
Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings from CLRS 4th Ed:
Chapter 24

CS 3100
Data Structures and Algorithms 2

Lecture 20: Network Flow



Announcements

• PS9 available today
• Quizzes 3-4 next week
– If you have SDAC, please schedule ASAP
– More information about quiz security on Tuesday
– Look for information about a review session early next week

• Office hours updates
– Prof Hott Office Hours:

• Back to normal starting Friday
• Monday: slightly earlier 10-11am

2



How does it work?

• States are broken into precincts
• All precincts have the same size
• We know voting preferences of each precinct
• Group precincts into districts to maximize the number of districts 

won by my party
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Gerrymandering Problem Statement

• Given:
– A list of precincts: 𝑝!, 𝑝", … , 𝑝#
– Each containing 𝑚 voters

• Output:
– Districts 𝐷!, 𝐷" ⊂ {𝑝!, 𝑝", … , 𝑝#}
– Where 𝐷! = |𝐷"|
–  𝑅 𝐷! > $#

%
	 and	 𝑅 𝐷" > $#

%
• 𝑅(𝐷!) gives number of “Regular Party” voters in 𝐷!
• 𝑅 𝐷! > "#

$
 means 𝐷! is majority “Regular Party”

– “failure” if no such solution is possible
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𝑚 ⋅
𝑛
2 ⋅
1
2

Valid Gerrymandering!



World Two

World One

Consider the last precinct
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𝐷&
𝑘 precincts
𝑥 voters for R

𝐷'
𝑛 − 𝑘 − 1 precincts
𝑦 voters for R

𝑝(

𝐷&
𝑘 + 1 precincts
𝑥 + 𝑅(𝑝() voters for R

𝐷'
𝑛 − 𝑘 precincts
𝑦 + 𝑅(𝑝() voters for R

If we assign 
𝑝(to 𝐷&

If we assign 
𝑝(to 𝐷'

After assigning the 
first 𝑛 − 1 precincts

𝑝!, 𝑝", … , 𝑝#$!

Valid gerrymandering if: 
𝑘 + 1 = #

"
,

 𝑥 + 𝑅 𝑝# , 𝑦 >
%#
&

Valid gerrymandering if:
 n − 𝑘 = #

"
,

 𝑥, 𝑦 + 𝑅 𝑝# > %#
&

𝐷!
𝑘 + 1 precincts
𝑥 + 𝑅(𝑝") voters for R

𝐷!
𝑘 precincts
𝑥	voters for R

𝐷#
𝑛 − 𝑘 − 1 precincts
𝑦	voters for R

𝐷#
𝑛 − 𝑘	precincts
𝑦 + 𝑅(𝑝")	voters for R



Define Recursive Structure

𝑆 𝑗, 𝑘, 𝑥, 𝑦 =
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True if from among the first 𝒋 precincts:
 𝒌 are assigned to 𝐷&
 exactly 𝒙 vote for R in 𝐷&
 exactly 𝒚 vote for R in 𝐷'
 

4D Dynamic Programming!!!

𝑛	×	𝑛	×	𝑚𝑛	×	𝑚𝑛

True here means that 
this is a valid state of 
the world; not a valid 

Gerrymander!
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Two ways to satisfy 𝑆 𝑗, 𝑘, 𝑥, 𝑦 :
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if:
 from among the first 𝑗 precincts
 𝑘 are assigned to 𝐷!
 exactly 𝑥 vote for R in 𝐷!
 exactly 𝑦 vote for R in 𝐷"
 
𝐷&
𝑘 precincts
𝑥 voters for R

𝐷'
𝑗 − 𝑘 precincts
𝑦 voters for R

𝐷&
𝑘 − 1 precincts
𝑥 − 𝑅(𝑝4) voters for R

𝐷'
𝑗 − 𝑘 precincts
𝑦 voters for R

𝐷&
𝑘 precincts
𝑥 voters for R

𝐷'
𝑗 − 1 − 𝑘 precincts
𝑦 − 𝑅(𝑝4) voters for R

𝑝4

Then assign 
𝑝4to 𝐷&

Then assign 
𝑝4to 𝐷'

𝑝4

OR

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝% , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝%



Final Algorithm

Initialize 𝑆(0,0,0,0) = True
for 𝑗 = 1,… , 𝑛:
    for 𝑘 = 1,… ,min(𝑗, 3

'
):

        for 𝑥 = 0,… , 𝑗𝑚:
            for 𝑦 = 0,… , 𝑗𝑚:
                𝑆 𝑗, 𝑘, 𝑥, 𝑦 =

𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝4 , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝4
Search for True entry at 𝑆(𝑛, 3

'
, > 53

6
, > 53

6
) 
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𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝! , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝!

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if:
 from among the first 𝑗 precincts
 𝑘 are assigned to 𝐷!
 exactly 𝑥 vote for R in 𝐷!
 exactly 𝑦 vote for R in 𝐷"
 



Where is Solution?
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Initialize 𝑆(0,0,0,0) = True
for 𝑗 = 1,… , 𝑛:
    for 𝑘 = 1,… ,min(𝑗, 3

'
):

        for 𝑥 = 0,… , 𝑗𝑚:
            for 𝑦 = 0,… , 𝑗𝑚:
                𝑆 𝑗, 𝑘, 𝑥, 𝑦 =

𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝4 , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝4
Search for True entry at 𝑆(𝑛, 3

'
, > 53

6
, > 53

6
) 

Run Time
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𝑛
𝑛
2
𝑛𝑚
𝑛𝑚

Θ(𝑛"𝑚#)

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝! , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝!



Θ(𝑛2𝑚3)

• Input: list of precincts (size 𝑛), number of voters (integer 𝑚)
• Runtime depends on the value of 𝑚, not size of 𝑚
– Run time is exponential in size of input
– Input size is 𝑛 + 𝑚 = 𝑛 + log𝑚 

• Note: Gerrymandering is NP-Complete
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Network Flow

12Railway map of Western USSR, 1955

Question: What is the maximum 
throughput of the railroad network?



Flow Networks

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge capacities 𝑐 𝑒 ∈ ℝ7

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡 
through a network of pipes 𝐸 with capacities 𝑐(𝑒), what is the 
maximum amount of water which can flow from the faucet to the 
drain?
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• Assignment of values 𝑓 𝑒  to edges
– “Amount of water going through that pipe”

• Capacity constraint
– 𝑓 𝑒 ≤ 𝑐(𝑒)
– “Flow cannot exceed capacity”

• Flow constraint
– ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, in?low 𝑣 = out?low(𝑣)
– in?low 𝑣 = ∑7∈9 𝑓(𝑥, 𝑣)
– out?low 𝑣 = ∑7∈9 𝑓(𝑣, 𝑥)
– Water going in must match water coming out

• Flow of 𝐺: |𝑓| = out)low 𝑠 − in)low(𝑠)
– Net outflow of 𝑠
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flow / capacity

3 in this example

Network Flow
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Maximum Flow Problem

• Of all valid flows through the graph, find the one that maximizes:

𝑓 = out?low 𝑠 − in?low(𝑠)
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Greedy Approach
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30

20

𝑠 𝑡

10 20

10

Greedy choice: saturate highest capacity path first



Greedy Approach
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Greedy choice: saturate highest capacity path first



Greedy Approach
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20/30

20/20

𝑠 𝑡

10 20/20

10

Greedy choice: saturate highest capacity path first

Flow: 20



Greedy Approach
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10/30

20/20

𝑠 𝑡

10/10 20/20

10/10

Greedy choice: saturate highest capacity path first

Maximum Flow: 30

Observe: highest capacity path is not saturated in optimal solution



Residual Graphs
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Flow 𝑓 in 𝐺

Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺: models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge

Residual graph 𝐺:

𝑠
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Flow I could add



Residual Graphs
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Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺: models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge
• Backward edge by flipping each edge 𝑒 in 𝐺 with weight set to flow 𝑓(𝑒)

• Models amount of flow that can be removed from the edge

Flow I could add

Flow I could remove



Residual Graphs Example
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Flow Graph
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Residual Graphs
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Flow 𝑓 in 𝐺

Consider a path from 𝑠 → 𝑡 in 𝐺: using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)

Residual graph 𝐺:

𝑠
𝑡
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Residual Graphs
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Flow 𝑓 in 𝐺

Consider a path from 𝑠 → 𝑡 in 𝐺: using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)

Residual graph 𝐺:
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Residual Graphs
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Observe: Flow has increased by 𝑤(𝑒)

Consider a path from 𝑠 → 𝑡 in 𝐺: using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤 𝑒  flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)



Ford-Fulkerson Algorithm
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺:	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺:
• While there is an augmenting path 𝑝 in 𝐺::

• Let 𝑐 = min
;
𝑐:(𝑒) along the path 

   (𝑐:(𝑒) is the weight of edge 𝑒 in the residual network 𝐺:)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺: for the updated flow

28

Ford-Fulkerson approach: take 
any augmenting path
(will revisit this later)



Ford-Fulkerson Example

29

0/3

0/3

0/3

0/2

𝑠
𝑡

0/1

0/2

0/1

0/3
0/2

0/2

0/3

Initially: 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸

3

3

3

𝑠
𝑡

1

2

1

3
2

2

Residual graph 𝐺2

3

2



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Running Time
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺:	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺:
• While there is an augmenting path 𝑝 in 𝐺::

• Let 𝑐 = min
;∈<

𝑐:(𝑒) (𝑐:(𝑒) is the weight of edge 𝑒 in the residual network 𝐺:)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺: for the updated flow

42

Initialization: 𝑂 𝐸



Ford-Fulkerson Running Time
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺:	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺:
• While there is an augmenting path 𝑝 in 𝐺::

• Let 𝑐 = min
;∈<

𝑐:(𝑒) (𝑐:(𝑒) is the weight of edge 𝑒 in the residual network 𝐺:)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺: for the updated flow

43

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸



Ford-Fulkerson Running Time
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺:	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺:
• While there is an augmenting path 𝑝 in 𝐺::

• Let 𝑐 = min
;∈<

𝑐:(𝑒) (𝑐:(𝑒) is the weight of edge 𝑒 in the residual network 𝐺:)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺: for the updated flow
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Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸  using BFS/DFS

We only care about nodes reachable from 
the source 𝑠 (so the number of nodes 

that are “relevant” is at most 𝐸 )



Ford-Fulkerson Running Time
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺:	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺:
• While there is an augmenting path 𝑝 in 𝐺::

• Let 𝑐 = min
;∈<

𝑐:(𝑒) (𝑐:(𝑒) is the weight of edge 𝑒 in the residual network 𝐺:)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺: for the updated flow
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Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸  using BFS/DFS

How many iterations are needed?
• For integer-valued capacities, min-weight of each augmenting path is 1, so 

number of iterations is bounded by 𝑓∗ , where 𝑓∗  is max-flow in 𝐺



Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson

52

0/1

1/100

𝑠 𝑡

1/100 1/100

1/100

1

99

𝑠 𝑡

99 99

99

1
1

1

1



Worst-Case Ford-Fulkerson
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Observation: each iteration increases flow by 1 unit
Total number of iterations: 𝑓∗ = 200



Ford-Fulkerson Running Time
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺:	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺:
• While there is an augmenting path 𝑝 in 𝐺::

• Let 𝑐 = min
;∈<

𝑐:(𝑒) (𝑐:(𝑒) is the weight of edge 𝑒 in the residual network 𝐺:)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺: for the updated flow
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Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸  using BFS/DFS

How many iterations are needed?
• For integer-valued capacities, min-weight of each augmenting path is 1, so 

number of iterations is bounded by 𝑓∗ , where 𝑓∗  is max-flow in 𝐺
• For rational-valued capacities, can scale to make capacities integer
• For irrational-valued capacities, algorithm may never terminate!



Ford-Fulkerson Running Time
Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺:	 (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺:
• While there is an augmenting path 𝑝 in 𝐺::

• Let 𝑐 = min
;∈<

𝑐:(𝑒) (𝑐:(𝑒) is the weight of edge 𝑒 in the residual network 𝐺:)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺: for the updated flow
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Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸  using BFS/DFS

For graphs with integer capacities, running time 
of Ford-Fulkerson is

𝑂 𝑓∗ ⋅ 𝐸
Highly undesirable if 𝑓∗ ≫ |𝐸| (e.g., graph is 
small, but capacities are ≈ 267)

As described, algorithm is not polynomial-time!



Can We Avoid this?
Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: Θ min 𝐸 𝑓∗ , 𝑉 𝐸 ' = 𝑂 𝑉 𝐸 '
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Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺:
• While there is an augmenting path in 𝐺:, let 𝑝 be the path with fewest hops:
• Let 𝑐 = min

;∈<
𝑐:(𝑒) (𝑐:(𝑒) is the weight of edge 𝑒 in the residual network 𝐺:)

• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺: for the updated flow

How to find this? 
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson 
using BFS to find augmenting path

See CLRS (Chapter 24)



Reminder: Graph Cuts

57

A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣8, 𝑣7 ∈ 𝐸 crosses a 
cut if 𝑣8 ∈ 𝑆 and 𝑣7 ∈ 𝑉 − 𝑆

