CS 3100

Data Structures and Algorithms 2 Lecture 20: Network Flow

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings from CLRS $4^{\text {th }}$ Ed:
Chapter 24

Announcements

- PS9 available today
- Quizzes 3-4 next week
- If you have SDAC, please schedule ASAP
- More information about quiz security on Tuesday
- Look for information about a review session early next week
- Office hours updates
- Prof Hott Office Hours:
- Back to normal starting Friday
- Monday: slightly earlier 10-11am

How does it work?

- States are broken into precincts
- All precincts have the same size
- We know voting preferences of each precinct
- Group precincts into districts to maximize the number of districts won by my party

Overall: R:217 D:183

$R: 65$	$R: 45$
$D: 35$	$D: 55$
$R: 60$	$R: 47$
$D: 40$	$D: 53$

Gerrymandering Problem Statement

- Given:
- A list of precincts: $p_{1}, p_{2}, \ldots, p_{n}$
- Each containing m voters
- Output:
- Districts $D_{1}, D_{2} \subset\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$
- Where $\left|D_{1}\right|=\left|D_{2}\right|$

Valid Gerrymandering!
$-R\left(D_{1}\right)>\frac{m n}{4} \quad$ and $\quad R\left(D_{2}\right)>\frac{m n}{4}$

- $R\left(D_{i}\right)$ gives number of "Regular Party" voters in D_{i}
- $R\left(D_{i}\right)>\frac{\mathrm{mn}}{4}$ means D_{i} is majority "Regular Party"
- "failure" if no such solution is possible

Consider the last precinct

Define Recursive Structure

$$
\begin{array}{ll}
S(j, k, x, y)=\text { True } \begin{array}{l}
\text { if from among the first } \boldsymbol{j} \text { precincts: } \\
\boldsymbol{k} \text { are assigned to } D_{1}
\end{array} \\
n \times n \times m n \times m n \quad \begin{array}{l}
\text { exactly } \boldsymbol{x} \text { vote for } \mathrm{R} \text { in } D_{1} \\
\text { exactly } \boldsymbol{y} \text { vote for } \mathrm{R} \text { in } D_{2}
\end{array}
\end{array}
$$

4D Dynamic Programming!!!
True here means that this is a valid state of the world; not a valid

Gerrymander!

Two ways to satisfy $S(j, k, x, y)$:

Final Algorithm

$S(j, k, x, y)=S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)$
Initialize $S(0,0,0,0)=$ True for $j=1, \ldots, n$: for $k=1, \ldots, \min \left(j, \frac{n}{2}\right)$: for $x=0, \ldots, j m$: for $y=0, \ldots, j m$: $S(j, k, x, y)=$

$$
S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)
$$

Search for True entry at $S\left(n, \frac{n}{2},>\frac{m n}{4},>\frac{m n}{4}\right)$

Where is Solution?

Run Time

$S(j, k, x, y)=S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)$
Initialize $S(0,0,0,0)=$ True
n for $j=1, \ldots, n$:
$\frac{n}{2}$ for $k=1, \ldots, \min \left(j, \frac{n}{2}\right)$:
$n m$ for $x=0, \ldots, j m$:
$n m$ for $y=0, \ldots, j m$:
$S(j, k, x, y)=$
$\Theta\left(n^{4} m^{2}\right)$

$$
S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)
$$

Search for True entry at $S\left(n, \frac{n}{2},>\frac{m n}{4},>\frac{m n}{4}\right)$

$\Theta\left(n^{4} m^{2}\right)$

- Input: list of precincts (size n), number of voters (integer m)
- Runtime depends on the value of m, not size of m
- Run time is exponential in size of input
- Input size is $n+|m|=n+\log m$
- Note: Gerrymandering is NP-Complete

Network Flow

Railway map of Western USSR, 1955

Question: What is the maximum throughput of the railroad network?

Fig. 1-The railway system of western Russia

Flow Networks

$$
\begin{aligned}
& \text { Graph } G=(V, E) \\
& \text { Source node } s \in V \\
& \text { Sink node } t \in V \\
& \text { Edge capacities } c(e) \in \mathbb{R}^{+}
\end{aligned}
$$

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through a network of pipes E with capacities $c(e)$, what is the maximum amount of water which can flow from the faucet to the drain?

Network Flow

- Assignment of values $f(e)$ to edges
- "Amount of water going through that pipe"
- Capacity constraint
$-f(e) \leq c(e)$
- "Flow cannot exceed capacity"
- Flow constraint
$-\forall v \in V-\{s, t\}$, inflow $(v)=\operatorname{outflow}(v)$
$-\operatorname{inflow}(v)=\sum_{x \in V} f(x, v)$
- outflow $(v)=\sum_{x \in V} f(v, x)$

flow / capacity
- Water going in must match water coming out
- Flow of $G:|f|=\operatorname{outflow}(s)-\operatorname{inflow}(s)$
- Net outflow of s

3 in this example

Maximum Flow Problem

- Of all valid flows through the graph, find the one that maximizes:

$$
|f|=\operatorname{outflow}(s)-\operatorname{inflow}(s)
$$

Greedy Approach

Greedy choice: saturate highest capacity path first

Greedy Approach

Greedy choice: saturate highest capacity path first

Greedy Approach

Greedy choice: saturate highest capacity path first

Flow: 20

Greedy Approach

Greedy choice: saturate highest capacity path first

Observe: highest capacity path is not saturated in optimal solution

Residual Graphs

Given a flow f in graph G, the residual graph G_{f} models additional flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity $c(e)-f(e)$
- Models additional flow that can be sent along the edge

Flow I could add

Flow f in G

Residual graph G_{f}

Residual Graphs

Given a flow f in graph G, the residual graph G_{f} models additional flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity $c(e)-f(e)$
- Models additional flow that can be sent along the edge

Flow I could add

- Backward edge by flipping each edge e in G with weight set to flow $f(e)$
- Models amount of flow that can be removed from the edge Flow I could remove

Flow f in G

Residual graph G_{f}

Residual Graphs Example

Residual Graphs

Consider a path from $s \rightarrow t$ in G_{f} using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by $w(e)$

Flow f in G

Residual graph G_{f}

Residual Graphs

Consider a path from $s \rightarrow t$ in G_{f} using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by $w(e)$

- Send $w(e)$ flow along all forward edges (these have at least $w(e)$ capacity)
- Remove $w(e)$ flow along all backward edges (these contain at least $w(e)$ units of flow)

Flow f in G
Residual graph G_{f}

Residual Graphs

Consider a path from $s \rightarrow t$ in G_{f} using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by $w(e)$

- Send $w(e)$ flow along all forward edges (these have at least $w(e)$ capacity)
- Remove $w(e)$ flow along all backward edges (these contain at least $w(e)$ units of flow)

Observe: Flow has increased by $w(e)$

Flow f in G
Residual graph G_{f}

Ford-Fulkerson Algorithm

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e} c_{f}(e)$ along the path
($c_{f}(e)$ is the weight of edge e in the residual network G_{f})
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Ford-Fulkerson Example

Initially: $f(e)=0$ for all $e \in E$

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

No more augmenting paths

Maximum flow: 4
Residual graph G_{f}

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Initialization: $O(|E|)$

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Initialization: $O(|E|)$
Construct residual network: $O(|E|)$

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augme
- Update the residual network G_{f} for the upda Initialization: $O(|E|)$

We only care about nodes reachable from the source s (so the number of nodes that are "relevant" is at most $|E|$)

Construct residual network: $O(|E|)$
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

How many iterations are needed?

- For integer-valued capacities, min-weight of each augmenting path is 1 , so number of iterations is bounded by $\left|f^{*}\right|$, where $\left|f^{*}\right|$ is max-flow in G

Initialization: $O(|E|)$
Construct residual network: $O(|E|)$
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Observation: each iteration increases flow by 1 unit Total number of iterations: $\left|f^{*}\right|=200$

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

How many iterations are needed?

- For integer-valued capacities, min-weight of each augmenting path is 1 , so number of iterations is bounded by $\left|f^{*}\right|$, where $\left|f^{*}\right|$ is max-flow in G
- For rational-valued capacities, can scale to make capacities integer
- For irrational-valued capacities, algorithm may never terminate!

Initialization: $O(|E|)$
Construct residual network: $O(|E|)$
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorith

- Initialize $f(e)=0$ for all
- Construct the residual net
- While there is an augmen
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}\right.$
- Add c units of flow to

For graphs with integer capacities, running time of Ford-Fulkerson is

$$
O\left(\left|f^{*}\right| \cdot|E|\right)
$$

Highly undesirable if $\left|f^{*}\right| \gg|E|$ (e.g., graph is
small, but capacities are $\approx 2^{32}$)

- Update the residual n

Initialization: $O(|E|)$
As described, algorithm is not polynomial-time!
Construct residual network:
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: $\Theta\left(\min \left(|E|\left|f^{*}\right|,|V||E|^{2}\right)\right)=O\left(|V||E|^{2}\right)$
How to find this?
Use breadth-first search (BFS)!
Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path in G_{f}, let p be the path with fewest hops:
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

See CLRS (Chapter 24)

Reminder: Graph Cuts

A cut of a graph $G=(V, E)$ is a partition of the nodes into two sets, S and $V-S$

An edge $\left(v_{1}, v_{2}\right) \in E$ crosses a cut if $v_{1} \in S$ and $v_{2} \in V-S$

An edge $\left(v_{1}, v_{2}\right) \in E$ respects a cut if $v_{1}, v_{2} \in S$ or if $v_{1}, v_{2} \in V-S$

Showing Correctness of Ford-Fulkerson

- Consider cuts which separate s and t
- Let $s \in S, t \in T$, s.t. $V=S \cup T$
- Cost of cut $(S, T)=\|S, T\|$
- Sum capacities of edges which go from S to T
- This example: 5

Maxflow \leq MinCut

- Max flow upper bounded by any cut separating s and t
- Why? "Conservation of flow"
- All flow exiting s must eventually get to t
- To get from s to t, all "tanks" must cross the cut
- Conclusion: If we find the minimum-cost cut, we've found the maximum flow

$$
-\max _{f}|f| \leq \min _{S, T}| | S, T| |
$$

Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
- Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut

$$
-\max _{f}|f|=\min _{S, T}\|S, T\|
$$

- Duality
- When we've maximized max flow, we've minimized min cut (and viceversa), so we can check when we've found one by finding the other

Example: Maxflow/Mincut

Flow Graph \boldsymbol{G}

$|f|=4$
$||S, T||=4$

No Augmenting Paths

Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow

Proof: Maxflow/Mincut Theorem

- If $|f|$ is a max flow, then G_{f} has no augmenting path
- Otherwise, use that augmenting path to "push" more flow
- Define $S=$ nodes reachable from source node s by positive-weight edges in the residual graph
$-T=V-S$
$-S$ separates S, t (otherwise there's an augmenting path)

Proof: Maxflow/Mincut Theorem

- To show: $||S, T||=|f|$
- Weight of the cut matches the flow across the cut
- Consider edge (u, v) with $u \in S, v \in T$
- $f(u, v)=c(u, v)$, because otherwise $w(u, v)>0$ in G_{f}, which would mean $v \in S$
- Consider edge (y, x) with $y \in T, x \in S$
- $f(y, x)=0$, because otherwise the back edge $w(y, x)>0$ in G_{f}, which would mean $\mathrm{y} \in S$

Residual Graph $\boldsymbol{G}_{\boldsymbol{f}}$

Proof Summary

1. The flow $|f|$ of G is upper-bounded by the sum of capacities of edges crossing any cut separating source s and $\operatorname{sink} t$
2. When Ford-Fulkerson terminates, there are no more augmenting paths in G_{f}
3. When there are no more augmenting paths in G_{f} then we can define a cut $S=$ nodes reachable from source node s by positive-weight edges in the residual graph
4. The sum of edge capacities crossing this cut must match the flow of the graph
5. Therefore this flow is maximal

Divide and Conquer

- Divide:

贯瞳

- Break the problem into multiple subproblems, each smaller instances of the original
- Conquer:
- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)
- Combine:
- Merge together solutions to subproblems

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

- Usually smallest problem first

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

So far

- Divide and Conquer, Dynamic Programming, Greedy
- Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
- Take an instance of Problem A, relate it to an instance of Problem B

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1 , find the max flow.

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to outgoing edges

