CS 3100 Data Structures and Algorithms 2 Lecture 20: Network Flow

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings from CLRS 4th Ed: Chapter 24

Announcements

- PS9 available today
- Quizzes 3-4 next week
 - If you have SDAC, please schedule ASAP
 - More information about quiz security on Tuesday
 - Look for information about a review session early next week
- Office hours updates
 - Prof Hott Office Hours:
 - Back to normal starting Friday
 - Monday: slightly earlier 10-11am

How does it work?

- States are broken into precincts
- All precincts have the same size
- We know voting preferences of each precinct
- Group precincts into districts to maximize the number of districts won by my party

Gerrymandering Problem Statement

- Given:
 - A list of precincts: p_1, p_2, \ldots, p_n
 - Each containing m voters
- Output:
 - Districts $D_1, D_2 \subset \{p_1, p_2, \dots, p_n\}$
 - Where $|D_1| = |D_2|$
 - $-R(D_1) > \frac{mn}{4}$ and $R(D_2) > \frac{mn}{4}$
 - $R(D_i)$ gives number of "Regular Party" voters in D_i
 - $R(D_i) > \frac{mn}{4}$ means D_i is majority "Regular Party".
 - "failure" if no such solution is possible

Valid Gerrymandering!

Consider the last precinct

Define Recursive Structure

$$S(j, k, x, y) = \text{True if from among the first } j \text{ precincts:}$$

$$k \text{ are assigned to } D_1$$

$$n \times n \times mn \times mn$$

$$exactly x \text{ vote for R in } D_1$$

$$exactly y \text{ vote for R in } D_2$$

4D Dynamic Programming!!!

True here means that this is a valid state of the world; not a valid Gerrymander!

Final Algorithm

$$S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y) \vee S(j-1,k,x,y-R(p_j))$$

Initialize
$$S(0,0,0,0) = \text{True}$$

for $j = 1, ..., n$:
for $k = 1, ..., \min(j, \frac{n}{2})$:
for $x = 0, ..., jm$:
for $y = 0, ..., jm$:
 $S(j, k, x, y) =$
 $S(j, k, x, y) =$
 $S(j, k, x, y) =$
 $S(j - 1, k - 1, x - R(p_j), y) \lor S(j - 1, k, x, y - R(p_j))$
Search for True entry at $S(n, \frac{n}{2}, > \frac{mn}{4}, > \frac{mn}{4})$

Where is Solution?

Run Time

$$S(j, k, x, y) = S(j - 1, k - 1, x - R(p_j), y) \vee S(j - 1, k, x, y - R(p_j))$$

Initialize $S(0,0,0,0) =$ True
n for $j = 1, ..., n$:
 $\frac{n}{2}$ for $k = 1, ..., \min(j, \frac{n}{2})$:
nm for $x = 0, ..., jm$:
nm for $y = 0, ..., jm$:
 $S(j, k, x, y) =$
 $S(j - 1, k - 1, x - R(p_j), y) \vee S(j - 1, k, x, y - R(p_j))$
Search for True entry at $S(n, \frac{n}{2}, > \frac{mn}{4}, > \frac{mn}{4})$

 $\Theta(n^4m^2)$

- Input: list of precincts (size *n*), number of voters (integer *m*)
- Runtime depends on the *value* of *m*, not *size* of *m*
 - Run time is exponential in *size* of input
 - Input size is $n + |m| = n + \log m$
- Note: Gerrymandering is NP-Complete

Network Flow

Railway map of Western USSR, 1955

Flow Networks

Graph G = (V, E)Source node $s \in V$ Sink node $t \in V$ Edge capacities $c(e) \in \mathbb{R}^+$

Max flow intuition: If *s* is a faucet, *t* is a drain, and *s* connects to *t* through a network of pipes *E* with capacities c(e), what is the maximum amount of water which can flow from the faucet to the drain?

Network Flow

- Assignment of values f(e) to edges
 - "Amount of water going through that pipe"
- Capacity constraint
 - $-f(e) \leq c(e)$
 - "Flow cannot exceed capacity"
- Flow constraint
 - $\forall v \in V \{s, t\}, inflow(v) = outflow(v)$
 - $-\inf (v) = \sum_{x \in V} f(x, v)$
 - outflow(v) = $\sum_{x \in V} f(v, x)$
 - Water going in must match water coming out
- Flow of G: |f| = outflow(s) inflow(s)
 - Net outflow of *s*

3 in this example

flow / capacity

Maximum Flow Problem

• Of all valid flows through the graph, find the one that maximizes:

|f| = outflow(s) - inflow(s)

Greedy choice: saturate <u>highest</u> capacity path first

Greedy choice: saturate <u>highest</u> capacity path first

Greedy choice: saturate <u>highest</u> capacity path first

Greedy choice: saturate highest capacity path first

Observe: highest capacity path is not <u>saturated</u> in optimal solution

Given a flow f in graph G, the residual graph G_f models <u>additional</u> flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity c(e) f(e)
 - Models <u>additional</u> flow that can be sent along the edge
 Flow I could add

Given a flow f in graph G, the residual graph G_f models <u>additional</u> flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity c(e) f(e)
 - Models <u>additional</u> flow that can be sent along the edge Flow I could add
- Backward edge by flipping each edge e in G with weight set to flow f(e)
 - Models amount of flow that can be <u>removed</u> from the edge Flow I could remove

Residual Graphs Example

Consider a path from $s \to t$ in G_f using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

