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Readings from CLRS 4th Ed:   Network flow etc. in Chapter 24
(Reductions covered in CLRS but in a context we’re not studying in CS3100)
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Lecture 22: Reductions
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Can you fill a 𝟖×𝟖 board with the corners missing using dominoes?

Can you tile this?

With these?

Warm-Up
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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Bipartite Matching Reduction
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2) Why it works



Edge Disjoint Paths Reduction
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Edge Disjoint Paths
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Vertex Disjoint Paths Reduction
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Vertex Disjoint Paths
Problem we don’t know how to solve Problem we do know how to solve
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Vertex Disjoint Paths Big Picture
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Reductions for New Algorithms

• Create an algorithm for a new problem by using one you 
already know!

• More algorithms = More opportunities!
• The problem you reduced to could itself be solved using a 

reduction!



In General: Reduction
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Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to 
Instances of 𝑩

Using any Algorithm 
for 𝑩

Map Solutions of problem 𝑩	to 
Solutions of 𝑨

𝑌𝑋

Injective: any instance of A 
can be mapped to some 

instance of B.



Worst Case Lower Bound

• Definition:
– A worst case lower bound on a problem is an asymptotic lower bound on 

the worst case running time of any algorithm which solves it
– If 𝑓(𝑛) is a worst case lower bound for problem A, then the worst-case 

running time of any algorithm which solves A must be Ω 𝑓 𝑛
– i.e. for sufficiently large values of 𝑛, for every algorithm which solves A, 

there is at least one input of size 𝑛 which causes the algorithm to do 
Ω 𝑓 𝑛  steps.

• Examples:
– 𝑛 is a worst-case lower bound on finding the minimum in a list
– 𝑛! is a worst-case lower bound on matrix multiplication



Another use of Reductions
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Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to 
Instances of 𝑩

Using any Algorithm 
for 𝑩

Map Solutions of problem 𝑩	to 
Solutions of 𝑨

𝑌𝑋

An algorithm for A

Suppose I knew a 
worst-case lower bound 
of Ω 𝑓 𝑛  for A

Ω 𝑓 𝑛 This path must be 
Ω 𝑓 𝑛



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
  𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B



Proof of Lower Bound by Reduction

1. We know X  is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
 conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow



Reduction Proof Notation
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
  𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
    𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead

Or we 
could have 

solved A 
faster 

using B’s 
solver!



Two Ways to use Reductions

Suppose we have a “fast” reduction from A to B

1. A “fast” algorithm for B gives a fast algorithm for A

2. If we have a worst-case lower bound for A, we also have one 
for B

𝐴 𝐵

𝐴 𝐵

𝐴 𝐵

fast

fast
If B is fast

Then A is fast

If A is slow

Then B is slow
fast



Bipartite Matching Reduction
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Then this is fast If this is fast



Bipartite Matching Reduction
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If this is slow Then this is slow



Worst-case Lower-Bound Using Reductions

• Closest Pair of points
– D&C algorithm: Θ 𝑛 log 𝑛
– Can we do better?

• Idea: Show that doing closest pair in 𝑜 𝑛 log 𝑛  enables an 
impossibly fast algorithm for another problem

1 2

3

4
5

6

7

8



Reductions for Lower-Bounds
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Problem we know is “Hard” Problem we want to show is “Hard”

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Quickly Map Instances of 
problem 𝑨	to Instances of 𝑩

Some Algorithm for 𝑩

Quickly Map Solutions of 
problem 𝑩	to Solutions of 𝑨

𝑌𝑋

If this is quick,

and this is quick,

“Hard” means this 
must be slow

and this must be slow,
then this this can’t be 

fast!



Reductions for Lower-Bound on CPP
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Problem we know is 𝛀 𝒏 𝐥𝐨𝐠𝒏 Problem we want to show is 𝛀 𝒏 𝐥𝐨𝐠𝒏

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to 
Instances of 𝐶𝑃𝑃 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

Some Algorithm for 𝐶𝑃𝑃

Map Solutions of 𝐶𝑃𝑃 to 
Solutions of 𝑨 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

𝑋

Closest Pair 
of Points

If this could be done in 
𝑜(𝑛 log 𝑛)

Then this can be done 
in 𝑜(𝑛 log 𝑛)

𝛀 𝒏 𝐥𝐨𝐠𝒏



A “Hard” Problem: Element Uniqueness

• Input: 
– A list of integers

• Output: 
– True if all values are unique, False otherwise

• Can this be solved in 𝑂 𝑛 log 𝑛  time?
– Yes! Sort, then check if any adjacent elements match

• Can this be solved in 𝑜(𝑛 log 𝑛) time?
– No! (we’re going to skip this Proof)

103 801 401 323 255 323 999 101

113 901 555 512 245 800 018 121 True

False

https://en.wikipedia.org/wiki/Element_distinctness_problem


Reductions for Lower-Bound on CPP
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Problem we know is 𝛀 𝒏 𝐥𝐨𝐠𝒏 Problem we want to show is 𝛀 𝒏 𝐥𝐨𝐠𝒏

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to 
Instances of 𝐶𝑃𝑃 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

Some Algorithm for 𝐶𝑃𝑃

Map Solutions of 𝐶𝑃𝑃 to 
Solutions of 𝑨 in 𝒐 𝒏 𝐥𝐨𝐠𝒏 	

𝑋

Closest Pair 
of Points

If this could be done in 
𝑜(𝑛 log 𝑛)

𝛀 𝒏 𝐥𝐨𝐠𝒏

5 7 9 8

6 3 6 9

Element Uniqueness

Then this can be done 
in 𝑜(𝑛 log 𝑛)

PS9



Two Ways to use Reductions

Suppose we have a “fast” reduction from A to B

1. A “fast” algorithm for B gives a fast algorithm for A

2. If we have a worst-case lower bound for A, we also have one 
for B

𝐴 𝐵

𝐴 𝐵

𝐴 𝐵

fast

fast If B is fastThen A is fast

If A is slow Then B is slowfast



Party Problem
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Draw Edges between people who don’t get along
Find the maximum number of people who get along



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸) 
find the maximum independent set 𝑆
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Example
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Independent set of size 6



Generalized Baseball

36



Generalized Baseball
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Need to place defenders on bases 
such that every edge is defended

What’s the fewest number of 
defenders needed?



Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶

38



Example
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Vertex cover of size 5



MaxIndSet≤5MinVertCov
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𝑂(𝑉)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
    𝑨 ≤𝑽 𝑩

With 𝑂(𝑉) overhead



We need to build this Reduction
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𝐴 𝐵

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm 
for MinVertCov

Relate Solutions of MinVertCov	to 
Solutions of MaxIndSet

𝑌𝑋

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Reduction Idea
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

42

Independent Set
Vertex Cover



Reduction Idea
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Independent SetVertex Cover



MaxVertCov 𝑉-Time Reducible to MinIndSet
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time

Must show (prove):
1) how to make construction
2) Why it works



Proof: ⇒
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let 𝑆 be an independent set

Consider any edge 𝑥, 𝑦 ∈ 𝐸

If 𝑥 ∈ 𝑆 then 𝑦 ∉ 𝑆, because other wise 𝑆 would not be an 
independent set

Therefore 𝑦 ∈ 𝑉 − 𝑆, so edge (𝑥, 𝑦) is covered by 𝑉 − 𝑆 



Proof: ⇐
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let V − 𝑆 be a vertex cover

Consider any edge 𝑥, 𝑦 ∈ 𝐸

At least one of 𝑥 and 𝑦 belong to 𝑉 − 𝑆, because V − 𝑆 is a 
vertex cover

Therefore 𝑥 and 𝑦 are not both in 𝑆, 
No edge has both end-nodes in 𝑆, thus 𝑆 is an independent set 



MaxVertCov 𝑉-Time Reducible to MinIndSet
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time



MaxIndSet 𝑉-Time Reducible to MinVertCov 
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𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm 
for MaxIndSet

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Corollary
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𝐴 𝐵

Reduction

Do nothing

Using any Algorithm 
for MinIndSet

Take complement of solution

𝑌𝑋

O(V) Time

If Solving 𝑨 was 
always slow

Then this shows 
solving 𝑩 is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Corollary
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𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm 
for MaxVertCovIf Solving 𝑨 was 

always slow
Then this shows 
solving 𝑩 is also slow

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!
• (But we think they’re both slow)

– Both problems are NP-Complete
• More in DMT2
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