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Announcements

* PS9 available today

* Quizzes 3-4 next week
— If you have SDAC, please schedule ASAP

— More information about quiz security on Tuesday
— Look for information about a review session early next week

e Office hours updates

— Prof Hott Office Hours:
* Back to normal starting Friday
* Monday: slightly earlier 10-11am



How does it work?

e States are broken into precincts
* All precincts have the same size
 We know voting preferences of each precinct

* Group precincts into districts to maximize the number of districts
won by my party

Overall: R:217 D:183 R:125 R:92 R:112 R:105




Gerrymandering Problem Statement

* Given:
— A list of precincts: p1, 05, ..., Py
— Each containing m voters

* Qutput:
— Districts D, D, € {py, D2, ..., Py}
— Where |D,| = |D,| Valid Gerrymandering!
mn mn
— R(Dl) > e and R(DZ) > e

* R(D;) gives number of “Regular Party” voters in D; | L v
* R(D;) > == means D; is majority “Regular Party” \[/n 1
. . 4 . . . m ‘A A
— “failure” if no such solution is possible 2 2




Consider the last precinct

After assigning the D,
first n — 1 precincts -
et 1) D1 k + 1 precincts
P1, D2, -+ Pn-1 x + R(p,,) voters for R

k + 1 precincts

If we assign x + R(p,,) voters for R

ppto D

D,

n — k — 1 precincts
y voters for R

Valid gerrymandering if:

n
k+1=-,

n — k — 1 precincts

y voters for R k precincts

x voters for R

If we assign
pnto Dy

n — k precincts
y + R(p;,) voters for R

Valid gerrymandering if: n — k precincts
n—k= n y + R(p,,) voters for R

2’
x,y + R(pp) > %




Define Recursive Structure

S(j,k,x,y) = True if from among the first j precincts:
k are assigned to D,
f .
nXxXnxmnXmn exactly x vote for Rin D4

exactly y vote for Rin D,

True here means that

4D Dynamic Programming!!! this is a valid state of

the world; not a valid

Gerrymander!




Two ways to satisfy S(j, k, x, y):

S(,k,x,y) = Trueif:
from among the first j precincts

k — 1 precincts
x — R(p;) voters for R

k are assigned to D4
exactly x vote for R in D4

) :
Z Then assign exactly y vote for Rin D,

J — k precincts

y voters for R D,

k precincts
x voters for R

D;
J — k precincts
y voters for R

k precincts
x voters for R

J — 1 — k precincts Then assign
y — R(pj) voters for R pjto D;

S, k,x,y) = S(j —1,k—1,x —R(pj),y) VS(j — 1,k,x,y—R(pj)) ,



Final Algorithm

SG.kxy) =S(—1k—1,x—R(p;),y)vS(j - Lk xy — R(p;))

Initialize $(0,0,0,0) = True G,k x,y) = True if
forj = 1, e, NG from among the first j precincts
for k = 1’ . mln(],—): ‘ k are assigned to D4
. 2 exactly x vote for Rin D,
forx = 0, ey J1L ‘ exactly y vote for Rin D,
fory=20,...,jm: ,
. J
SU,k,x,y) =

SG—1k=1,x—=R(p;)y)vS(j— Lkxy—R(p)))

Search for True entry at S(n, %, > %, > %)



Where is Solution?




SG.kxy) =S(—1k—1,x—R(p;),y)vS(j - Lk xy — R(p;))

Initialize S(0,0,0,0) = True
n forj=1,..

E for k = 1 .., min(J, —)
nm forx =0, ..., jm:
nm fory = O, ., Jm

SG, k,x,y) =
S(j —1,k—1,x — R(pj) y) VS(j — 1, k,x,y — R(pj))
Search for True entry at S(n > > —)

O(n*m?)
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O(n*m*)

* |nput: list of precincts (size n), number of voters (integer m)
* Runtime depends on the value of m, not size of m

— Run time is exponential in size of input
— Input sizeisn + |m| = n + logm

* Note: Gerrymandering is NP-Complete
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Network Flow

Question: What is the maximum
nroughput of the railroad network?

12

Railway map Of WESte rn USSR, 1955 Fig.1—The railway system of western Russia



Flow Networks

Graph G = (V,E)

Source nodes € V
Sinknodet € V

Edge capacities c(e) € R*

Max flow intuition: If s is a faucet, t is a drain, and s connects to ¢
through a network of pipes E with capacities c(e), what is the
maximum amount of water which can flow from the faucet to the
drain?

13



Network Flow

* Assignment of values f(e) to edges

— “Amount of water going through that pipe” 1/3 ’%
* (Capacity constraint

— f(e) = c(e)

— “Flow cannot exceed capacity”
* Flow constraint

— Vv € V — {s, t}, inflow(v) = outflow(v) 0/1

— inflow(®) = X,.cp f(x, V) 2/3

— outflow(v) = Yyey f (v, %) flow / capacity
— Water going in must match water coming out

* Flow of G: |f| = outflow(s) — inflow(s)
— Net outflow of s

3 in this example

14



Maximum Flow Problem

e Of all valid flows through the graph, find the one that maximizes:

|f| = outflow(s) — inflow(s)

2/3 2/2

0/3 0/1

2/2 0/3

0/1 2/2
3 2/3
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Greedy Approach

Greedy choice: saturate highest capacity path first

16



Greedy Approach

Greedy choice: saturate highest capacity path first
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Greedy Approach

Greedy choice: saturate highest capacity path first

Flow: 20
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Greedy Approach

Greedy choice: saturate highest capacity path first

10/10

20/20

Maximum Flow: 30

Observe: highest capacity path is not saturated in optimal solution 19




Residual Graphs

Given a flow f in graph G, the residual graph G models additional flow that is possible

» Forward edge for each edge in G with weight set to remaining capacity c(e) — f(e)
* Models additional flow that can be sent along the edge Flow | could add

‘ 2/2

S 1/3
2/2

1/3

1/1

0/1 1/2 1
2/3
Flow f in G Residual graph Gy
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Residual Graphs

Given a flow f in graph G, the residual graph G models additional flow that is possible
» Forward edge for each edge in G with weight set to remaining capacity c(e) — f(e)
* Models additional flow that can be sent along the edge Flow | could add
* Backward edge by flipping each edge e in G with weight set to flow f (e)
 Models amount of flow that can be removed from the edge Flow | could remove

2/2

1/3
2/3

S 1/3
2/2

v 1/2

2/3

0/1 1/2
2/3
Flow f in G Residual graph Gy
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Residual Graphs Example

Flow Graph Residual Graph

22



Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight
Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

2/2

2/3

0/1 1/2
2/3
Flow f in G Residual graph Gy
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Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight
Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
* Send w(e) flow along all forward edges (these have at least w(e) capacity)
* Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

24

Flow f in G Residual graph Gy



Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight

Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
« Send w(e) flow along all forward edges (these have at least w(e) capacity)
* Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has increased by w(e)

25

Flow f in G Residual graph Gy



Ford-Fulkerson Algorithm

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson approach: take

Ford-Fulkerson max-flow algorithm: ,
any augmenting path

* Initialize f(e) = 0foralle € E
e Construct the residual network Gf

* While there is an augmenting path p in Gy:
* Letc = mincs(e) along the path
e

(will revisit this later)

(cr(e) is the weight of edge e in the residual network G¢)

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

28



Ford-Fulkerson Example

0/3 0/2

0/3
S 0/3 0/1

0/2 0/2 ¢

0/3
0/1

0/3

Initially: f(e) = Oforalle € E Residual graph G,

29



Ford-Fulkerson Example

Increase flow by 1 unit

0/3

S 0/3
0/2

0/1

Residual graph G
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Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G
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Ford-Fulkerson Example

1/3

S 0/3
0/2

0/1

Residual graph G
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Ford-Fulkerson Example

Increase flow by 1 unit

1/3 2

--
s >

S 0/3
0/2

0/1

Residual graph G
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Ford-Fulkerson Example

Increase flow by 1 unit

2

f”’l -----}
-

Residual graph G
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Ford-Fulkerson Example

2/3

S 0/3
0/2

0/1

Residual graph G
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Ford-Fulkerson Example

Increase flow by 1 unit

2/3

S 0/3
0/2

0/1

Residual graph G
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Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G
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Ford-Fulkerson Example

2/3

S 0/3
1/2

0/1

Residual graph G
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Ford-Fulkerson Example

Increase flow by 1 unit

2/3

S 0/3
1/2

0/1

Residual graph G
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Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G
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Ford-Fulkerson Example

No more augmenting paths

2/3

S 0/3
2/2

0/1

Residual graph G
Maximum flow: 4 Braph by

41



Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* |nitialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Initialization: O (|E|)

42



Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* |Initialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Initialization: O (|E|)
Construct residual network: O(|E|)
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Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augme

* Update the residual network G for the upda We only care about nodes reachable from
the source s (so the number of nodes

Initialization: O (lE D that are “relevant” is at most |E)
Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS y



Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

How many iterations are needed?
* For integer-valued capacities, min-weight of each augmenting path is 1, so
number of iterations is bounded by |f*|, where |f*| is max-flow in G

Initialization: O (|E|)
Construct residual network: O(|E|)
Finding augmenting path in residual network: O(|E|) using BFS/DFS




Worst-Case Ford-Fulkerson




Worst-Case Ford-Fulkerson

Increase flow by 1 unit
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Worst-Case Ford-Fulkerson

Increase flow by 1 unit
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Worst-Case Ford-Fulkerson




Worst-Case Ford-Fulkerson

Increase flow by 1 unit
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Worst-Case Ford-Fulkerson

Increase flow by 1 unit

51



Worst-Case Ford-Fulkerson




Worst-Case Ford-Fulkerson

Observation: each iteration increases flow by 1 unit
Total number of iterations: |f*| = 200

53



Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

How many iterations are needed?
For integer-valued capacities, min-weight of each augmenting path is 1, so
number of iterations is bounded by |f*|, where |f*| is max-flow in G
For rational-valued capacities, can scale to make capacities integer
For irrational-valued capacities, algorithm may never terminate!

Initialization: O (|E|)
Construct residual network: O(|E|)
Finding augmenting path in residual network: O(|E|) using BFS/DFS




Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorit e with - . .
- Initialize f(e) = 0 for all ¢ For graphs with integer capacities, running time

. Construct the residual ne RSRECERLLIE S NE
 While there is an augmen 0(|f*| ’ |E|)

* letc=minc(e) (cr Highly undesirable if [f*| > |E| (e.g., graph is
e
e Add c units of flow to IEUER IR EIA - I R Ak

* Update the residual n
Initialization: O(|E|) As described, algorithm is not polynomial-time!

Construct residual network: @
Finding augmenting path in residual network: O(|E|) using BFS/DFS




Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: @(min(|E||f*|, [V||E[?)) = O([V||E|?)

How to find this?
Use breadth-first search (BFS)!

Ford-Fulkerson max-flow algorithm:
e |nitialize f(e) — Oforalle € E Edmonds-Karp = Ford-Fulkerson

: using BFS to find augmenting path
* Construct the residual network G 8 5 gp

* While there is an augmenting path in Gy, let p be the path with fewest hops:
* letc= melg cr(e) (cr(e) is the weight of edge e in the residual network Gy)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

See CLRS (Chapter 24) 56



Reminder: Graph Cuts

A cut of a graph G = (V, E) is a partition of the
nodes into two sets, Sand I/ — S

Notion extends naturally
to a set of edges
An edge (v,,v,) € E crosses a An edge (v,,1,) € E respects a cut
cutifvyeSandv, eV —-3S ifv,v, €Sorifv,v, eV —-3S

57



Showing Correctness of Ford-Fulkerson

* Consider cuts which separate s and ¢
—Letse S, tel,st.V=5UT

* Costofcut(S,7)=||S,T|
— Sum capacities of edges which go from S to T
— This example: 5

58



Maxtlow<MinCut

 Max flow upper bounded by any cut separating s and

 Why? “Conservation of flow”
— All flow exiting s must eventually get to
— To get from s to ¢, all “tanks” must cross the cut

* Conclusion: If we find the minimum-cost cut, we’ve found the
maximum flow

— < minl|S, T
mJQXIfI_Ingnll , T

59




Maxflow/Mincut Theorem

e To show Ford-Fulkerson is correct:

— Show that when there are no more augmenting paths, there is a cut
with cost equal to the flow

* Conclusion: the maximum flow through a network matches the
minimum-cost cut

—max|f| = min ||S,T
ax|f| = min |15, 7]

* Duality

— When we’ve maximized max flow, we’ve minimized min cut (and vice-
versa), so we can check when we’ve found one by finding the other

60



Example: Maxtlow/Mincut

Flow Graph G Residual Graph Gf

No Augmenting Paths

15, T|| = 4

ldea: When there are no more augmenting paths, there
exists a cut in the graph with cost matching the flow ., 61



Proof: Maxflow/Mincut Theorem

* If |f]is a max flow, then G¢ has no augmenting path
— Otherwise, use that augmenting path to “push” more flow

 Define S = nodes reachable from source node s by positive-weight
edges in the residual graph

—T=V-=5
— S separates s, ¢ (otherwise there’s an augmenting path)

Residual Graph Gf
Flow Graph G

62



Proof: Maxflow/Mincut Theorem

* To show: HS,TH = |f]|

— Weight of the cut matches the flow across the cut
* Consider edge (u,v)withu e S, veT

— f(u,v) = c(u,v), because otherwise w(u, v) > 0 in G¢, which would meanv € S
* Consideredge (v, x)withyeT,x €S

— f(y,x) = 0, because otherwise the back edge w(y,x) > 0 in Gy,

which would meany € §
Residual Graph G¢

Flow Graph G %




Proof Summary

The flow |f| of G is upper-bounded by the sum of capacities of edges crossing
any cut separating source s and sink

When Ford-Fulkerson terminates, there are no more augmenting paths in G¢

When there are no more augmenting paths in G¢ then we can define a cut
S = nodes reachable from source node s by posmve -weight edges in the
residual graph

The sum of edge capacities crossing this cut must match the flow of the graph

Therefore this flow is maximal

64



Divide and Conqguer

o B
* Divide: AR
— Break the problem into multiple subproblems, each smaller instances of
the original

* Conquer:
— |f the suproblems are “large”:
* Solve each subproblem recursively

— |f the subproblems are “small”:
e Solve them directly (base case)

L
.

* Combine:
— Merge together solutions to subproblems ﬁ



Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

e Usually smallest problem first

73



Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

74



* Divide and Conquer, Dynamic Programming, Greedy

— Take an instance of Problem A, relate it to smaller instances of
Problem A

* Next:

— Take an instance of Problem A, relate it to an instance of Problem B

75



Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

76



Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 3
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Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 4
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Edge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1, find the max flow.

Set of edge-disjoint paths of size 4

Max flow =4
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Vertex-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices
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Vertex-Disjoint Paths

Given a graph ¢ = (V, E), a start node s and a destination node t, give the
maximum number of paths from s to £ which share no vertices

Not a vertex-disjoint path!
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Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to

outgoing edges
Compute Edge-Disjoint Paths on new graph

Restricts to 1
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