Consider a path from $s \to t$ in G_f using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

- Send w(e) flow along all forward edges (these have at least w(e) capacity)
- Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Consider a path from $s \to t$ in G_f using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

- Send w(e) flow along all forward edges (these have at least w(e) capacity)
- Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has <u>increased</u> by w(e)

Ford-Fulkerson Algorithm

Define an <u>augmenting path</u> to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e} c_f(e)$ along the path

 $(c_f(e))$ is the weight of edge e in the residual network G_f)

- Add *c* units of flow to *G* based on the augmenting path *p*
- Update the residual network G_f for the updated flow

Ford-Fulkerson approach: take any augmenting path (will revisit this later)

Initially:
$$f(e) = 0$$
 for all $e \in E$

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_f

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_f

Ford-Fulkerson Example

No more augmenting paths

Residual graph G_f

Maximum flow: 4

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Initialization: O(|E|)

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e) (c_f(e))$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Initialization: O(|E|)

Construct residual network: O(|E|)

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e) (c_f(e))$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augme
 - Update the residual network G_{f} for the upda

Initialization: O(|E|)

Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS

We only care about nodes reachable from the source s (so the number of nodes that are "relevant" is at most |E|)

44

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

How many iterations are needed?

• For integer-valued capacities, min-weight of each augmenting path is 1, so number of iterations is bounded by $|f^*|$, where $|f^*|$ is max-flow in G

Initialization: O(|E|)Construct residual network: O(|E|)Finding augmenting path in residual network: O(|E|) using BFS/DFS

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Observation: each iteration increases flow by 1 unit **Total number of iterations:** $|f^*| = 200$

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

How many iterations are needed?

- For integer-valued capacities, min-weight of each augmenting path is 1, so number of iterations is bounded by $|f^*|$, where $|f^*|$ is max-flow in G
- For rational-valued capacities, can scale to make capacities integer
- For irrational-valued capacities, algorithm may never terminate!

Initialization: O(|E|)

Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS

Define an augmenting path to be an $s \to t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorith

- Initialize f(e) = 0 for all e
- Construct the residual net
- While there is an augmen
 - Let $c = \min_{e \in E} c_f(e)$ (c_f
 - Add *c* units of flow to
 - Update the residual n

Initialization: O(|E|)

Construct residual network:

For graphs with integer capacities, running time of Ford-Fulkerson is

 $O(|f^*| \cdot |E|)$ Highly undesirable if $|f^*| \gg |E|$ (e.g., graph is small, but capacities are $\approx 2^{32}$)

As described, algorithm is <u>not</u> polynomial-time!

Finding augmenting path in residual network: O(|E|) using BFS/DFS

Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops **Running time:** $\Theta(\min(|E||f^*|, |V||E|^2)) = O(|V||E|^2)$

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path in G_f , let p be the path with fewest hops:
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

See CLRS (Chapter 24)

How to find this? Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson using BFS to find augmenting path

Reminder: Graph Cuts

Showing Correctness of Ford-Fulkerson

Consider cuts which separate s and t

- Let $s \in S$, $t \in T$, s.t. $V = S \cup T$

- Cost of cut (S, T) = ||S, T||
 - Sum capacities of edges which go from S to T
 - This example: 5

Maxflow < MinCut

- Max flow upper bounded by any cut separating *s* and *t*
- Why? "Conservation of flow"
 - All flow exiting s must eventually get to t
 - To get from s to t, all "tanks" must cross the cut
- Conclusion: If we find the minimum-cost cut, we've found the maximum flow

Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
 - Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut

$$-\max_{f}|f| = \min_{S,T} ||S,T||$$

- Duality
 - When we've maximized max flow, we've minimized min cut (and viceversa), so we can check when we've found one by finding the other

Example: Maxflow/Mincut

Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow 61

Proof: Maxflow/Mincut Theorem

- If |f| is a max flow, then G_f has no augmenting path
 - Otherwise, use that augmenting path to "push" more flow
- Define S = nodes reachable from source node s by positive-weight edges in the residual graph
 - -T = V S
 - -S separates s, t (otherwise there's an augmenting path)

62

Proof: Maxflow/Mincut Theorem

- To show: ||S, T|| = |f|
 - Weight of the cut matches the flow across the cut
- Consider edge (u, v) with $u \in S$, $v \in T$

- f(u, v) = c(u, v), because otherwise w(u, v) > 0 in G_f , which would mean $v \in S$

- Consider edge (y, x) with $y \in T, x \in S$
 - f(y, x) = 0, because otherwise the back edge w(y, x) > 0 in G_f , which would mean $y \in S$

63

Proof Summary

- 1. The flow |f| of G is upper-bounded by the sum of capacities of edges crossing any cut separating source s and sink t
- 2. When Ford-Fulkerson terminates, there are no more augmenting paths in G_f
- 3. When there are no more augmenting paths in G_f then we can define a cut S = nodes reachable from source node s by positive-weight edges in the residual graph
- 4. The sum of edge capacities crossing this cut must match the flow of the graph
- 5. Therefore this flow is maximal

Divide and Conquer

 Break the problem into multiple subproblems, each smaller instances of the original

• Conquer:

Divide:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)
- Combine:
 - Merge together solutions to subproblems

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Divide and Conquer, Dynamic Programming, Greedy
 - Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
 - Take an instance of Problem A, relate it to an instance of Problem B

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths Algorithm

Make *s* and *t* the source and sink, give each edge capacity 1, find the max flow.

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges

