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Announcements

• Quizzes 3-4 Thursday
– If you have SDAC, please schedule ASAP
– Review Session: Tonight
– Quiz Security

• Arrive early to get your quiz, bring your ID with you
• Your quiz will have your name on it
• Do not sit next to your friends

• Office hours updates
– Prof Hott Office Hours:

• Today 2-3pm
• Friday and Monday hours canceled this week (baby!)

2



Flow Networks

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge capacities 𝑐 𝑒 ∈ ℝ!

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡 
through a network of pipes 𝐸 with capacities 𝑐(𝑒), what is the 
maximum amount of water which can flow from the faucet to the 
drain?

3

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3



Residual Graphs
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Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺# models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge
• Backward edge by flipping each edge 𝑒 in 𝐺 with weight set to flow 𝑓(𝑒)

• Models amount of flow that can be removed from the edge

Flow I could add

Flow I could remove



Ford-Fulkerson Algorithm
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺#	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺#
• While there is an augmenting path 𝑝 in 𝐺#:

• Let 𝑐 = min
%
𝑐#(𝑒) along the path 

   (𝑐#(𝑒) is the weight of edge 𝑒 in the residual network 𝐺#)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺# for the updated flow
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Ford-Fulkerson approach: take 
any augmenting path
(will revisit this later)



Can We Avoid this?
Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: Θ min 𝐸 𝑓∗ , 𝑉 𝐸 # = 𝑂 𝑉 𝐸 #
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Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺#
• While there is an augmenting path in 𝐺#, let 𝑝 be the path with fewest hops:
• Let 𝑐 = min

%∈'
𝑐#(𝑒) (𝑐#(𝑒) is the weight of edge 𝑒 in the residual network 𝐺#)

• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺# for the updated flow

How to find this? 
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson 
using BFS to find augmenting path

See CLRS (Chapter 24)



Reminder: Graph Cuts
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A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣!, 𝑣" ∈ 𝐸 crosses a 
cut if 𝑣! ∈ 𝑆 and 𝑣" ∈ 𝑉 − 𝑆

An edge 𝑣!, 𝑣" ∈ 𝐸 respects a cut 
if 𝑣!, 𝑣" ∈ 𝑆 or if 𝑣!, 𝑣" ∈ 𝑉 − 𝑆
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to a set of edges



Showing Correctness of Ford-Fulkerson

• Consider cuts which separate 𝑠 and 𝑡
– Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, s.t. 𝑉 = 𝑆 ∪ 𝑇

• Cost of cut 𝑆, 𝑇 = | 𝑆, 𝑇 |
– Sum capacities of edges which go from 𝑆 to 𝑇
– This example: 5
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Maxflow≤MinCut

• Max flow upper bounded by any cut separating 𝑠 and 𝑡
• Why? “Conservation of flow”
– All flow exiting 𝑠 must eventually get to 𝑡
– To get from 𝑠 to 𝑡, all “tanks” must cross the cut

• Conclusion: If we find the minimum-cost cut, we’ve found the 
maximum flow
– max

!
𝑓 ≤ min

",$
| 𝑆, 𝑇 |
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Maxflow/Mincut Theorem

• To show Ford-Fulkerson is correct:
– Show that when there are no more augmenting paths, there is a cut 

with cost equal to the flow
• Conclusion: the maximum flow through a network matches the 

minimum-cost cut
–max

#
𝑓 = min

$,&
| 𝑆, 𝑇 |

• Duality
– When we’ve maximized max flow, we’ve minimized min cut (and vice-

versa), so we can check when we’ve found one by finding the other
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Example: Maxflow/Mincut
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𝑆, 𝑇 = 4

Idea: When there are no more augmenting paths, there 
exists a cut in the graph with cost matching the flow



Proof: Maxflow/Mincut Theorem
• If |𝑓| is a max flow, then 𝐺#  has no augmenting path
– Otherwise, use that augmenting path to “push” more flow

• Define 𝑆 = nodes reachable from source node 𝑠 by positive-weight 
edges in the residual graph
– 𝑇 = 𝑉 − 𝑆
– 𝑆 separates 𝑠 , 𝑡 (otherwise there’s an augmenting path)
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Residual Graph 𝑮𝒇
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Proof: Maxflow/Mincut Theorem
• To show: 𝑆, 𝑇 = |𝑓| 

– Weight of the cut matches the flow across the cut
• Consider edge (𝑢, 𝑣) with 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

– 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣), because otherwise 𝑤 𝑢, 𝑣 > 0 in 𝐺!, which would mean 𝑣 ∈ 𝑆
• Consider edge (𝑦, 𝑥) with 𝑦 ∈ 𝑇, 𝑥 ∈ 𝑆

– 𝑓 𝑦, 𝑥 = 0, because otherwise the back edge 𝑤 𝑦, 𝑥 > 0  in 𝐺!, 
which would mean y ∈ 𝑆
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Proof Summary
1. The flow |𝑓| of 𝐺 is upper-bounded by the sum of capacities of edges crossing 

any cut separating source 𝑠 and sink 𝑡

2. When Ford-Fulkerson terminates, there are no more augmenting paths in 𝐺#

3. When there are no more augmenting paths in 𝐺#  then we can define a cut 
𝑆 = nodes reachable from source node 𝑠 by positive-weight edges in the 
residual graph

4. The sum of edge capacities crossing this cut must match the flow of the graph

5. Therefore this flow is maximal
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Moving on

21



Divide and Conquer*

• Divide: 
– Break the problem into multiple subproblems, each smaller instances of 

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4



Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Store solutions to subproblems in memory
3. Select a good order for solving subproblems
• Usually smallest problem first
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So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, 

relate it to smaller instances of Problem A

• Next:
– Take an instance of Problem A, 

relate it to an instance of Problem B
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges
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How could we solve this?  
Talk with your neighbors!



Edge-Disjoint Paths Algorithm
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Make 𝑠 and 𝑡 the source and sink, give each edge capacity 1, find the max flow.
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Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no vertices
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Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the 
maximum number of paths from 𝑠 to 𝑡 which share no vertices
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Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the 
maximum number of paths from 𝑠 to 𝑡 which share no vertices
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How could we solve this?  
Talk with your neighbors!



Vertex-Disjoint Paths Algorithm
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Idea: Convert an instance of the vertex-disjoint paths problem into an instance 
of edge-disjoint paths
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Make two copies of each node, one connected to incoming edges, the other to 
outgoing edges

g 
out

Restricts to 1 
edge

Compute Edge-Disjoint Paths on new graph



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching

Given a graph 𝐺 = 𝐿, 𝑅, 𝐸
 a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges 𝑀 ⊆ 𝐸 such that each node 𝑢 ∈ 𝐿 
or 𝑣 ∈ 𝑅 is incident to at most one edge.
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Maximum Bipartite Matching
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Dog Lovers Dogs
How could we solve this?  
Talk with your neighbors!



Maximum Bipartite Matching Using Max Flow
Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺' = (𝑉', 𝐸') by:
• Adding in a source and sink to the set of nodes: 
– 𝑉) = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}

• Adding an edge from source to 𝐿 and from 𝑅 to sink:
–  𝐸) = 𝐸 ∪ 𝑢 ∈ 𝐿	 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑟	 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸), 𝑐 𝑒 = 1
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Maximum Bipartite Matching Using Max Flow

1. Make 𝐺 into 𝐺′ 
2. Compute Max Flow on 𝐺′
3. Return 𝑀 as all “middle” edges with flow 1
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Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉) Since 𝑓 ≤ 𝐿
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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Reductions
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Shows how two different problems relate to each other

MOVIE TIME!



MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

How
?

Put fire under the Keg

Reduction



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨
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Reduction

Must show (prove):
1) how to make construction
2) Why it works



In General: Reduction
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Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨	to 
Instances of 𝑩

Using any Algorithm 
for 𝑩

Map Solutions of problem 𝑩	to 
Solutions of 𝑨

𝑌𝑋

Injective: any instance of A 
can be mapped to some 

instance of B.



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
  𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B



Proof of Lower Bound by Reduction

1. We know X  is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
 conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow



Reduction Proof Notation
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
  𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
    𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead


