CS 3100

Data Structures and Algorithms 2 Lecture 17: Matrix Chaining, Seam Carving

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS 4th edition:

• Chapter 14

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ matrix with a $m \times p$ matrix? (don't overthink this)

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

- m multiplications and m-1 additions per element
- $n \cdot p$ elements to compute
- Total cost: $O(m \cdot n \cdot p)$

Announcements

- PS7 due tomorrow
- PA4 now available!
- Office hours
 - Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
 - Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
 - TA office hours posted on our website
 - Office hours are not for "checking solutions"

Greedy Algorithms

- Require two things:
 - Optimal Substructure
 - Greedy Choice Function
- Optimal Substructure:

Optimal Solution to big problem

Choice	Optimal Solution to the rest
--------	------------------------------

- If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Greedy Choice Function
 - The rule for how to choose an item guaranteed be in the optimal solution
- Greedy Algorithm Procedure:
 - Apply the Greedy Choice Function to pick an item
 - Identify your subproblem, then solve it

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
 solution = solve(problem)

return solution for subproblem of problem: # After dividing subsolutions.append(myDCalgo(subproblem)) solution = Combine(subsolutions)

return solution

Generic Top-Down Dynamic Programming Soln

```
mem = \{\}
def myDPalgo(problem):
      if mem[problem] not blank:
             return mem[problem]
      if baseCase(problem):
             solution = solve(problem)
             mem[problem] = solution
             return solution
      for subproblem of problem:
             subsolutions.append(myDPalgo(subproblem))
      solution = OptimalSubstructure(subsolutions)
      mem[problem] = solution
      return solution
```

Log Cutting

Given a log of length nA list (of length n) of prices P(P[i]) is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_1, ..., \ell_k$ such that: $\sum \ell_i = n$ to maximize $\sum P[\ell_i]$ Brute Force: $O(2^n)$

Greedy Algorithm

- Greedy algorithms build a solution by picking the best option "right now"
 - Select the most profitable cut first

Greedy Algorithm

- Greedy algorithms build a solution by picking the best option "right now"
 - Select the "most bang for your buck"
 - (best price / length ratio)

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

P[i] = value of a cut of length i Cut(n) = value of best way to cut a log of length n $Cut(n) = \max - \begin{bmatrix} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{bmatrix}$ 2. Save sub- $\frac{d}{Cut(0)} + P[n]$ solutions to memory! $Cut(n-\ell_k)$ ℓ_k best way to cut a log of length $n - \ell_k$ **Last Cut** 13

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

3. Select a Good Order for Solving Subproblems

Log Cutting Pseudocode

```
Initialize Memory C
Cut(n):
     C[0] = 0
     for i=1 to n: // log size
           best = 0
          for j = 1 to i: // last cut
                best = max(best, C[i-i] + P[i])
          C[i] = best
     return C[n]
                                       Run Time: O(n^2)
```

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

```
Initialize Memory C, Choices
Cut(n):
      C[0] = 0
      for i=1 to n:
            best = 0
            for j = 1 to i:
                   if best < C[i-j] + P[j]:
                         best = C[i-j] + P[i]
                         Choices[i]=j Gives the size
                                          of the last cut
            C[i] = best
      return C[n]
```

Reconstruct the Cuts

• Backtrack through the choices

Example to demo Choices[] only. Profit of 20 is not optimal!

Backtracking Pseudocode

- i = n
- while i > 0:
 - print Choices[i]
 - i = i Choices[i]

Our Example: Getting Optimal Solution

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	30
Choice[i]	0	1	2	3	2	2	6	1	2	3	10

- If n were 5
 - Best score is 13
 - Cut Choice[n]=2, then cut Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
- If n were 7
 - Best score is 18
 - Cut 1, then cut 6

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Matrix Chaining

• Given a sequence of Matrices $(M_1, ..., M_n)$, what is the most efficient way to multiply them?

Order Matters!

 $c_1 = r_2$ $c_2 = r_3$

• $(M_1 \times M_2) \times M_3$ - uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ multiplications

Order Matters!

 $c_1 = r_2$
 $c_2 = r_3$

Order Matters!

$$c_1 = r_2$$
$$c_2 = r_3$$

- $(\underline{M_1 \times M_2}) \times \underline{M_3}$ - uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ multiplications - $(10 \cdot 7 \cdot 20) + 20 \cdot 7 \cdot 8 = 2520$
- $M_1 \times (M_2 \times M_3)$ - uses $c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$ multiplications - $10 \cdot 7 \cdot 8 + (20 \cdot 10 \cdot 8) = 2160$

 $M_{1} = 7 \times 10$ $M_{2} = 10 \times 20$ $M_{3} = 20 \times 8$ $c_{1} = 10$ $c_{2} = 20$ $c_{3} = 8$ $r_{1} = 7$ $r_{2} = 10$

 $r_3 = 20$

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Best(1, n) = cheapest way to multiply together M₁ through M_n

 $Best(1,n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$ $Best(1,4) = \min - \begin{bmatrix} Best(2,4) + r_1r_2c_4 \\ Best(1,2) + Best(3,4) + r_1r_3c_4 \\ Best(1,3) + r_1r_4c_4 \end{bmatrix}$

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_j $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0 $Best(2,n) + r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min - Best(1,4) + Best(5,n) + r_1r_5c_n$ $Best(1, n - 1) + r_1 r_n c_n$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_j $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0Read from M[n] if present Save to M[n] Best(2, n) + $r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min$ $Best(1,4) + Best(5,n) + r_1r_5c_n$. . . $Best(1, n-1) + r_1 r_n c_n$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

3. Select a good order for solving subproblems

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_i $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0Read from M[n] if present Save to M[n] Best(2, n) + $r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min$ $Best(1,4) + Best(5,n) + r_1r_5c_n$. . . $Best(1, n - 1) + r_1 r_n c_n$

Matrix Chaining

Run Time

- 1. Initialize Best[i, i] to be all 0s $\Theta(n^2)$ cells in the Array
- 2. Starting at the main diagonal, working to the upper-right, fill in each cell using:

1.
$$Best[i,i] = 0$$

2. $Best[i,j] = \min_{k=i}^{j-1} (Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j)$

Each "call" to Best() is a O(1) memory lookup

$$\Theta(n^3)$$
 overall run time

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

$$Best(i,j) = \min_{k=i}^{j-1} (Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j))$$

$$J = 1 2 3 4 5 6$$

$$Best(i,i) = 0$$

$$0 15750 7875 9375 11875 15125 3 1$$

$$0 2625 4375 7125 10500 2$$

$$0 750 2500 5375 3$$

$$Best(1,1) + Best(2,6) + r_1 r_2 c_6 0 1000 3500 4$$

$$Best(1,2) + Best(3,6) + r_1 r_3 c_6 0 1000 3500 5$$

$$Best(1,3) + Best(4,6) + r_1 r_5 c_6 0 5000 5$$

$$Best(1,4) + Best(5,6) + r_1 r_5 c_6 0 5000 5$$

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table
 - Choice[i,j] = k means the best "split" was right after M_k
 - Work backwards from value for whole problem, Choice[1,n]
 - Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example:
 - Choice[1,6] = 3. So [M₁ M₂ M₃] [M₄ M₅ M₆]
 - We then need Choice[1,3] = 1. So $[(M_1) (M_2 M_3)]$
 - Also need Choice[4,6] = 5. So $[(M_4 M_5) M_6]$
 - Overall: $[(M_1) (M_2 M_3)] [(M_4 M_5) M_6]$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the ocean. How did George make this discovery?

• Method for image resizing that doesn't scale/crop the image

Seam Carving

• Method for image resizing that doesn't scale/crop the image

Cropping

• Removes a "block" of pixels

Cropped

Scaling

• Removes "stripes" of pixels

Scaled

Seam Carving

- Removes "least energy seam" of pixels
- <u>https://trekhleb.dev/js-image-carver/</u>

Carved

Seam Carving

• Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Seattle Skyline

Energy of a Seam

• Sum of the energies of each pixel

e(p) = energy of pixel p

- Many choices for pixel energy
 - E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
 - Particular choice doesn't matter, we use it as a "black box"
- Goal: find least-energy seam to remove

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Identify Recursive Structure

Let S(i, j) = least energy seam from the bottom of the image up to pixel $p_{i,j}$

Finding the Least Energy Seam

Want to delete the least energy seam going from bottom to top, so delete:

 $\min_{k=1}^{m} (S(n,k))$

Computing S(n, k)

Assume we know the least energy seams for all of row n-1(i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing S(n, k)

Assume we know the least energy seams for all of row n-1 (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing S(n, k)

Assume we know the least energy seams for all of row n-1(i.e. we know $S(n-1, \ell)$ for all ℓ) $S(n,k) = min - \begin{cases} S(n-1,k-1) + e(p_{n,k}) \\ S(n-1,k) + e(p_{n,k}) \\ S(n-1,k+1) + e(p_{n,k}) \end{cases}$ $p_{n,k}$ S(n,k) S(n-1,k) S(n-1,k-1) S(n-1,k+1)

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example: X = ATCTGAT Y = TGCATALCS = TCTA

Brute force: Compare every subsequence of X with Y $\Omega(2^n)$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:
 - 1. Identify the substructure of the problem
 - What are the options for the "last thing" done? What subproblem comes from each?
 - 2. Save the solution to each subproblem in memory
 - 3. Select an order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

> Case 1: X[i] = Y[j]X = ATCTGCGTY = TGCATATLCS(i, j) = LCS(i - 1, j - 1) + 1Case 2: $X[i] \neq Y[j]$ X=ATCTGCGT X=ATCTGCGA Y = TGCATATY = TGCATACLCS(i, j) = LCS(i, j - 1)LCS(i, j) = LCS(i - 1, j) $LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$ if i = 0 or j = 0

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:
 - 1. Identify the substructure of the problem
 - What are the options for the "last thing" done? What subproblem comes from each?
 - 2. Save the solution to each subproblem in memory
 - 3. Select an order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

> Case 1: X[i] = Y[j]X = ATCTGCGTY = TGCATATLCS(i, j) = LCS(i - 1, j - 1) + 1Case 2: $X[i] \neq Y[j]$ X=ATCTGCGT X=ATCTGCGA Y=TGCATAC Y = TGCATATLCS(i, j) = LCS(i - 1, j)LCS(i, j) = LCS(i, j - 1) $LCS(i,j) = - \begin{bmatrix} 0 & \text{Read from M[i,j]} & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if present} & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{bmatrix}$ Save to M[i,j]

X = "alkidflaksidf"

Y = "lakjsdflkasjdlfs"

```
M = 2d array of len(X) rows and len(Y) columns, initialized to -1
```

def LCS(int i, int j):

returns the length of the LCS shared between the length-i prefix of X and length-j prefix of Y # memoization

```
if M[i,j] > -1:
```

return M[i,j]

```
#base case:
            if i == 0 or i == 0:
                        ans = 0
            elif X[i] == Y[i]:
                        ans = LCS(i-1, j-1) + 1
            else:
                        ans = max( LCS(i, j-1), LCS(i-1, j) )
            M[i,j] = ans
            return ans
print(LCS(len(X)+1, len(Y)+1)) # the answer for the entirety of X and Y
              LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j]\\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}
```
Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:
 - 1. Identify the substructure of the problem
 - What are the options for the "last thing" done? What subproblem comes from each?
 - 2. Save the solution to each subproblem in memory
 - 3. Select an order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = A = T = C = T = G = A = T$$

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j]\\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

Run Time: $\Theta(n \cdot m)$ (for |X| = n, |Y| = m)

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent