
CS 3100
Data Structures and Algorithms 2

Lecture 16: Dynamic Programming
Co-instructors: Robbie Hott and Ray Pettit

Spring 2024
Readings in CLRS 4th edition:
• Chapter 14

CS 3100
Data Structures and Algorithms 2

Lecture 18: Seam Carving

Warm Up!

Remember change making?

Given access to unlimited quantities of pennies,
nickels, dimes, toms, and quarters (worth value

1, 5, 10, 11, 25 respectively), give 90 cents
change using the fewest number of coins.

2

11
cents

Remember: Greedy Change Making Algorithm

• Given: target value 𝑥, list of coins 𝐶 = [𝑐!, … , 𝑐"]
 (in this case 𝐶 = [1,5,10,25])

• Repeatedly select the largest coin less than the remaining
target value:

3

while(𝑥 > 0)
 let 𝑐 = max(𝑐# ∈ {𝑐! , … , 𝑐"}	|	𝑐# ≤ 𝑥)
 print 𝑐

 𝑥 = 𝑥 − 𝑐

Greedy solution

90 cents

4

11
cents

Greedy solution

90 cents

5

Why does greedy always work for US coins?

• If 𝑥 < 5, then pennies only
– Else 5 pennies can be exchanged for a nickel

• If 5 ≤ 𝑥 < 10 we must have a nickel
– Else 2 nickels can be exchanged for a dime

• If 10 ≤ 𝑥 < 25 we must have at least 1 dime
– Else 3 dimes can be exchanged for a quarter and a

nickel
• If 𝑥 ≥ 25 we must have at least 1 quarter

6

Only case Greedy uses pennies!

Only case Greedy uses nickels!

Only case Greedy uses dimes!

Only case Greedy uses quarters!

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

7

Identify Recursive Structure

8

Possibilities for last coin

Change 𝑛 : minimum number of coins needed to give change for 𝑛 cents

Coins needed

Change 𝑛 − 25 + 1 if 𝑛 ≥ 25

Change 𝑛 − 11 + 1

Change 𝑛 − 10 + 1

Change 𝑛 − 5 + 1

Change 𝑛 − 1 + 1

if 𝑛 ≥ 11

if 𝑛 ≥ 10

if 𝑛 ≥ 5

if 𝑛 ≥ 1

Identify Recursive Structure

9

Change 𝑛 : minimum number of coins needed to give change for 𝑛 cents

Change 𝑛 − 25 + 1 if 𝑛 ≥ 25
Change 𝑛 − 11 + 1 if 𝑛 ≥ 11
Change 𝑛 − 10 + 1 if 𝑛 ≥ 10
Change 𝑛 − 5 + 1 if 𝑛 ≥ 5
Change 𝑛 − 1 + 1 if 𝑛 ≥ 1

Change 𝑛 = min

Base Case: Change 0 = 0

Correctness: The optimal
solution must be

contained in one of these
configurations

Running time: 𝑂(𝑘𝑛)
𝑘 is number of possible coins

Is this efficient?
No, this is pseudo-polynomial time

Input size is 𝑂 𝑘 log 𝑛

Announcements

• PS8 available soon
• PA4 now available!
• Office hours updates

– Prof Hott Office Hours:
• Tomorrow: 2-3pm only (no 10am hours)
• Monday 4/1: 10-11am
• Tuesday 4/2: 2-3pm

10

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

11

Log Cutting

12

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖)
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ!, … , ℓ" such that:
 ∑ℓ# = 𝑛
to maximize ∑𝑃[ℓ#] Brute Force: 𝑂(2$)

1. Identify Recursive Structure

13

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ!
𝐶𝑢𝑡(𝑛 − ℓ!)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

2. Save sub-
solutions to

memory!

3. Select a Good Order for Solving Subproblems

14

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max

𝐶𝑢𝑡 3 + 𝑃[1]	
𝐶𝑢𝑡 2 + 𝑃 2
𝐶𝑢𝑡 1 + 𝑃 3
𝐶𝑢𝑡 0 + 𝑃[4]

4

Matrix Chaining

15

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

• Given a sequence of Matrices (𝑀!, … ,𝑀"), what is the most
efficient way to multiply them?

𝑀" 𝑀$

1. Identify the Recursive Structure of the Problem

• In general:

16

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀- through 𝑀.

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟/𝑟0𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟/𝑟2𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟/𝑟3𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟/𝑟4𝑐1
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟/𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. Save Subsolutions in Memory

• In general:

17

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀- through 𝑀.

