
CS 3100
Data Structures and Algorithms 2

Lecture 16: Dynamic Programming
Co-instructors: Robbie Hott and Ray Pettit

Spring 2024
Readings in CLRS 4th edition:
• Chapter 14

CS 3100
Data Structures and Algorithms 2

Lecture 17: Matrix Chaining, Seam Carving

How many arithmetic operations are required to multiply
a 𝑛×𝑚 matrix with a 𝑚×𝑝 matrix?

(don’t overthink this)

2

𝑛

𝑚

𝑚

𝑝

×

Warm Up

Warm Up

• 𝑚 multiplications and 𝑚 − 1 additions per element
• 𝑛 ⋅ 𝑝 elements to compute
• Total cost: O(𝑚 ⋅ 𝑛 ⋅ 𝑝) 3

𝑛

𝑚

𝑚

𝑝

𝑛

𝑝

× =

How many arithmetic operations are required to multiply a 𝑛×𝑚
Matrix with a 𝑚×𝑝 Matrix?

(don’t overthink this)

Announcements

• PS7 due tomorrow
• PA4 now available!
• Office hours

– Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-
3p

– Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
– TA office hours posted on our website
– Office hours are not for "checking solutions"

4

Greedy Algorithms

• Require two things:
– Optimal Substructure
– Greedy Choice Function

• Optimal Substructure:
– If 𝐴 is an optimal solution to a problem, then the components of 𝐴 are

optimal solutions to subproblems
• Greedy Choice Function
– The rule for how to choose an item guaranteed be in the optimal solution

• Greedy Algorithm Procedure:
– Apply the Greedy Choice Function to pick an item
– Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest

5

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

6

Generic Divide and Conquer Solution

def myDCalgo(problem):

 if baseCase(problem):
 solution = solve(problem)

 return solution
 for subproblem of problem: # After dividing
 subsolutions.append(myDCalgo(subproblem))
 solution = Combine(subsolutions)

 return solution

7

Generic Top-Down Dynamic Programming Soln

mem = {}
def myDPalgo(problem):
 if mem[problem] not blank:
 return mem[problem]
 if baseCase(problem):
 solution = solve(problem)
 mem[problem] = solution
 return solution
 for subproblem of problem:
 subsolutions.append(myDPalgo(subproblem))
 solution = OptimalSubstructure(subsolutions)
 mem[problem] = solution
 return solution

8

Log Cutting

9

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖)
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ!, … , ℓ" such that:
 ∑ℓ# = 𝑛
to maximize ∑𝑃[ℓ#] Brute Force: 𝑂(2$)

Greedy Algorithm

10

Greedy: Lengths: 5, 1
 Profit: 51

Better: Lengths: 2, 4
 Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

• Greedy algorithms build a solution by picking the best option
“right now”
– Select the most profitable cut first

Greedy Algorithm

• Greedy algorithms build a solution by picking the best option
“right now”
– Select the “most bang for your buck”
• (best price / length ratio)

11

1 18 24 36 50

54321Length:

Price:
Greedy: Lengths: 5, 1
 Profit: 51

Better: Lengths: 2, 4
 Profit: 54

50

6

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

12

1. Identify Recursive Structure

13

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ&
𝐶𝑢𝑡(𝑛 − ℓ&)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

2. Save sub-
solutions to

memory!

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

14

3. Select a Good Order for Solving Subproblems

15

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max

𝐶𝑢𝑡 3 + 𝑃[1]	
𝐶𝑢𝑡 2 + 𝑃 2
𝐶𝑢𝑡 1 + 𝑃 3
𝐶𝑢𝑡 0 + 𝑃[4]

4

Log Cutting Pseudocode

16

Initialize Memory C
Cut(n):
 C[0] = 0
 for i=1 to n: // log size
 best = 0
 for j = 1 to i: // last cut
 best = max(best, C[i-j] + P[j])
 C[i] = best
 return C[n]

Run Time: 𝑂(𝑛!)

How to find the cuts?

• This procedure told us the profit, but not the cuts themselves
• Idea: remember the choice that you made, then backtrack

17

Remember the choice made

18

Initialize Memory C, Choices
Cut(n):
 C[0] = 0
 for i=1 to n:
 best = 0
 for j = 1 to i:
 if best < C[i-j] + P[j]:
 best = C[i-j] + P[j]
 Choices[i]=j
 C[i] = best
 return C[n]

Gives the size
of the last cut

Reconstruct the Cuts

19

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

• Backtrack through the choices

7621

Example to demo
Choices[] only.
Profit of 20 is not
optimal!

Backtracking Pseudocode

i = n
while i > 0:
 print Choices[i]
 i = i – Choices[i]

20

Our Example: Getting Optimal Solution

i 0 1 2 3 4 5 6 7 8 9 10
C[i] 0 1 5 8 10 13 17 18 22 25 30

Choice[i] 0 1 2 3 2 2 6 1 2 3 10

21

• If n were 5
• Best score is 13
• Cut Choice[n]=2, then cut

Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
• If n were 7
• Best score is 18
• Cut 1, then cut 6

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

22

Matrix Chaining

23

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

• Given a sequence of Matrices (𝑀", … ,𝑀#), what is the most
efficient way to multiply them?

𝑀" 𝑀$

Order Matters!

• 𝑀"×𝑀! ×𝑀$
– uses 𝑐! ⋅ 𝑟! ⋅ 𝑐% + c% ⋅ 𝑟! ⋅ 𝑐& multiplications

24

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#
𝑟#

𝑐#

×𝑀"

𝑟!

𝑐"

𝑐1 = 𝑟2
𝑐2 = 𝑟3

Order Matters!

• 𝑀"×(𝑀!×𝑀$)
– uses c! ⋅ r! ⋅ 𝑐& + (c% ⋅ 𝑟% ⋅ 𝑐&) multiplications

25

𝑟"

𝑐#

𝑐1 = 𝑟2
𝑐2 = 𝑟3

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#
𝑟#

𝑐#

×𝑀"

Order Matters!

• 𝑀"×𝑀! ×𝑀$
– uses 𝑐! ⋅ 𝑟! ⋅ 𝑐% + c% ⋅ 𝑟! ⋅ 𝑐& multiplications
– 10 ⋅ 7 ⋅ 20 + 20 ⋅ 7 ⋅ 8 = 2520

• 𝑀"×(𝑀!×𝑀$)
– uses 𝑐! ⋅ 𝑟! ⋅ 𝑐& + (c% ⋅ 𝑟% ⋅ 𝑐&) multiplications
– 10 ⋅ 7 ⋅ 8 + 20 ⋅ 10 ⋅ 8 = 2160

26

𝑐1 = 𝑟2
𝑐2 = 𝑟3

𝑐1 = 10
𝑐2 = 20
𝑐3 = 8
𝑟1 = 7
𝑟2 = 10
𝑟3 = 20

𝑀1 = 7×10
𝑀2 = 10×20
𝑀3 = 20×8

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

27

1. Identify the Recursive Structure of the Problem

28

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

𝑀" 𝑀$

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀1 through 𝑀4

1. Identify the Recursive Structure of the Problem

29

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

𝑀" 𝑀$

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀1 through 𝑀4

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟1𝑟2𝑐5

𝑐$

𝑟"

1. Identify the Recursive Structure of the Problem

30

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

𝑀" 𝑀$

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀1 through 𝑀4

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟1𝑟2𝑐5

𝑐$

𝑟#

𝑐"

𝑟!

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 4 + 𝑟1𝑟3𝑐5

1. Identify the Recursive Structure of the Problem

31

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

𝑀" 𝑀$

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀1 through 𝑀4

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟1𝑟2𝑐5

𝑐#

𝑟!

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 4 + 𝑟1𝑟3𝑐5
𝐵𝑒𝑠𝑡 1,3 + 𝑟1𝑟5𝑐5

1. Identify the Recursive Structure of the Problem

• In general:

32

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀6 through 𝑀7

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟1𝑟2𝑐4
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟1𝑟3𝑐4
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟1𝑟5𝑐4
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟1𝑟8𝑐4
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟1𝑟4𝑐4

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

33

2. Save Subsolutions in Memory

• In general:

34

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀6 through 𝑀7

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟1𝑟2𝑐4
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟1𝑟3𝑐4
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟1𝑟5𝑐4
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟1𝑟8𝑐4
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟1𝑟4𝑐4

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n]
if present

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

35

3. Select a good order for solving subproblems

• In general:

36

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀6 through 𝑀7

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟1𝑟2𝑐4
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟1𝑟3𝑐4
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟1𝑟5𝑐4
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟1𝑟8𝑐4
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟1𝑟4𝑐4

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n]
if present

3. Select a good order for solving subproblems

37

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0
𝑗 =

= 𝑖
0

0

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

38

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

𝐵𝑒𝑠𝑡 1,2 = min 𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 2 + 𝑟1𝑟2𝑐2

0 15750

0

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

𝑗 =
= 𝑖

39

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

𝐵𝑒𝑠𝑡 2,3 = min 𝐵𝑒𝑠𝑡 2,2 + 𝐵𝑒𝑠𝑡 3, 3 + 𝑟2𝑟3𝑐3

0 15750

0 2625

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

𝑗 =
= 𝑖

40

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

𝑗 =
= 𝑖

41

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6
𝐵𝑒𝑠𝑡 1,3 = min 𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 3 + 𝑟1𝑟2𝑐3

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 3 + 𝑟1𝑟3𝑐3

𝑟1𝑟2𝑐3 = 30 ⋅ 35 ⋅ 5 = 5250
𝑟1𝑟3𝑐3 = 30 ⋅ 15 ⋅ 5 = 2250

0

0

2625

15750

3. Select a good order for solving subproblems

7875

𝑗 =
= 𝑖

42

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖

Matrix Chaining

43

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟!𝑟"𝑐#
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟!𝑟$𝑐#
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟!𝑟%𝑐#
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟!𝑟&𝑐#
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟!𝑟#𝑐#

15125

𝑗 =
= 𝑖

Run Time

1. Initialize 𝐵𝑒𝑠𝑡[𝑖, 𝑖] to be all 0s
2. Starting at the main diagonal, working to the upper-right,

fill in each cell using:
1. 𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. 𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

44

Θ(𝑛2) cells in the Array

Θ(𝑛) options for each cell

Θ(𝑛3) overall run time

Each “call” to Best() is a
O(1) memory lookup

Backtrack to find the best order

4545

“remember” which choice of 𝑘 was the minimum at each cell

0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟!𝑟"𝑐#
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟!𝑟$𝑐#
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟!𝑟%𝑐#
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟!𝑟&𝑐#
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟!𝑟#𝑐#

15125

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0
31

5

𝑗 =
= 𝑖

Matrix Chaining

46

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
791

&:6
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟6𝑟&;1𝑐7

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟!𝑟"𝑐#
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟!𝑟$𝑐#
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟!𝑟%𝑐#
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟!𝑟&𝑐#
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟!𝑟#𝑐#

15125

𝑗 =
= 𝑖

31

5

Storing and Recovering Optimal Solution

• Maintain table Choice[i,j] in addition to Best table
– Choice[i,j] = k means the best “split” was right after Mk

– Work backwards from value for whole problem, Choice[1,n]
– Note: Choice[i,i+1] = i because there are just 2 matrices

• From our example:
– Choice[1,6] = 3. So [M1 M2 M3] [M4 M5 M6]
– We then need Choice[1,3] = 1. So [(M1) (M2 M3)]
– Also need Choice[4,6] = 5. So [(M4 M5) M6]
– Overall: [(M1) (M2 M3)] [(M4 M5) M6]

47

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

48

In Season 9 Episode 7 “The Slicer” of the hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated

argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
49https://www.youtube.com/watch?v=pSB3HdmLcY4

break

https://www.youtube.com/watch?v=pSB3HdmLcY4

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

51

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

52

Cropping

• Removes a “block” of pixels

53

Cropped

Scaling

• Removes “stripes” of pixels

54

Scaled

Seam Carving

• Removes “least energy seam” of pixels
• https://trekhleb.dev/js-image-carver/

55

Carved

https://trekhleb.dev/js-image-carver/

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

56

Cropped Scaled Carved

Seattle Skyline

57

Energy of a Seam

• Sum of the energies of each pixel
 𝑒 𝑝 = energy of pixel 𝑝

• Many choices for pixel energy
– E.g.: change of gradient (how much the color of this pixel differs from

its neighbors)
– Particular choice doesn’t matter, we use it as a “black box”

• Goal: find least-energy seam to remove

58

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

59

Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 =	least energy seam from the bottom of the image up
to pixel 𝑝%,'

60

𝑝',)

Finding the Least Energy Seam

61

𝑝*,+

Want to delete the least energy seam going from bottom to top, so delete:

min
9

":!
𝑆(𝑛, 𝑘)

𝑛

𝑚

Computing 𝑆(𝑛, 𝑘)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

62

𝑝*,+

Known
through
𝑛 − 1

𝑚

Computing 𝑆(𝑛, 𝑘)

63

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

S(n-1,k-1)

𝑝4,&

S(n-1,k) S(n-1,k+1)

S(n,k)

Computing 𝑆(𝑛, 𝑘)

64

S(n-1,k-1)

𝑝4,&

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝4,&)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝4,&)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝4,&)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

65

PA4!

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

66

PA4!

Longest Common Subsequence

67

Given two sequences 𝑋 and 𝑌,
find the length of their longest
common subsequence

Example:
𝑋	=	𝐴𝑇𝐶𝑇𝐺𝐴𝑇	
𝑌	=	𝑇𝐺𝐶𝐴𝑇𝐴	
𝐿𝐶𝑆	=	𝑇𝐶𝑇𝐴	

Brute force: Compare every
subsequence of 𝑋 with 𝑌
Ω(2$)

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

68

69

X = ATCTGCGT
Y = TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=ATCTGCGA
Y=TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=ATCTGCGT
Y=TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

1. Identify Recursive Structure

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

70

1. Identify Recursive Structure

71

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=ATCTGCGA
Y=TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=ATCTGCGT
Y=TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwiseSave to M[i,j]

Read from M[i,j]
if present

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

X = ATCTGCGT
Y = TGCATAT

X = “alkjdflaksjdf”
Y = “lakjsdflkasjdlfs”
M = 2d array of len(X) rows and len(Y) columns, initialized to -1
def LCS(int i, int j):
 # returns the length of the LCS shared between the length-i prefix of X and length-j prefix of Y
 # memoization
 if M[i,j] > -1:
 return M[i,j]
 #base case:
 if i == 0 or j == 0:
 ans = 0
 elif X[i] == Y[j]:
 ans = LCS(i-1, j-1) + 1
 else:
 ans = max(LCS(i, j-1), LCS(i-1, j))
 M[i,j] = ans
 return ans
print(LCS(len(X)+1, len(Y)+1)) # the answer for the entirety of X and Y

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

73

3. Solve in a Good Order

74

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

75

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)

Reconstructing the LCS

76

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

77

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

78

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

