CS 3100
 Data Structures and Algorithms 2
 Lecture 21: Reductions, Bipartite Matching

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings from CLRS $4^{\text {th }}$ Ed:
Chapter 24

Announcements

- Quizzes 3-4 Thursday
- If you have SDAC, please schedule ASAP
- Review Session: Tonight
- Quiz Security
- Arrive early to get your quiz, bring your ID with you
- Your quiz will have your name on it
- Do not sit next to your friends
- Office hours updates
- Prof Hott Office Hours:
- Today 2-3pm
- Friday and Monday hours canceled this week (baby!)

Flow Networks

$$
\begin{aligned}
& \text { Graph } G=(V, E) \\
& \text { Source node } s \in V \\
& \text { Sink node } t \in V \\
& \text { Edge capacities } c(e) \in \mathbb{R}^{+}
\end{aligned}
$$

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through a network of pipes E with capacities $c(e)$, what is the maximum amount of water which can flow from the faucet to the drain?

Residual Graphs

Given a flow f in graph G, the residual graph G_{f} models additional flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity $c(e)-f(e)$
- Models additional flow that can be sent along the edge

Flow I could add

- Backward edge by flipping each edge e in G with weight set to flow $f(e)$
- Models amount of flow that can be removed from the edge Flow I could remove

Flow f in G
Residual graph G_{f}

Ford-Fulkerson Algorithm

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e} c_{f}(e)$ along the path
($c_{f}(e)$ is the weight of edge e in the residual network G_{f})
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: $\Theta\left(\min \left(|E|\left|f^{*}\right|,|V||E|^{2}\right)\right)=O\left(|V||E|^{2}\right)$
How to find this?
Use breadth-first search (BFS)!
Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path in G_{f}, let p be the path with fewest hops:
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

See CLRS (Chapter 24)

Reminder: Graph Cuts

A cut of a graph $G=(V, E)$ is a partition of the nodes into two sets, S and $V-S$

An edge $\left(v_{1}, v_{2}\right) \in E$ crosses a cut if $v_{1} \in S$ and $v_{2} \in V-S$

An edge $\left(v_{1}, v_{2}\right) \in E$ respects a cut if $v_{1}, v_{2} \in S$ or if $v_{1}, v_{2} \in V-S$

Showing Correctness of Ford-Fulkerson

- Consider cuts which separate s and t
- Let $s \in S, t \in T$, s.t. $V=S \cup T$
- Cost of cut $(S, T)=\|S, T\|$
- Sum capacities of edges which go from S to T
- This example: 5

Maxflow \leq MinCut

- Max flow upper bounded by any cut separating s and t
- Why? "Conservation of flow"
- All flow exiting s must eventually get to t
- To get from s to t, all "tanks" must cross the cut
- Conclusion: If we find the minimum-cost cut, we've found the maximum flow

$$
-\max _{f}|f| \leq \min _{S, T}| | S, T| |
$$

Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
- Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut

$$
-\max _{f}|f|=\min _{S, T}\|S, T\|
$$

- Duality
- When we've maximized max flow, we've minimized min cut (and viceversa), so we can check when we've found one by finding the other

Example: Maxflow/Mincut

Flow Graph G

$|f|=4$
$||S, T||=4$

No Augmenting Paths

Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow

Proof: Maxflow/Mincut Theorem

- If $|f|$ is a max flow, then G_{f} has no augmenting path
- Otherwise, use that augmenting path to "push" more flow
- Define $S=$ nodes reachable from source node s by positive-weight edges in the residual graph
$-T=V-S$
$-S$ separates S, t (otherwise there's an augmenting path)

Proof: Maxflow/Mincut Theorem

- To show: $||S, T||=|f|$
- Weight of the cut matches the flow across the cut
- Consider edge (u, v) with $u \in S, v \in T$
- $f(u, v)=c(u, v)$, because otherwise $w(u, v)>0$ in G_{f}, which would mean $v \in S$
- Consider edge (y, x) with $y \in T, x \in S$
- $f(y, x)=0$, because otherwise the back edge $w(y, x)>0$ in G_{f}, which would mean $\mathrm{y} \in S$

Residual Graph $\boldsymbol{G}_{\boldsymbol{f}}$

Proof Summary

1. The flow $|f|$ of G is upper-bounded by the sum of capacities of edges crossing any cut separating source s and $\operatorname{sink} t$
2. When Ford-Fulkerson terminates, there are no more augmenting paths in G_{f}
3. When there are no more augmenting paths in G_{f} then we can define a cut $S=$ nodes reachable from source node s by positive-weight edges in the residual graph
4. The sum of edge capacities crossing this cut must match the flow of the graph
5. Therefore this flow is maximal

Moving on

Divide and Conquer*

- Divide:

曲囲

- Break the problem into multiple subproblems, each smaller instances of the original
- Conquer:
- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)
- Combine:
- Merge together solutions to subproblems

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify recursive structure of the problem
2. Store solutions to subproblems in memory
3. Select a good order for solving subproblems

- Usually smallest problem first

So far

- Divide and Conquer, Dynamic Programming, Greedy
- Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
- Take an instance of Problem A, relate it to an instance of Problem B

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

How could we solve this?

Edge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1 , find the max flow.

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to outgoing edges

Maximum Bipartite Matching

Maximum Bipartite Matching

Maximum Bipartite Matching

Maximum Bipartite Matching

Maximum Bipartite Matching

Given a graph $G=(L, R, E)$
a set of left nodes, right nodes, and edges between left and right Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

Maximum Bipartite Matching

Dog Lovers

How could we solve this? Talk with your neighbors!

Maximum Bipartite Matching Using Max Flow

Make $G=(L, R, E)$ a flow network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by:

- Adding in a source and sink to the set of nodes:
$-V^{\prime}=L \cup R \cup\{s, t\}$
- Adding an edge from source to L and from R to sink:
- $E^{\prime}=E \cup\{u \in L \mid(s, u)\} \cup\{v \in r \mid(v, t)\}$
- Make each edge capacity 1 :
$-\forall e \in E^{\prime}, c(e)=1$

Maximum Bipartite Matching Using Max Flow

1. Make G into $G^{\prime} \quad \Theta(L+R)$
2. Compute Max Flow on $G^{\prime} \quad \Theta(E \cdot V) \quad$ Since $|f| \leq L$
3. Return M as all "middle" edges with flow $1 \quad \Theta(L+R)$

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Reductions

Shows how two different problems relate to each other

MacGyver's Reduction

Problem we don't know how to solve
Problem we do know how to solve

Bipartite Matching Reduction

Problem we don't know how to solve

Problem we do know how to solve

Solution for \boldsymbol{B}

Must show (prove):

1) how to make construction
2) Why it works

In General: Reduction

Problem we don't know how to solve
Problem we do know how to solve

Worst-case lower-bound Proofs

Opening a door

Problem A

Lighting a fire

Keg cannon battering ram

Algorithm for \mathbf{A}

A is not a harder problem than B $A \leq B$

The name "reduces" is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

Reduction Proof Notation

A is not a harder problem than B

$$
A \leq B
$$

If \boldsymbol{A} requires time $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time then \boldsymbol{B} also requires $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time

$$
A \leq_{f(n)} B
$$