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟/𝑟0𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟/𝑟2𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟/𝑟3𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟/𝑟4𝑐1
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟/𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n]
if present

18

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖

In Season 9 Episode 7 “The Slicer” of the hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated

argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
19https://www.youtube.com/watch?v=pSB3HdmLcY4

break

https://www.youtube.com/watch?v=pSB3HdmLcY4

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

21

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

22

Cropping

• Removes a “block” of pixels

23

Cropped

Scaling

• Removes “stripes” of pixels

24

Scaled

Seam Carving

• Removes “least energy seam” of pixels
• https://trekhleb.dev/js-image-carver/

25

Carved

https://trekhleb.dev/js-image-carver/

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

26

Cropped Scaled Carved

Seattle Skyline

27

Energy of a Seam

• Sum of the energies of each pixel
 𝑒 𝑝 = energy of pixel 𝑝

• Many choices for pixel energy
– E.g.: change of gradient (how much the color of this pixel differs from

its neighbors)
– Particular choice doesn’t matter, we use it as a “black box”

• Goal: find least-energy seam to remove

28

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

29

Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 =	least energy seam from the bottom of the image up
to pixel 𝑝#,%

30

𝑝',)

Computing 𝑆(𝑛, 𝑘)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

31

𝑝*,+

Known
through
𝑛 − 1

𝑚

Computing 𝑆(𝑛, 𝑘)

32

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

S(n-1,k-1)

𝑝1,!

S(n-1,k) S(n-1,k+1)

S(n,k)

Computing 𝑆(𝑛, 𝑘)

33

S(n-1,k-1)

𝑝1,!

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,!)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

Finding the Least Energy Seam

34

𝑝*,+

Want to delete the least energy seam going from bottom to top, so delete:

min
%

"&!
𝑆(𝑛, 𝑘)

𝑛

𝑚

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

35

Computing 𝑆(𝑛, 𝑘)

36

S(n-1,k-1)

𝑝1,!

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,!)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

Finding the Least Energy Seam

37

𝑝*,+

Want to delete the least energy seam going from bottom to top, so delete:

min
%

"&!
𝑆(𝑛, 𝑘)

𝑛

𝑚

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

38

Bring It All Together

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝/,!) for each pixel in row 1

39

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

Bring It All Together

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝/,!) for each pixel 𝑝/,!

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min

40

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝!,#)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝!,#)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝!,#)

Finding the Seam

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝/,!) for each pixel 𝑝/,!

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min

Pick smallest from top row, backtrack, removing those pixels

41

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝!,#)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝!,#)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝!,#)

Run Time?

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝/,!) for each pixel 𝑝/,!

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min

Pick smallest from top row, backtrack, removing those pixels

42

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝$,#)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝$,#)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝$,#)

Θ(𝑛 ⋅ 𝑚)

Θ(𝑚)

Θ(𝑛 +𝑚)

Repeated Seam Removal

43

𝑛

𝑚

Only need to update pixels dependent on the removed seam
2𝑛 pixels change Θ(2𝑛) time to update pixels

Θ(𝑛 +𝑚) time to find min+backtrack

Longest Common Subsequence

44

Given two sequences 𝑋 and 𝑌,
find the length of their longest
common subsequence

Example:
𝑋	=	𝐴𝑇𝐶𝑇𝐺𝐴𝑇	
𝑌	=	𝑇𝐺𝐶𝐴𝑇𝐴	
𝐿𝐶𝑆	=	𝑇𝐶𝑇𝐴	

Brute force: Compare every
subsequence of 𝑋 with 𝑌
Ω(2$)

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

45

46

X = ATCTGCGT
Y = TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=ATCTGCGA
Y=TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=ATCTGCGT
Y=TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

1. Identify Recursive Structure

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

47

1. Identify Recursive Structure

48

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=ATCTGCGA
Y=TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=ATCTGCGT
Y=TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwiseSave to M[i,j]

Read from M[i,j]
if present

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

X = ATCTGCGT
Y = TGCATAT

X = “alkjdflaksjdf”
Y = “lakjsdflkasjdlfs”
M = 2d array of len(X) rows and len(Y) columns, initialized to -1
def LCS(int i, int j):
 # returns the length of the LCS shared between the length-i prefix of X and length-j prefix of Y
 # memoization
 if M[i,j] > -1:
 return M[i,j]
 #base case:
 if i == 0 or j == 0:
 ans = 0
 elif X[i] == Y[j]:
 ans = LCS(i-1, j-1) + 1
 else:
 ans = max(LCS(i, j-1), LCS(i-1, j))
 M[i,j] = ans
 return ans
print(LCS(len(X), len(Y))) # the answer for the entirety of X and Y

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

50

3. Solve in a Good Order

51

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

52

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)

Reconstructing the LCS

53

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

54

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

55

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