An edge 𝑣8, 𝑣7 ∈ 𝐸 respects a cut 
if 𝑣8, 𝑣7 ∈ 𝑆 or if 𝑣8, 𝑣7 ∈ 𝑉 − 𝑆
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Notion extends naturally 
to a set of edges



Showing Correctness of Ford-Fulkerson

• Consider cuts which separate 𝑠 and 𝑡
– Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, s.t. 𝑉 = 𝑆 ∪ 𝑇

• Cost of cut 𝑆, 𝑇 = | 𝑆, 𝑇 |
– Sum capacities of edges which go from 𝑆 to 𝑇
– This example: 5
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Maxflow≤MinCut

• Max flow upper bounded by any cut separating 𝑠 and 𝑡
• Why? “Conservation of flow”
– All flow exiting 𝑠 must eventually get to 𝑡
– To get from 𝑠 to 𝑡, all “tanks” must cross the cut

• Conclusion: If we find the minimum-cost cut, we’ve found the 
maximum flow
– max

!
𝑓 ≤ min

",$
| 𝑆, 𝑇 |
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Maxflow/Mincut Theorem

• To show Ford-Fulkerson is correct:
– Show that when there are no more augmenting paths, there is a cut 

with cost equal to the flow
• Conclusion: the maximum flow through a network matches the 

minimum-cost cut
–max

2
𝑓 = min

9,:
| 𝑆, 𝑇 |

• Duality
– When we’ve maximized max flow, we’ve minimized min cut (and vice-

versa), so we can check when we’ve found one by finding the other
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Example: Maxflow/Mincut

6161

Residual Graph 𝑮𝒇
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No Augmenting Paths
|𝑓| = 	4

𝑆, 𝑇 = 4

Idea: When there are no more augmenting paths, there 
exists a cut in the graph with cost matching the flow



Proof: Maxflow/Mincut Theorem
• If |𝑓| is a max flow, then 𝐺2  has no augmenting path
– Otherwise, use that augmenting path to “push” more flow

• Define 𝑆 = nodes reachable from source node 𝑠 by positive-weight 
edges in the residual graph
– 𝑇 = 𝑉 − 𝑆
– 𝑆 separates 𝑠 , 𝑡 (otherwise there’s an augmenting path)
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Residual Graph 𝑮𝒇

𝑠
𝑡3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

0/3

2/3

3/3
0/1

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph 𝑮



Proof: Maxflow/Mincut Theorem
• To show: 𝑆, 𝑇 = |𝑓| 

– Weight of the cut matches the flow across the cut
• Consider edge (𝑢, 𝑣) with 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

– 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣), because otherwise 𝑤 𝑢, 𝑣 > 0 in 𝐺&, which would mean 𝑣 ∈ 𝑆
• Consider edge (𝑦, 𝑥) with 𝑦 ∈ 𝑇, 𝑥 ∈ 𝑆

– 𝑓 𝑦, 𝑥 = 0, because otherwise the back edge 𝑤 𝑦, 𝑥 > 0  in 𝐺&, 
which would mean y ∈ 𝑆
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Proof Summary
1. The flow |𝑓| of 𝐺 is upper-bounded by the sum of capacities of edges crossing 

any cut separating source 𝑠 and sink 𝑡

2. When Ford-Fulkerson terminates, there are no more augmenting paths in 𝐺:

3. When there are no more augmenting paths in 𝐺:  then we can define a cut 
𝑆 = nodes reachable from source node 𝑠 by positive-weight edges in the 
residual graph

4. The sum of edge capacities crossing this cut must match the flow of the graph

5. Therefore this flow is maximal

64



Divide and Conquer

• Divide: 
– Break the problem into multiple subproblems, each smaller instances of 

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Select a good order for solving subproblems
• Usually smallest problem first
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, relate it to smaller instances of 

Problem A

• Next:
– Take an instance of Problem A, relate it to an instance of Problem B
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Edge-Disjoint Paths

76

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c



Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 3



Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4



Edge-Disjoint Paths Algorithm
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Make 𝑠 and 𝑡 the source and sink, give each edge capacity 1, find the max flow.

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4
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Max flow = 4



Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c



Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a destination node 𝑡, give the 
maximum number of paths from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

Not a vertex-disjoint path!



Vertex-Disjoint Paths Algorithm
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Idea: Convert an instance of the vertex-disjoint paths problem into an instance 
of edge-disjoint paths

𝑠

𝑡

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming edges, the other to 
outgoing edges

g 
out

Restricts to 1 
edge

Compute Edge-Disjoint Paths on new graph


