
Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings from CLRS 4th Ed:
Chapter 24

CS 3100
Data Structures and Algorithms 2

Lecture 21: Reductions, Bipartite Matching



Announcements

• Quizzes 3-4 Thursday
– If you have SDAC, please schedule ASAP
– Review Session: Tonight
– Quiz Security

• Arrive early to get your quiz, bring your ID with you
• Your quiz will have your name on it
• Do not sit next to your friends

• Office hours updates
– Prof Hott Office Hours:

• Today 2-3pm
• Friday and Monday hours canceled this week (baby!)

2



Flow Networks

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge capacities 𝑐 𝑒 ∈ ℝ!

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡 
through a network of pipes 𝐸 with capacities 𝑐(𝑒), what is the 
maximum amount of water which can flow from the faucet to the 
drain?

3

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3



Residual Graphs

4

1/3

1/3

2/3

2/2

𝑠
𝑡

0/1

2/2

1/1

2/3
1/2

1/2

2/3

Flow 𝑓 in 𝐺 Residual graph 𝐺#

𝑠
𝑡

2
1

1

11
2

1
1

1

2
1

2

1

2

21
2

1

Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺# models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge
• Backward edge by flipping each edge 𝑒 in 𝐺 with weight set to flow 𝑓(𝑒)

• Models amount of flow that can be removed from the edge

Flow I could add

Flow I could remove



Ford-Fulkerson Algorithm
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺#	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺#
• While there is an augmenting path 𝑝 in 𝐺#:

• Let 𝑐 = min
%
𝑐#(𝑒) along the path 

   (𝑐#(𝑒) is the weight of edge 𝑒 in the residual network 𝐺#)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺# for the updated flow

5

Ford-Fulkerson approach: take 
any augmenting path
(will revisit this later)



Can We Avoid this?
Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: Θ min 𝐸 𝑓∗ , 𝑉 𝐸 # = 𝑂 𝑉 𝐸 #

6

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺#
• While there is an augmenting path in 𝐺#, let 𝑝 be the path with fewest hops:
• Let 𝑐 = min

%∈'
𝑐#(𝑒) (𝑐#(𝑒) is the weight of edge 𝑒 in the residual network 𝐺#)

• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺# for the updated flow

How to find this? 
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson 
using BFS to find augmenting path

See CLRS (Chapter 24)



Reminder: Graph Cuts

7

A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣!, 𝑣" ∈ 𝐸 crosses a 
cut if 𝑣! ∈ 𝑆 and 𝑣" ∈ 𝑉 − 𝑆

An edge 𝑣!, 𝑣" ∈ 𝐸 respects a cut 
if 𝑣!, 𝑣" ∈ 𝑆 or if 𝑣!, 𝑣" ∈ 𝑉 − 𝑆

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Notion extends naturally 
to a set of edges



Showing Correctness of Ford-Fulkerson

• Consider cuts which separate 𝑠 and 𝑡
– Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, s.t. 𝑉 = 𝑆 ∪ 𝑇

• Cost of cut 𝑆, 𝑇 = | 𝑆, 𝑇 |
– Sum capacities of edges which go from 𝑆 to 𝑇
– This example: 5

8

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑆 𝑇



Maxflow≤MinCut

• Max flow upper bounded by any cut separating 𝑠 and 𝑡
• Why? “Conservation of flow”
– All flow exiting 𝑠 must eventually get to 𝑡
– To get from 𝑠 to 𝑡, all “tanks” must cross the cut

• Conclusion: If we find the minimum-cost cut, we’ve found the 
maximum flow
– max

!
𝑓 ≤ min

",$
| 𝑆, 𝑇 |

9

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑆 𝑇



Maxflow/Mincut Theorem

• To show Ford-Fulkerson is correct:
– Show that when there are no more augmenting paths, there is a cut 

with cost equal to the flow
• Conclusion: the maximum flow through a network matches the 

minimum-cost cut
–max

#
𝑓 = min

$,&
| 𝑆, 𝑇 |

• Duality
– When we’ve maximized max flow, we’ve minimized min cut (and vice-

versa), so we can check when we’ve found one by finding the other

10



Example: Maxflow/Mincut

1111

Residual Graph 𝑮𝒇

0/3

2/3

3/3
0/1

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph 𝑮

𝑠
𝑡3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

No Augmenting Paths
|𝑓| = 	4

𝑆, 𝑇 = 4

Idea: When there are no more augmenting paths, there 
exists a cut in the graph with cost matching the flow



Proof: Maxflow/Mincut Theorem
• If |𝑓| is a max flow, then 𝐺#  has no augmenting path
– Otherwise, use that augmenting path to “push” more flow

• Define 𝑆 = nodes reachable from source node 𝑠 by positive-weight 
edges in the residual graph
– 𝑇 = 𝑉 − 𝑆
– 𝑆 separates 𝑠 , 𝑡 (otherwise there’s an augmenting path)

12

Residual Graph 𝑮𝒇

𝑠
𝑡3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

0/3

2/3

3/3
0/1

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph 𝑮



Proof: Maxflow/Mincut Theorem
• To show: 𝑆, 𝑇 = |𝑓| 

– Weight of the cut matches the flow across the cut
• Consider edge (𝑢, 𝑣) with 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

– 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣), because otherwise 𝑤 𝑢, 𝑣 > 0 in 𝐺!, which would mean 𝑣 ∈ 𝑆
• Consider edge (𝑦, 𝑥) with 𝑦 ∈ 𝑇, 𝑥 ∈ 𝑆

– 𝑓 𝑦, 𝑥 = 0, because otherwise the back edge 𝑤 𝑦, 𝑥 > 0  in 𝐺!, 
which would mean y ∈ 𝑆

13

Residual Graph 𝑮𝒇

𝑠
𝑡3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

0/3

2/3

3/3
0/1

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph 𝑮



Proof Summary
1. The flow |𝑓| of 𝐺 is upper-bounded by the sum of capacities of edges crossing 

any cut separating source 𝑠 and sink 𝑡

2. When Ford-Fulkerson terminates, there are no more augmenting paths in 𝐺#

3. When there are no more augmenting paths in 𝐺#  then we can define a cut 
𝑆 = nodes reachable from source node 𝑠 by positive-weight edges in the 
residual graph

4. The sum of edge capacities crossing this cut must match the flow of the graph

5. Therefore this flow is maximal

14



Moving on

21



Divide and Conquer*

• Divide: 
– Break the problem into multiple subproblems, each smaller instances of 

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4



Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

23



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Store solutions to subproblems in memory
3. Select a good order for solving subproblems
• Usually smallest problem first

24



So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, 

relate it to smaller instances of Problem A

• Next:
– Take an instance of Problem A, 

relate it to an instance of Problem B

25



Edge-Disjoint Paths

26

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c



Edge-Disjoint Paths

27

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 3



Edge-Disjoint Paths

28

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4



Edge-Disjoint Paths

29

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

How could we solve this?  
Talk with your neighbors!



Edge-Disjoint Paths Algorithm

30

Make 𝑠 and 𝑡 the source and sink, give each edge capacity 1, find the max flow.

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

1/1

1/1

1/1

1/1

1/1

1/1
1/1

1/1

1/1
1/1

0/1

0/1

0/1

0/1
0/1

Max flow = 4



Vertex-Disjoint Paths

31

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c



Vertex-Disjoint Paths

32

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the 
maximum number of paths from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

Not a vertex-disjoint path!



Vertex-Disjoint Paths

33

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the 
maximum number of paths from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

How could we solve this?  
Talk with your neighbors!



Vertex-Disjoint Paths Algorithm

34

Idea: Convert an instance of the vertex-disjoint paths problem into an instance 
of edge-disjoint paths

𝑠

𝑡

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming edges, the other to 
outgoing edges

g 
out

Restricts to 1 
edge

Compute Edge-Disjoint Paths on new graph



Maximum Bipartite Matching

35

Dog Lovers Dogs



Maximum Bipartite Matching

36

Dog Lovers Dogs



Maximum Bipartite Matching

37

Dog Lovers Dogs



Maximum Bipartite Matching

38

Dog Lovers Dogs



Maximum Bipartite Matching

Given a graph 𝐺 = 𝐿, 𝑅, 𝐸
 a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges 𝑀 ⊆ 𝐸 such that each node 𝑢 ∈ 𝐿 
or 𝑣 ∈ 𝑅 is incident to at most one edge.

39



Maximum Bipartite Matching

40

Dog Lovers Dogs
How could we solve this?  
Talk with your neighbors!



Maximum Bipartite Matching Using Max Flow
Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺' = (𝑉', 𝐸') by:
• Adding in a source and sink to the set of nodes: 
– 𝑉) = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}

• Adding an edge from source to 𝐿 and from 𝑅 to sink:
–  𝐸) = 𝐸 ∪ 𝑢 ∈ 𝐿	 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑟	 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸), 𝑐 𝑒 = 1

41

𝑠
𝑡

1

11

1
1

1

1
11

1

1

1

1

1

1

1

1



Maximum Bipartite Matching Using Max Flow

1. Make 𝐺 into 𝐺′ 
2. Compute Max Flow on 𝐺′
3. Return 𝑀 as all “middle” edges with flow 1

42

Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉) Since 𝑓 ≤ 𝐿

Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉)

𝑠
𝑡

0/1

0/11/1

1/1
0/1
0/1

1/1
1/1

0/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1



Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

43



Reductions

44

Shows how two different problems relate to each other

MOVIE TIME!



MacGyver’s Reduction

45

Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

How
?

Put fire under the Keg

Reduction



Bipartite Matching Reduction

46

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠
𝑡

1
11

11
1
111

1
1

1
1

1
1
1
1

𝑠
𝑡

0/1
0/1

1/1

1/1
0/1
0/1
1/11/10/1

1/1
1/1

1/1
1/1

1/1
1/1
1/1

1/1

Reduction

Must show (prove):
1) how to make construction
2) Why it works



In General: Reduction

47

Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to 
Instances of 𝑩

Using any Algorithm 
for 𝑩

Map Solutions of problem 𝑩	to 
Solutions of 𝑨

𝑌𝑋

Injective: any instance of A 
can be mapped to some 

instance of B.



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
  𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B



Proof of Lower Bound by Reduction

1. We know X  is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
 conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow



Reduction Proof Notation

50

𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
  𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
    𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead


