CS 3100 Data Structures and Algorithms 2

Lecture 22: Reductions

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

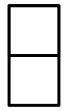
Readings from CLRS 4th Ed: Network flow etc. in Chapter 24 (Reductions covered in CLRS but in a context we're not studying in CS3100)

Warm-Up

Can you fill a 8×8 board with the corners missing using dominoes?

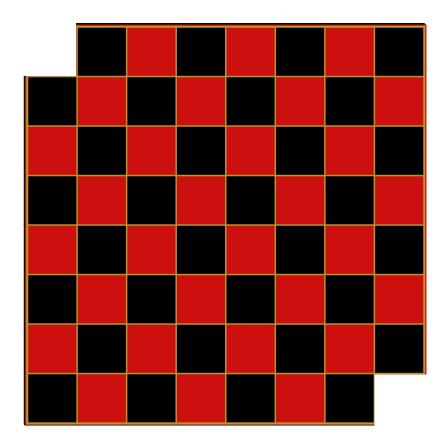
Can you tile this?

With these?

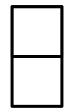


Can you fill a 8×8 board with the corners missing using dominoes?

Can you tile this?



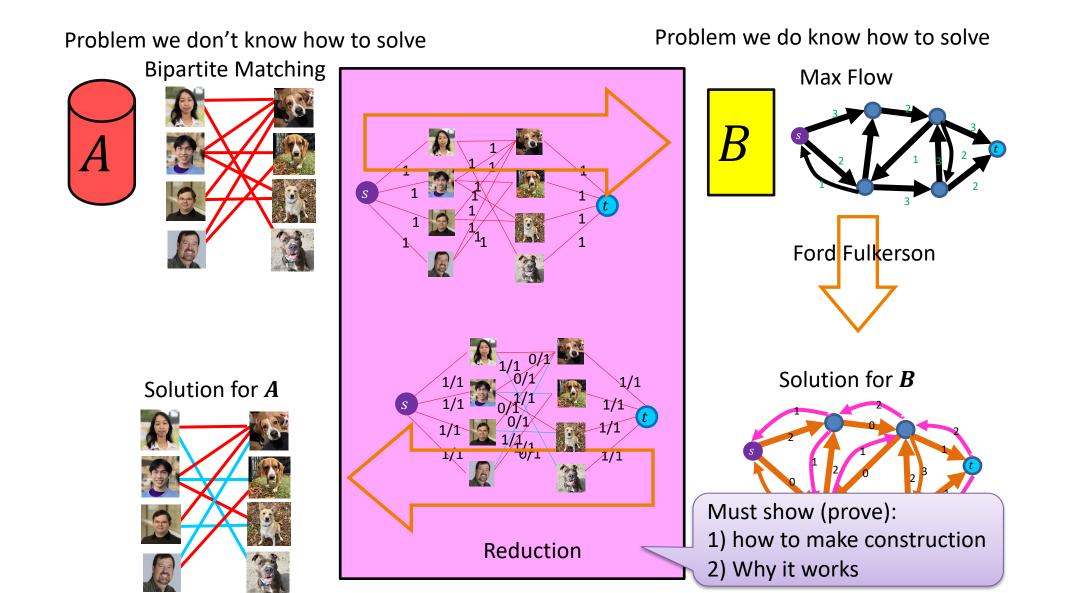
With these?



Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

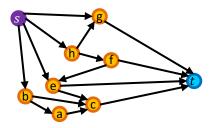
Bipartite Matching Reduction



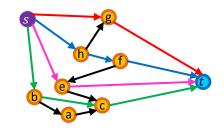
Edge Disjoint Paths Reduction

Problem we don't know how to solve

Edge Disjoint Paths

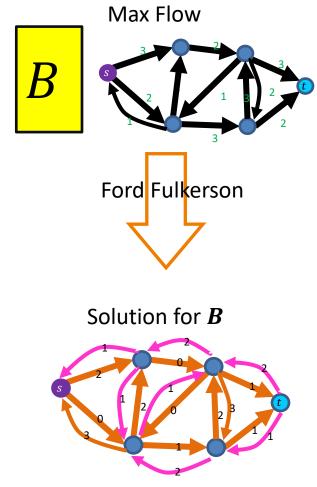


Solution for A

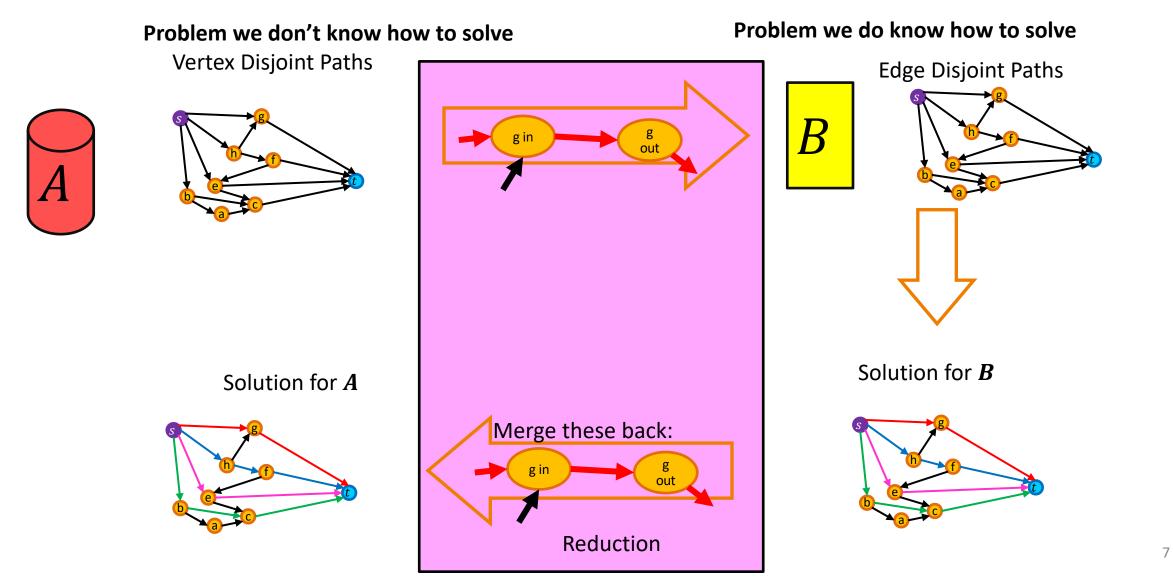


Use edges with flow Reduction

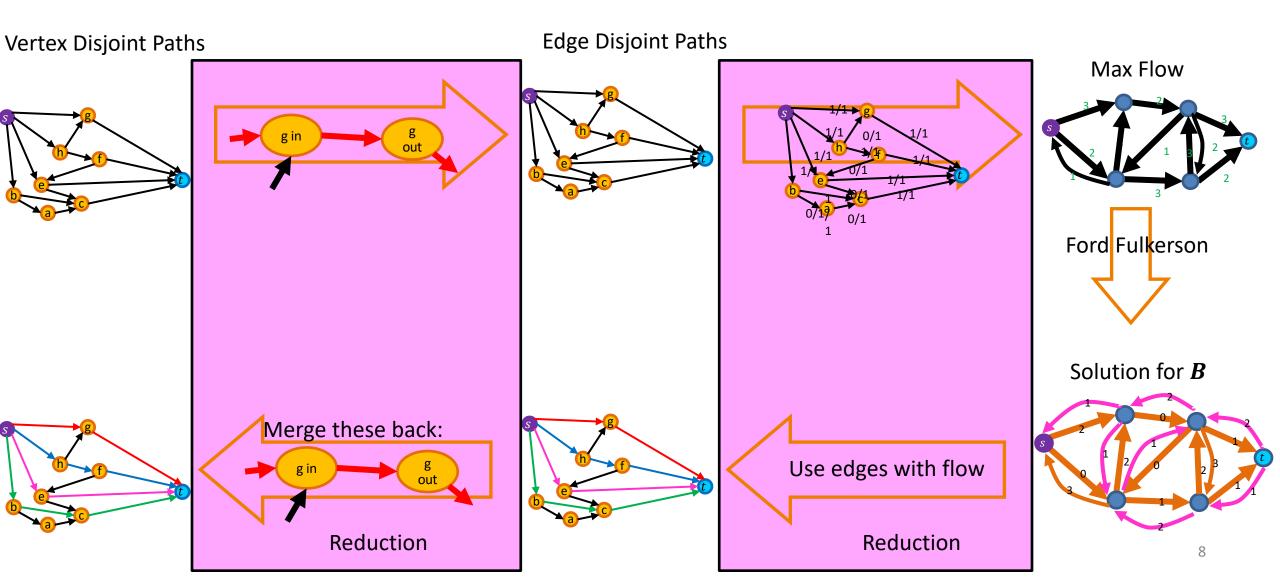
Problem we do know how to solve



Vertex Disjoint Paths Reduction



Vertex Disjoint Paths Big Picture



Reductions for New Algorithms

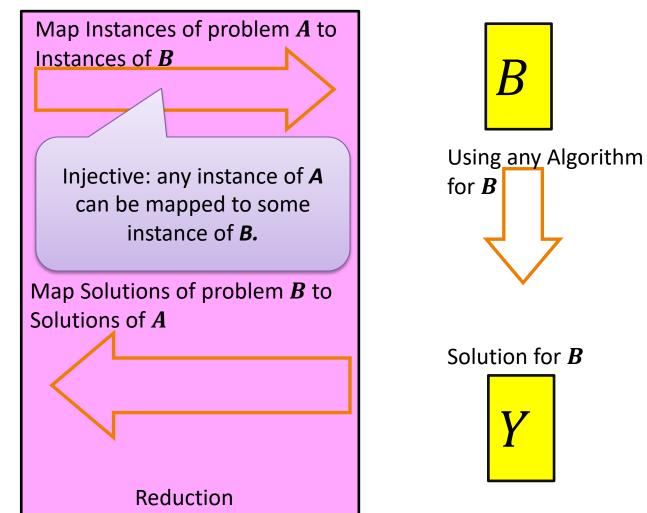
- Create an algorithm for a new problem by using one you already know!
- More algorithms = More opportunities!
- The problem you reduced to could itself be solved using a reduction!

In General: Reduction

Problem we don't know how to solve

Solution for A



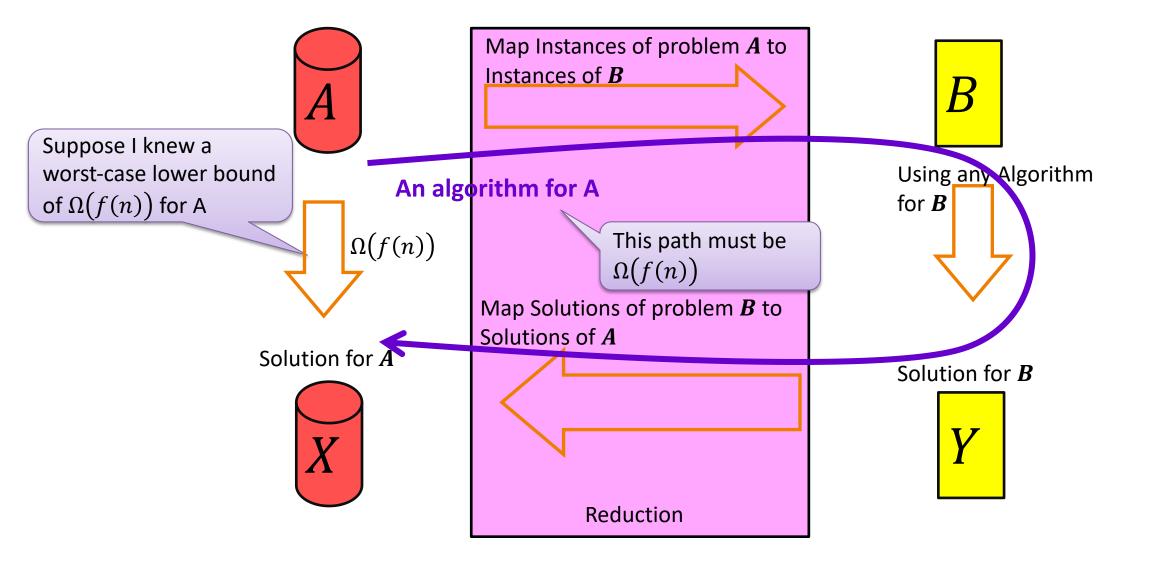


Problem we do know how to solve

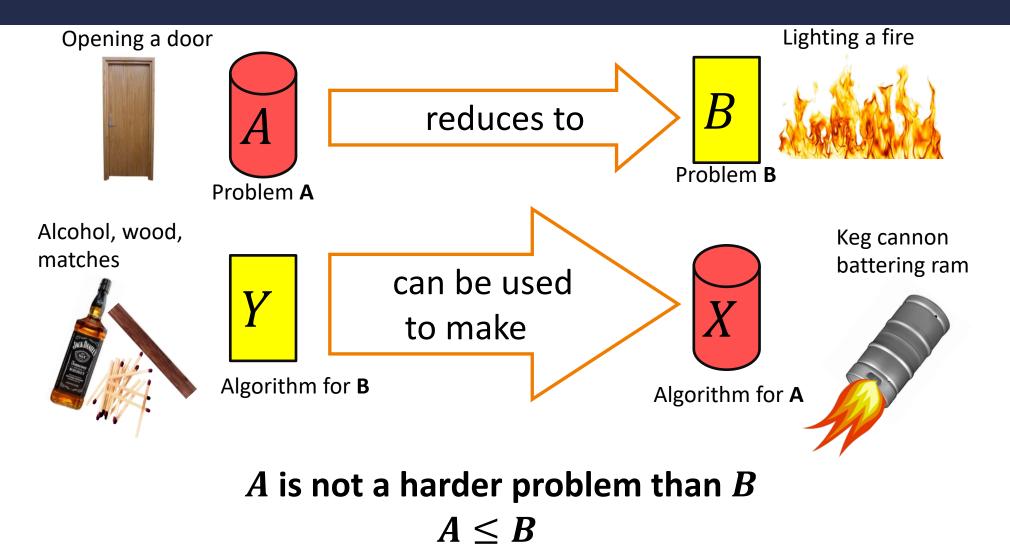
Worst Case Lower Bound

- Definition:
 - A worst case lower bound on a problem is an asymptotic lower bound on the worst case running time of any algorithm which solves it
 - If f(n) is a worst case lower bound for problem A, then the worst-case running time of any algorithm which solves A must be $\Omega(f(n))$
 - i.e. for sufficiently large values of n, for every algorithm which solves A, there is at least one input of size n which causes the algorithm to do $\Omega(f(n))$ steps.
- Examples:
 - -n is a worst-case lower bound on finding the minimum in a list
 - $-n^2$ is a worst-case lower bound on matrix multiplication

Another use of Reductions



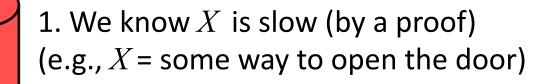
Worst-case lower-bound Proofs



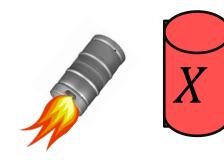
The name "reduces" is confusing: it is in the *opposite* direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow



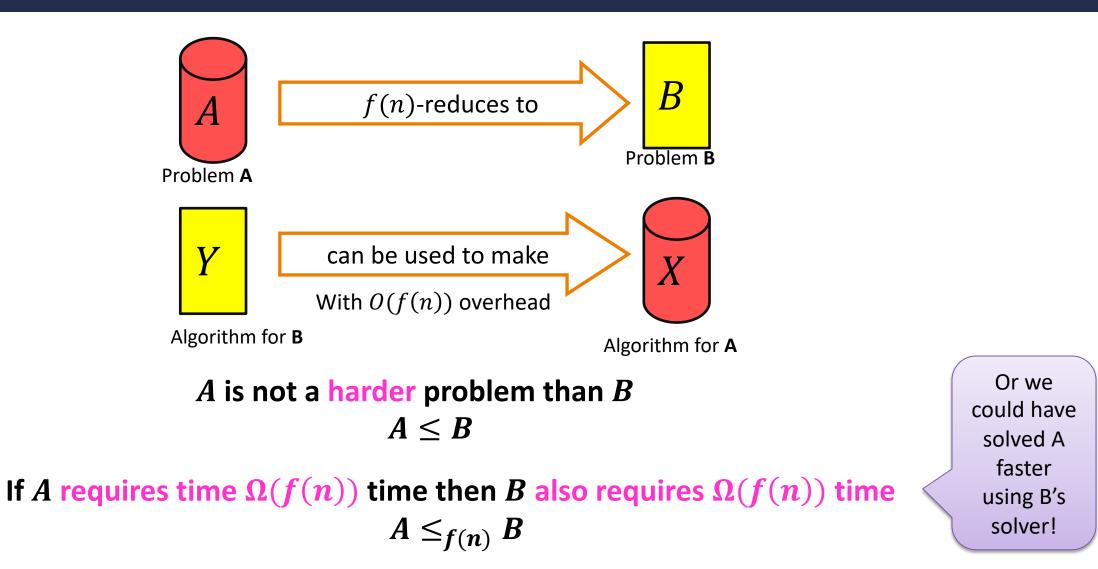
2. Assume Y is quick [toward contradiction](Y = some way to light a fire)



3. Show how to use *Y* to perform *X* quickly

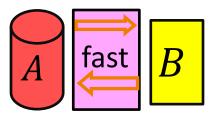
4. *X* is slow, but *Y* could be used to perform *X* quickly conclusion: *Y* must not actually be quick

Reduction Proof Notation



Two Ways to use Reductions

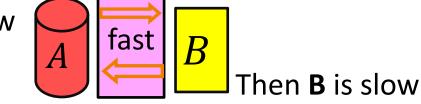
Suppose we have a "fast" reduction from A to B



1. A "fast" algorithm for B gives a fast algorithm for A

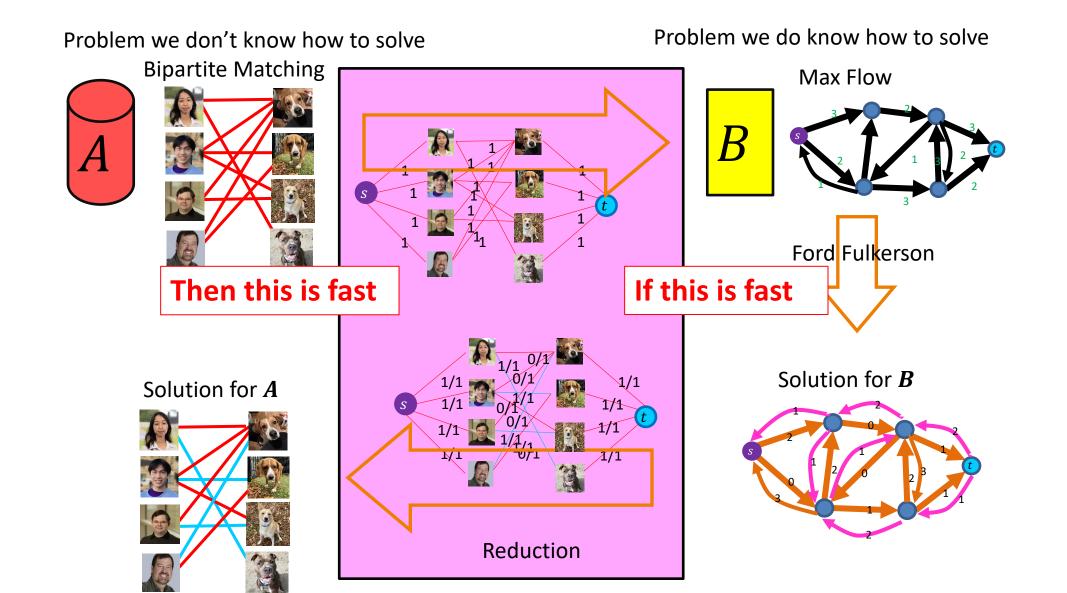
Then **A** is fast

2. If we have a worst-case lower bound for A, we also have one for B

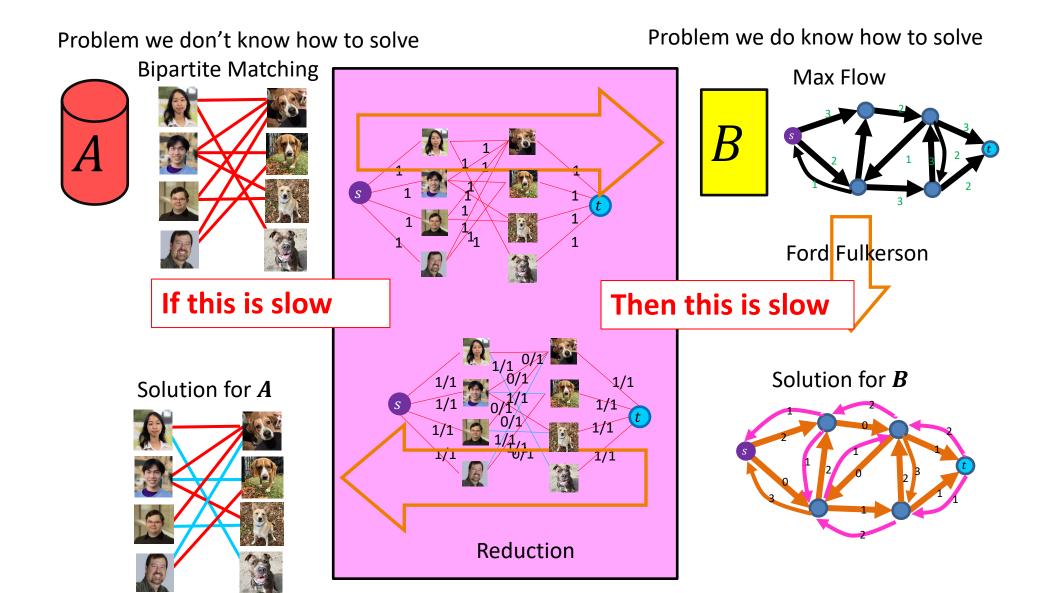


If **B** is fast

Bipartite Matching Reduction

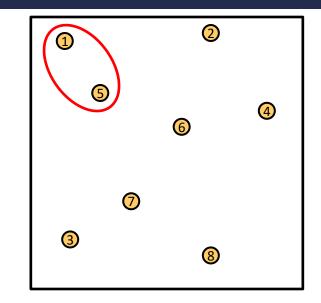


Bipartite Matching Reduction



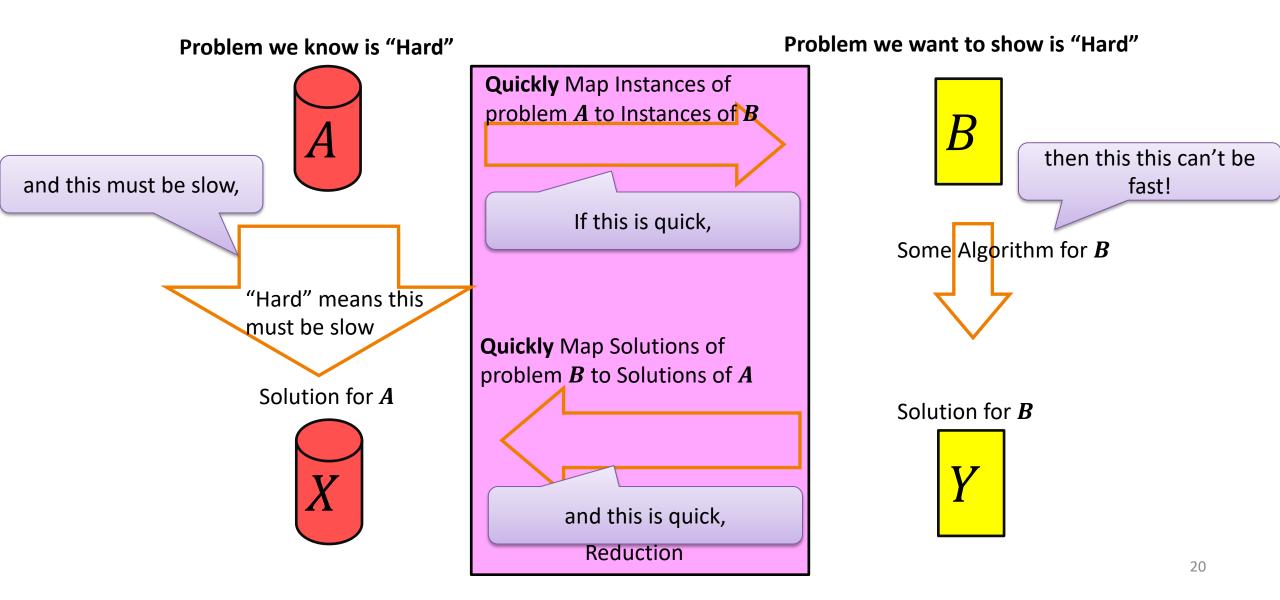
Worst-case Lower-Bound Using Reductions

- Closest Pair of points
 - D&C algorithm: $\Theta(n \log n)$
 - Can we do better?

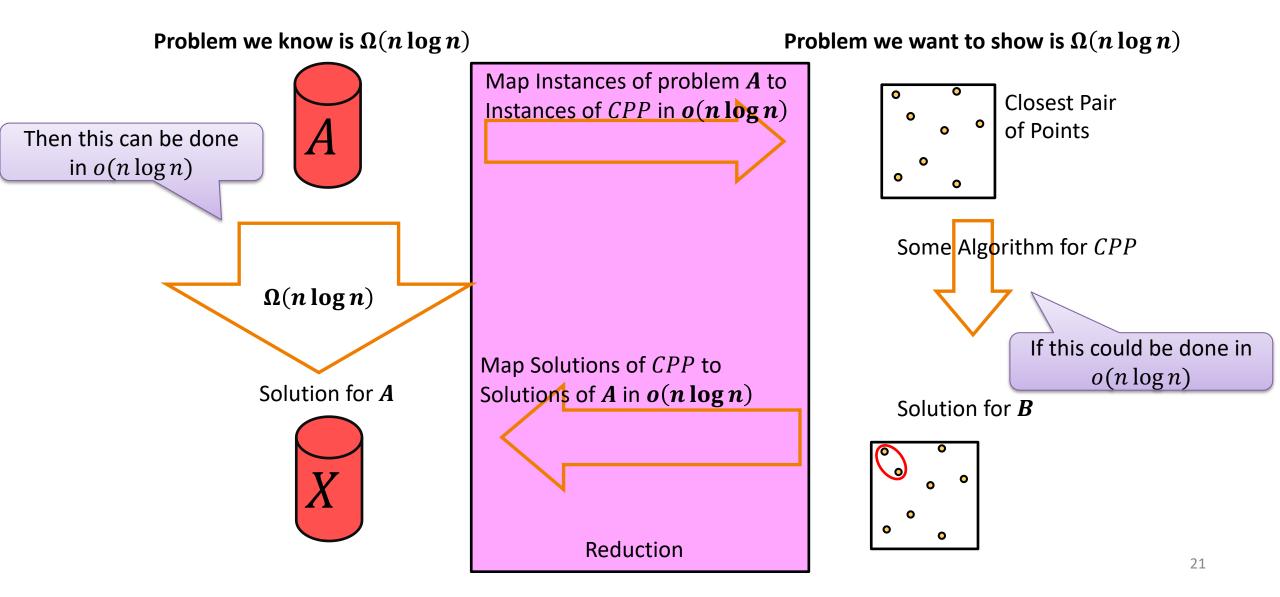


 Idea: Show that doing closest pair in o(n log n) enables an impossibly fast algorithm for another problem

Reductions for Lower-Bounds



Reductions for Lower-Bound on CPP



A "Hard" Problem: Element Uniqueness

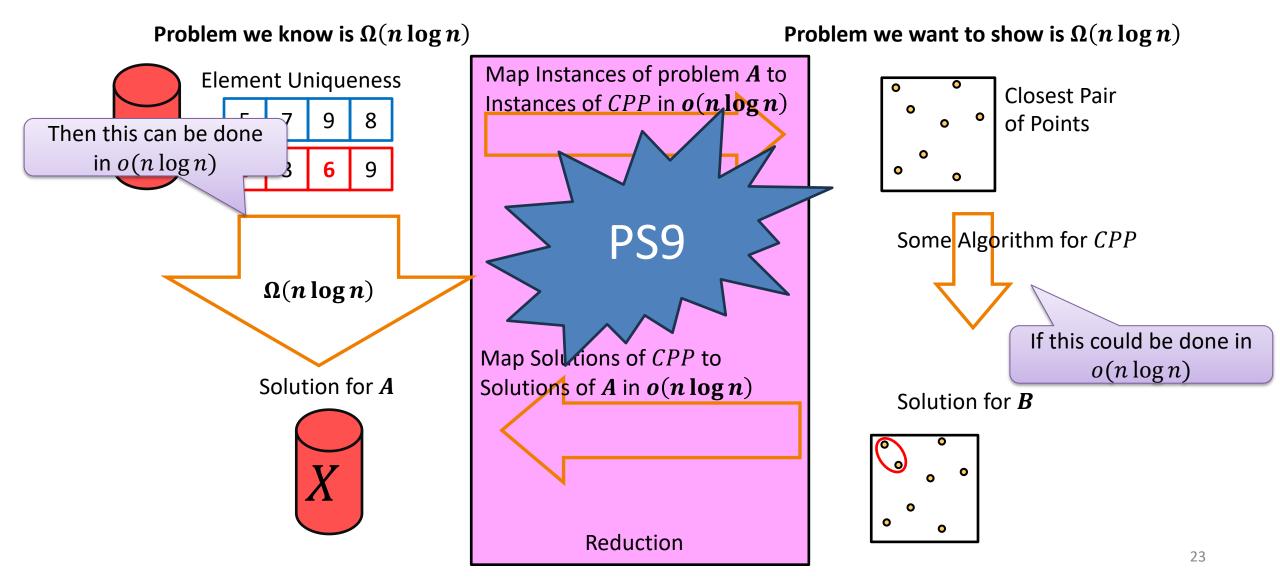
- Input:
 - A list of integers
- Output:

113 901 555 512 245 800 018 121	True
---------------------------------	------

	103 801	401	323	255	323	999	101	False
--	---------	-----	-----	-----	-----	-----	-----	-------

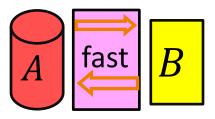
- True if all values are unique, False otherwise
- Can this be solved in O(n log n) time?
 - Yes! Sort, then check if any adjacent elements match
- Can this be solved in $o(n \log n)$ time?
 - No! (we're going to skip this Proof)

Reductions for Lower-Bound on CPP

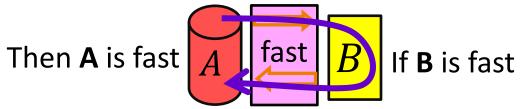


Two Ways to use Reductions

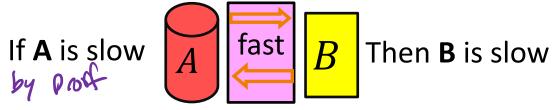
Suppose we have a "fast" reduction from A to B



1. A "fast" algorithm for B gives a fast algorithm for A

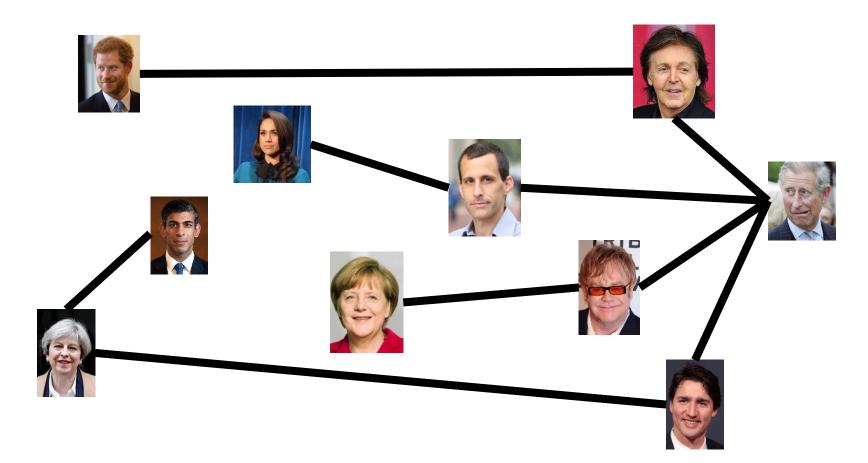


If we have a worst-case lower bound for A, we also have one for B



Party Problem

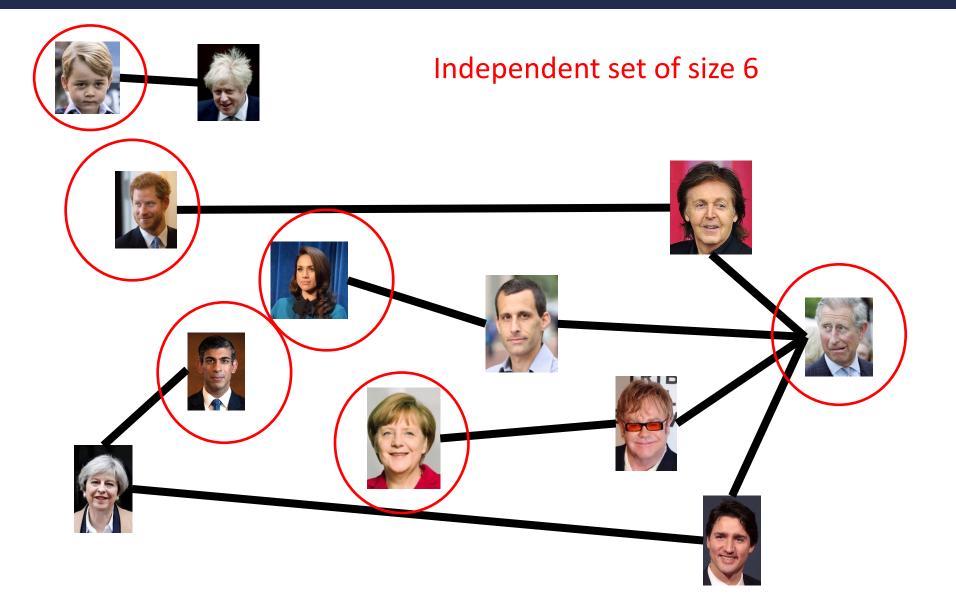
Draw Edges between people who don't get along Find the maximum number of people who get along



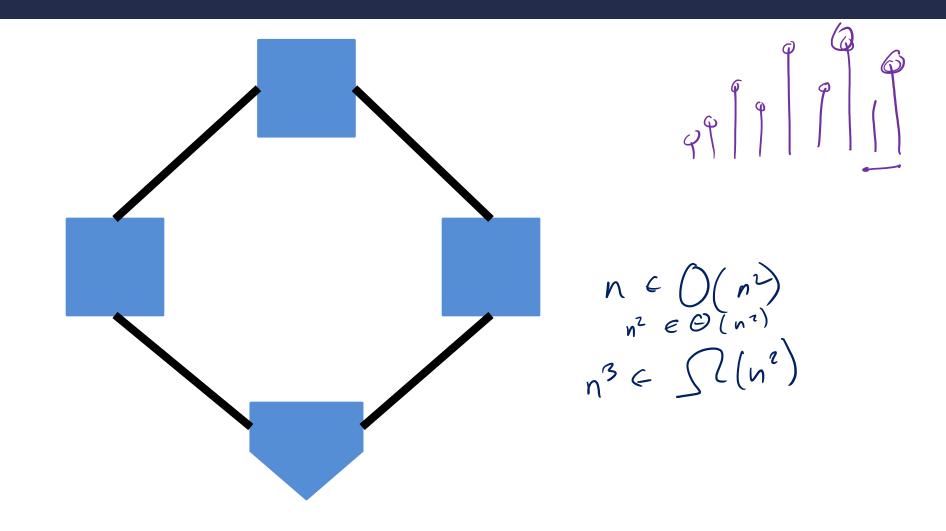
Maximum Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G = (V, E) find the maximum independent set S

