov

Relate Solutions of MinVertCov to
Solutions of MaxIndSet

Reduction

MinVertCov

Solution for MinVertCov

Y

41

Reduction Idea

S is an independent set of G iff V — S is a vertex cover of G

Independent Set

Vertex Cover

42

Reduction Idea

S is an independent set of G iff V — S is a vertex cover of G

Vertex Cover Independent Set

43

Max\VertCov V-Time Reducible to MinindSet

MaxIndSet

]
el

O(V) Time

Do nothing

Take complement of solution

MinVertCov

Using any Algorithm
for MinVertCov

Solution for MinVertCov

Y

Reduction ~_

_2) Why it works

Must show (prove):
1) how to make construction

44

S is an independent set of G iff V — S is a vertex cover of G

Let S be an independent set

Consider any edge (x,y) € E

If x € Stheny & S, because other wise S would not be an
independent set

Thereforey € V — S, so edge (x,y) iscovered by V — §

45

Proof:

S is an independent set of G iff V — S is a vertex cover of G

Let V — S be a vertex cover

Consider any edge (x,y) € E

At least one of x and y belongto VV — S, because V — S is a
vertex cover

Therefore x and y are not both in S,
No edge has both end-nodes in S, thus S is an independent set

46

Max\VertCov V-Time Reducible to MinindSet

MaxIndSet

B
el

Solution for MaxIindSet

O(V) Time

Do nothing >

Take complement of solution

MinVertCov

Solution for MinVertCov

Reduction

Y

47

MaxindSet V-Time Reducible to MinVertCov

MinVertCov

Solution for MinVertCov

wE

O(V) Time

Do nothing >

Take complement of solution

MaxIndSet

Solution for MaxIndSet

<

Reduction

Y

Using any Algorithm
for MaxIndSet

48

MaxIndSet

O(V) Time MinVertCov

If Solving A was
always slow

Solution for MaxIindSet

Do nothing B
Using any Algorithm
Then this shows '
solving B is also slow
Take complement of solution Solution for MinVertCov

Y

Reduction

49

MinVertCov

4

If Solving A was
always slow

Solution for MinVertCov

wE

O(V) Time

Do nothing

MaxIndSet

Using any Algorithm

Then this shows
solving B is also slow

Take complement of solution

v

Solution for MaxIndSet

Reduction

50

Conclusion

* MaxindSet and MinVertCov are either both fast, or both slow

— Spoiler alert: We don’t know which!
e (But we think they’re both slow)

— Both problems are NP-Complete
* More in DMT2

51