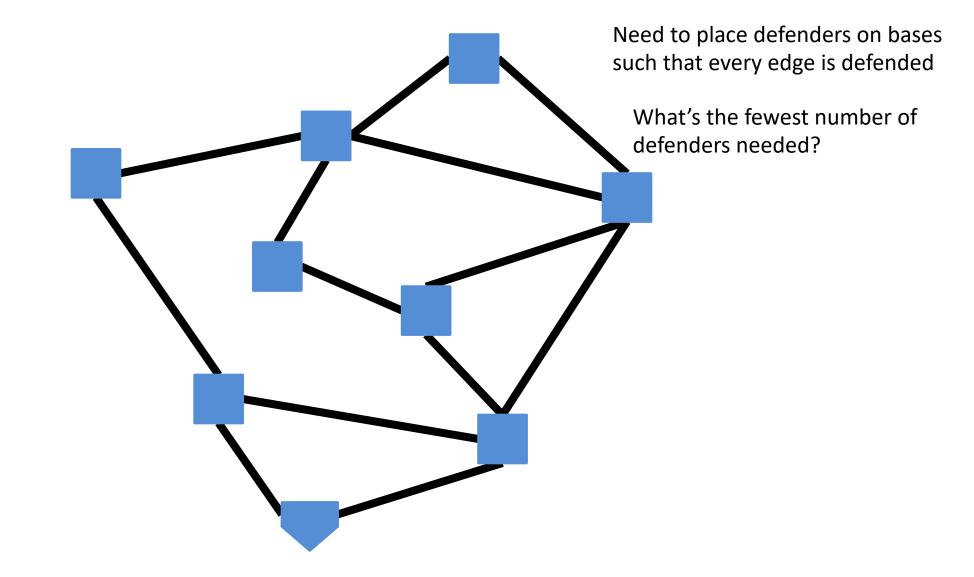
Example



Generalized Baseball



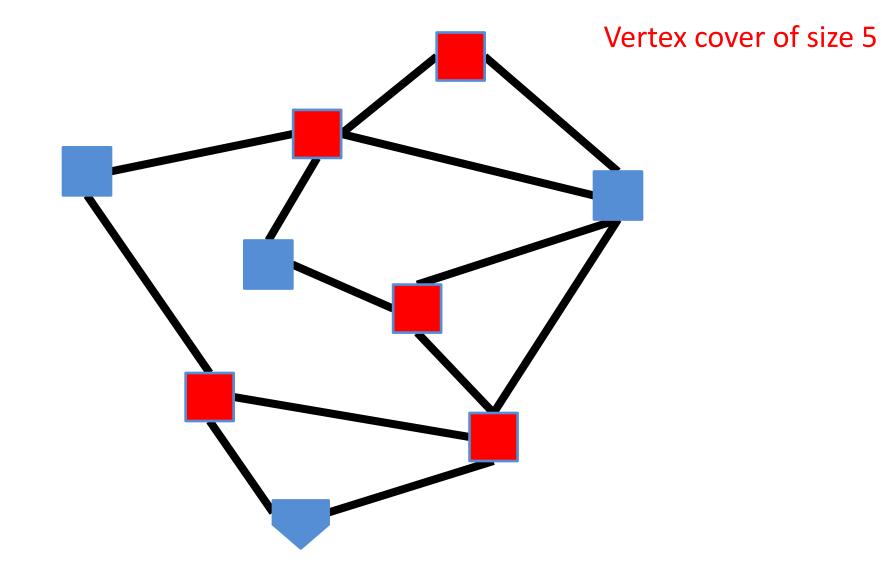
Generalized Baseball



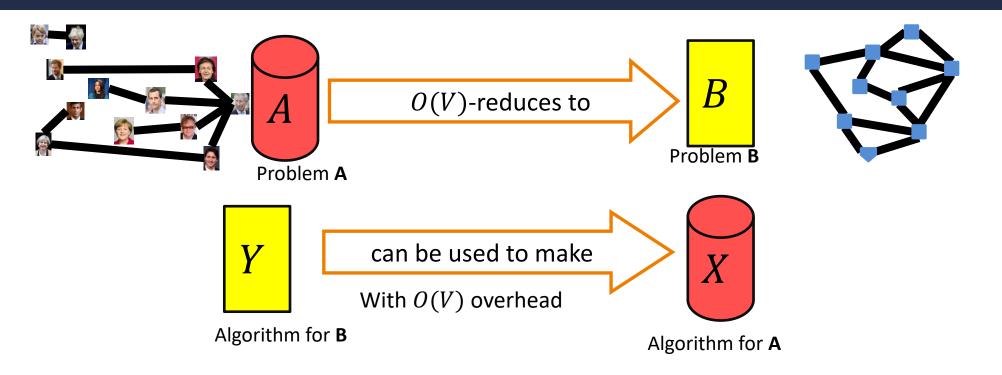
Minimum Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

Example

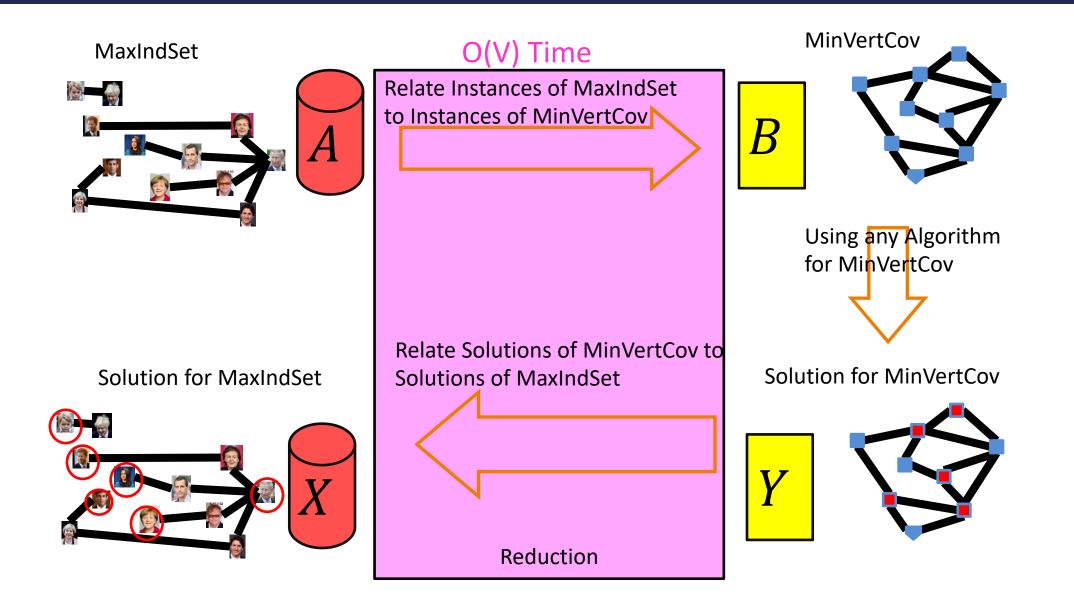


$MaxIndSet \leq_V MinVertCov$



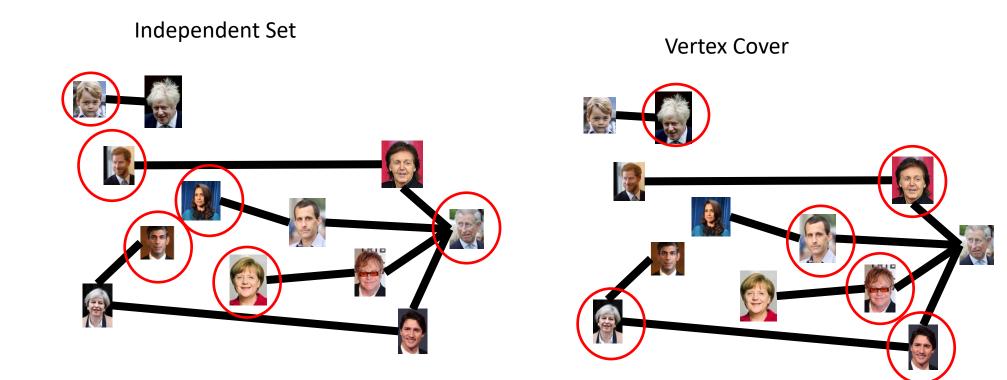
If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_V B$

We need to build this Reduction



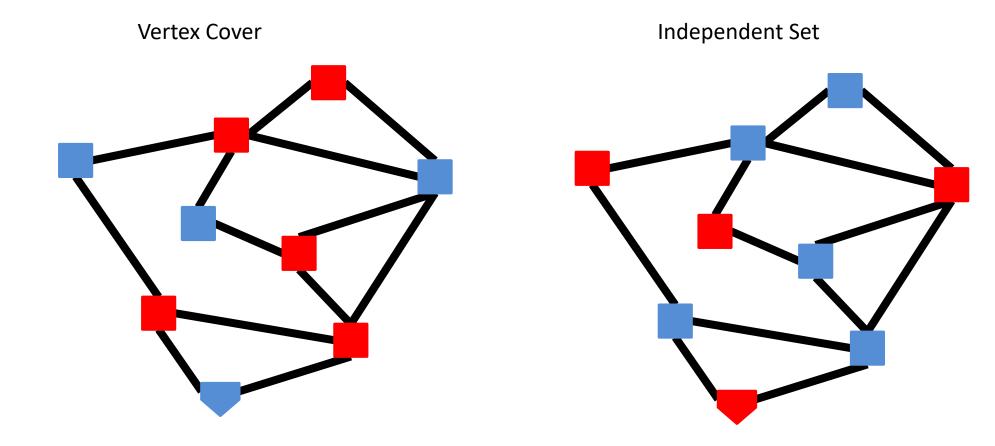
Reduction Idea

S is an independent set of G iff V - S is a vertex cover of G

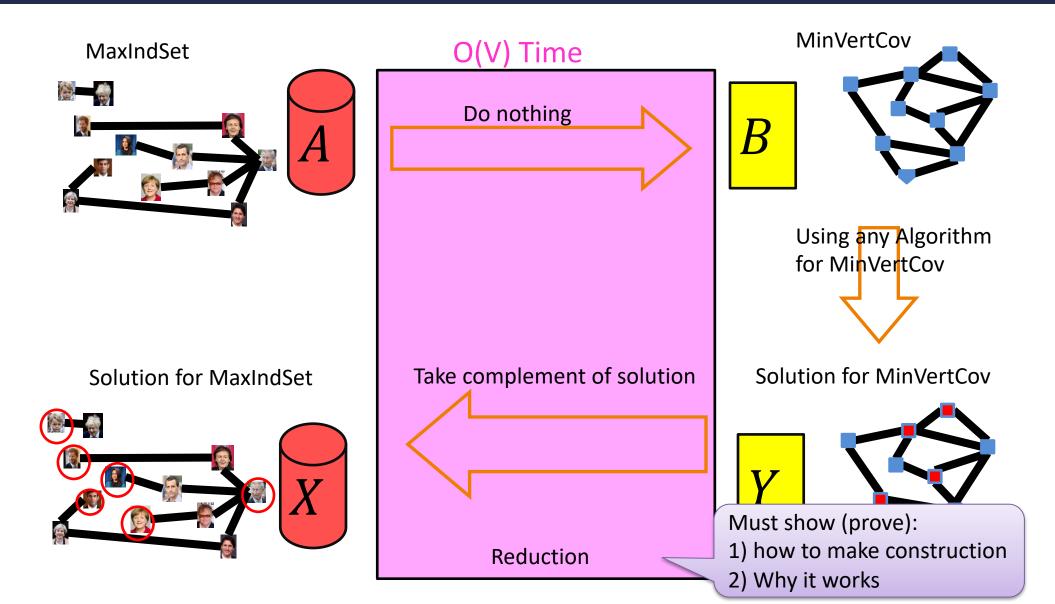


Reduction Idea

S is an independent set of G iff V - S is a vertex cover of G



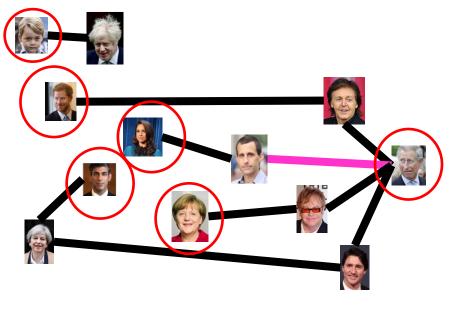
MaxVertCov V-Time Reducible to MinIndSet



Proof: \Rightarrow

S is an independent set of G iff V - S is a vertex cover of G

Let *S* be an independent set

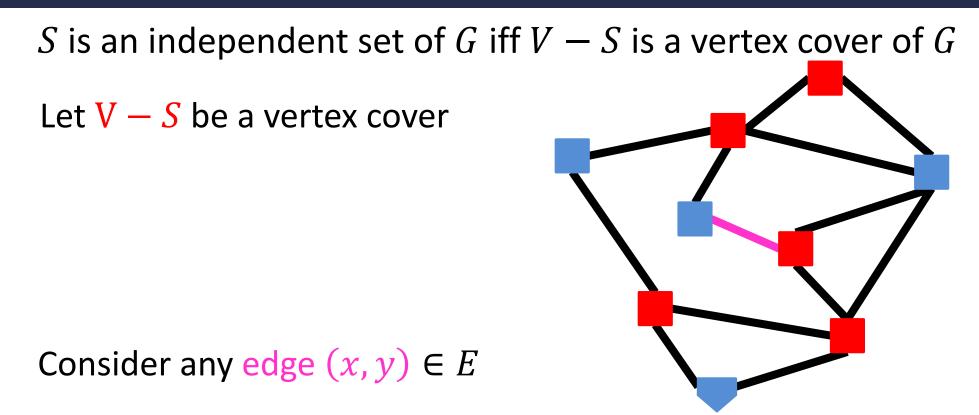


Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because other wise S would not be an independent set

Therefore $y \in V - S$, so edge (x, y) is covered by V - S

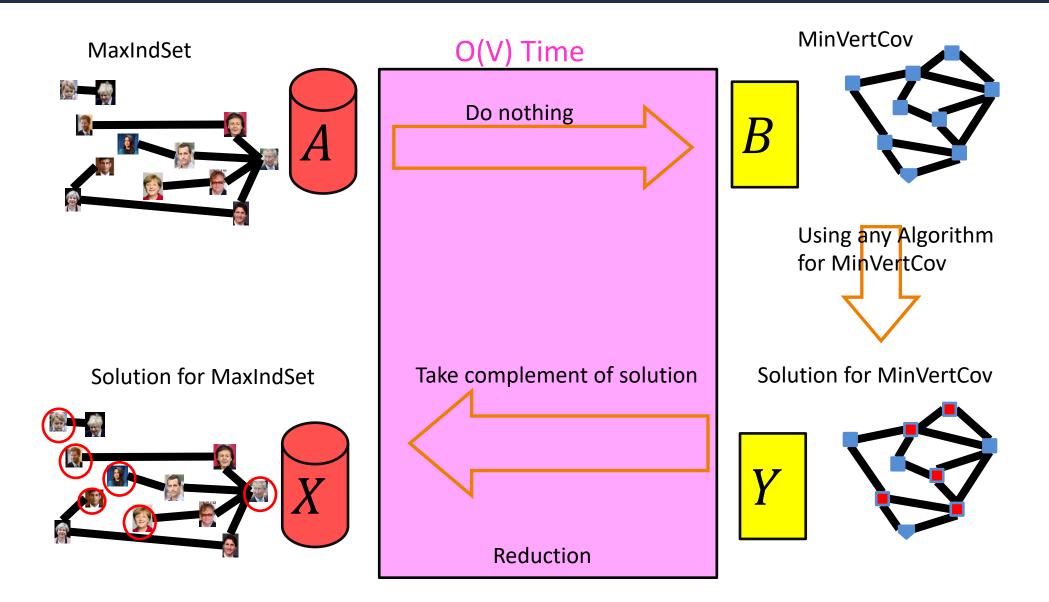
Proof: \Leftarrow



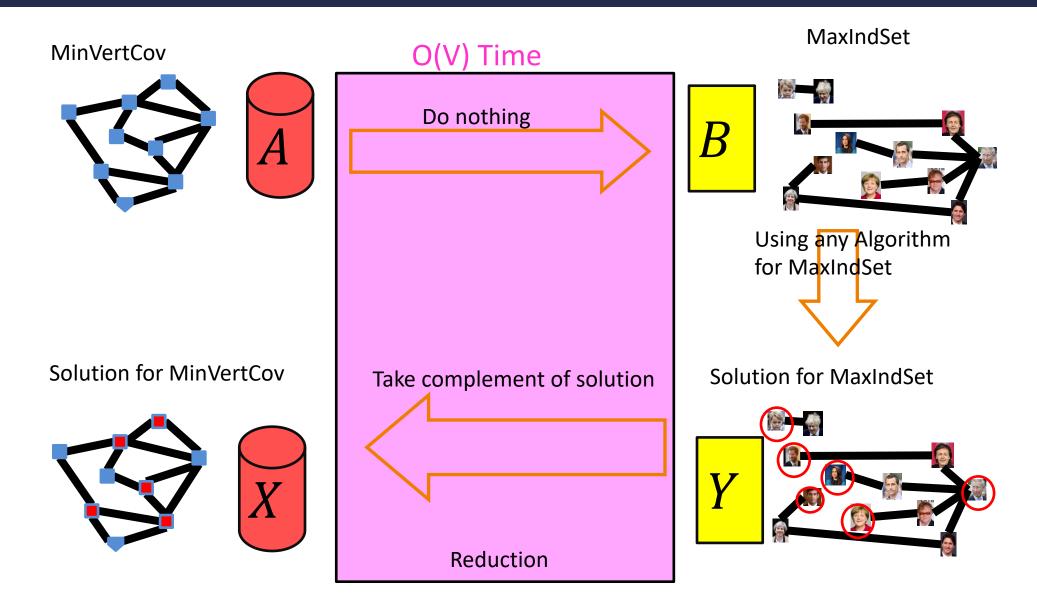
At least one of x and y belong to V - S, because V - S is a vertex cover

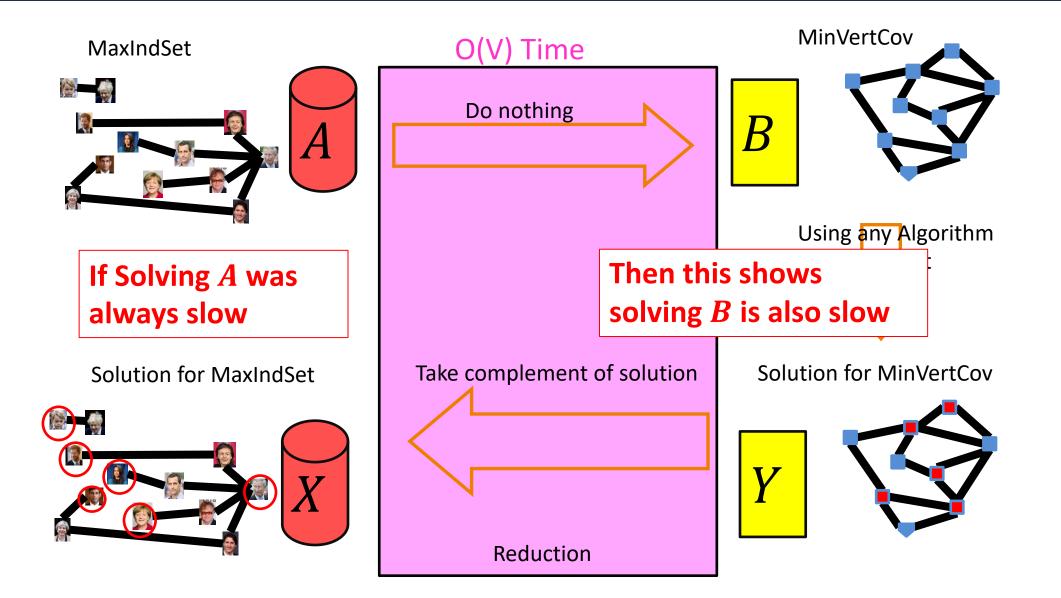
Therefore x and y are not both in S, No edge has both end-nodes in S, thus S is an independent set

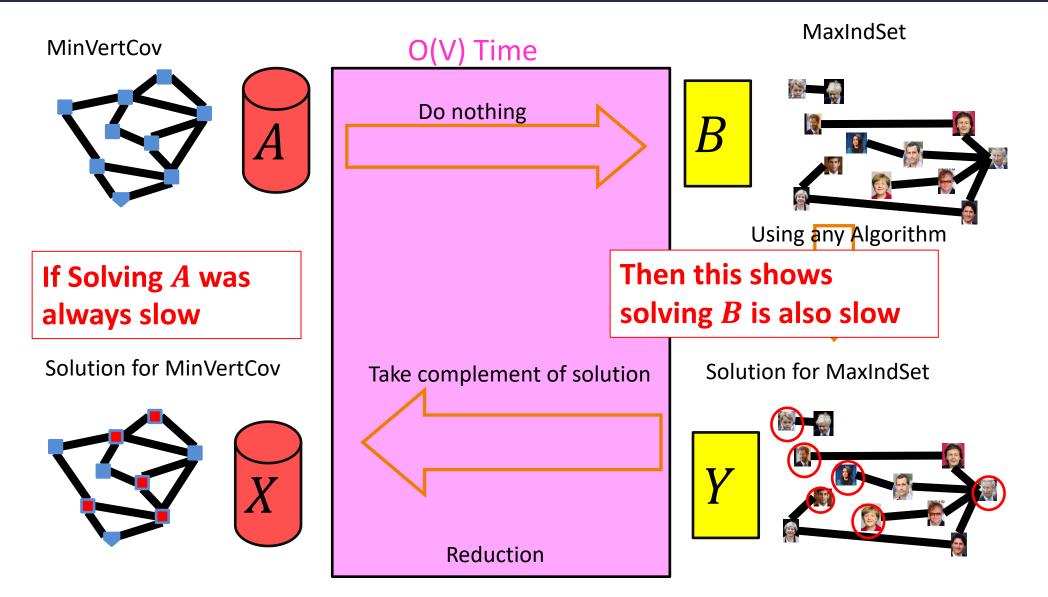
MaxVertCov V-Time Reducible to MinIndSet



MaxIndSet V-Time Reducible to MinVertCov







Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
 - Spoiler alert: We don't know which!
 - (But we think they're both slow)
 - Both problems are NP-Complete
 - More in DMT2