CS 3100

Data Structures and Algorithms 2
 Lecture 17: Matrix Chaining, Seam Carving

Co-instructors: Robbie Hott and Ray Pettit

 Spring 2024Readings in CLRS $4^{\text {th }}$ edition:

- Chapter 14

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ matrix with a $m \times p$ matrix? (don't overthink this)

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

- multiplications and $m-1$ additions per element
- $n \cdot p$ elements to compute
- Total cost: $\mathrm{O}(m \cdot n \cdot p)$

Announcements

- PS7 due tomorrow
- PA4 now available!
- Office hours
- Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 23p
- Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
- TA office hours posted on our website
- Office hours are not for "checking solutions"

Greedy Algorithms

Optimal Solution to big problem

- Require two things:
- Optimal Substructure
- Greedy Choice Function

Choice	Optimal Solution to the rest

- Optimal Substructure:
- If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Greedy Choice Function
- The rule for how to choose an item guaranteed be in the optimal solution
- Greedy Algorithm Procedure:
- Apply the Greedy Choice Function to pick an item
- Identify your subproblem, then solve it

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):
solution = solve(problem)
return solution
for subproblem of problem: \# After dividing
subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution

Generic Top-Down Dynamic Programming Soln

```
mem = {}
def myDPalgo(problem):
    if mem[problem] not blank:
        return mem[problem]
    if baseCase(problem):
        solution = solve(problem)
        mem[problem] = solution
        return solution
    for subproblem of problem:
    subsolutions.append(myDPalgo(subproblem))
    solution = OptimalSubstructure(subsolutions)
    mem[problem] = solution
    return solution
```


Log Cutting

Given a log of length n
A list (of length n) of prices P ($P[i]$ is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that:
$\sum \ell_{i}=n$
to maximize $\sum P\left[\ell_{i}\right]$
Brute Force: $O\left(2^{n}\right)$

Greedy Algorithm

- Greedy algorithms build a solution by picking the best option "right now"
- Select the most profitable cut first

Greedy Algorithm

- Greedy algorithms build a solution by picking the best option "right now"
- Select the "most bang for your buck"
- (best price / length ratio)

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n

$$
\operatorname{Cut}(n)=\max \left\{\begin{array}{l}
\operatorname{Cut}(n-1)+P[1] \\
\operatorname{Cut}(n-2)+P[2] \\
\ldots \\
\operatorname{Cut}(0)+P[n]
\end{array} \quad \begin{array}{l}
\text { 2. Save sub- } \\
\text { solutions to } \\
\text { memory! }
\end{array}\right.
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

Log Cutting Pseudocode

Initialize Memory C
Cut(n):
$\mathrm{C}[0]=0$
for $\mathrm{i}=1$ to n : // log size
best = 0
for $\mathrm{j}=1$ to i : // last cut best = max(best, C[i-j] + P[j])
$C[i]=$ best
return $\mathrm{C}[\mathrm{n}]$

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

Initialize Memory C, Choices Cut(n):

```
C[0] = 0
for i=1 to n:
    best = 0
    for j = 1 to i:
        if best < C[i-j] + P[j]:
                        best =C[i-j] + P[j]
    Choices[i]=j Gives the size
    C[i] = best
```

return $\mathrm{C}[\mathrm{n}]$

Reconstruct the Cuts

- Backtrack through the choices

Example to demo Choices[] only. Profit of 20 is not optimal!

Backtracking Pseudocode

$\mathrm{i}=\mathrm{n}$
while $\mathrm{i}>0$:
print Choices[i]
$\mathrm{i}=\mathrm{i}-$ Choices $[\mathrm{i}]$

Our Example: Getting Optimal Solution

i	$\mathbf{0}$	$\mathbf{1}$	2	3	4	5	6	7	8	9	10
$\mathrm{C}[i]$	0	1	5	8	10	13	17	18	22	25	30
Choice $[\mathrm{i}]$	0	1	2	3	2	2	6	1	2	3	10

- If n were 5
- Best score is 13
- Cut Choice[n]=2, then cut Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
- If n were 7
- Best score is 18
- Cut 1, then cut 6

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$
$-\operatorname{uses}\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3}$ multiplications

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $M_{1} \times\left(M_{2} \times \overline{M_{3}}\right)$
- uses $\mathrm{c}_{1} \cdot \mathrm{r}_{1} \cdot c_{3}+\left(\mathrm{c}_{2} \cdot r_{2} \cdot c_{3}\right)$ multiplications

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$

$$
\begin{aligned}
& - \text { uses }\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3} \text { multiplications } \\
& -(10 \cdot 7 \cdot 20)+20 \cdot 7 \cdot 8=2520
\end{aligned}
$$

$$
\begin{gathered}
M_{1}=7 \times 10 \\
M_{2}=10 \times 20 \\
M_{3}=20 \times 8
\end{gathered}
$$

- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $c_{1} \cdot r_{1} \cdot c_{3}+\left(c_{2} \cdot r_{2} \cdot c_{3}\right)$ multiplications
$-10 \cdot 7 \cdot 8+(20 \cdot 10 \cdot 8)=2160$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

$$
\operatorname{Best}(1,4)=\min \left\{\begin{array}{l}
\operatorname{Best}(2,4)+r_{1} r_{2} c_{4} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3,4)+r_{1} r_{3} c_{4} \\
\operatorname{Best}(1,3)+r_{1} r_{4} c_{4}
\end{array}\right.
$$

1. Identify the Recursive Structure of the Problem

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0
\end{aligned}
$$

$$
\operatorname{Best}(1, n)=\min \left\{\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{}_{\text {Read from } \mathrm{M}[\mathrm{n}]} \\
& \text { Save to } \mathrm{M}[\mathrm{n}] \\
& \operatorname{Best}(1, n)=\min \left[\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
\end{aligned}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a good order for solving subproblems

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{}_{\text {Read from } M[n]} \begin{array}{l}
\text { if present }
\end{array} \\
& \operatorname{Best}(1, n)=\min \left[\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
\end{aligned}
$$

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

Matrix Chaining

Run Time

1. Initialize $\operatorname{Best}[i, i]$ to be all $0 s \quad \Theta\left(n^{2}\right)$ cells in the Array
2. Starting at the main diagonal, working to the upper-right, fill in each cell using:
3. Best $[i, i]=0$

4. $\operatorname{Best}[i, j]=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)
\end{aligned}
$$

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table
- Choice[i,j] = k means the best "split" was right after M_{k}
- Work backwards from value for whole problem, Choice[1,n]
- Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example:
- Choice $[1,6]=3$. So $\left[M_{1} M_{2} M_{3}\right]\left[M_{4} M_{5} M_{6}\right]$
- We then need Choice $[1,3]=1$. So $\left[\left(M_{1}\right)\left(M_{2} M_{3}\right)\right]$
- Also need Choice $[4,6]=5$. So $\left[\left(M_{4} M_{5}\right) M_{6}\right]$
- Overall: $\left[\left(M_{1}\right)\left(M_{2} M_{3}\right)\right]\left[\left(M_{4} M_{5}\right) M_{6}\right]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Time!
In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the
 ocean. How did George make this discovery?

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Cropping

- Removes a "block" of pixels

Scaling

- Removes "stripes" of pixels

Seam Carving

- Removes "least energy seam" of pixels
- https://trekhleb.dev/js-image-carver/

Carved

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Seattle Skyline

Energy of a Seam

- Sum of the energies of each pixel

$$
e(p)=\text { energy of pixel } p
$$

- Many choices for pixel energy
- E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
- Particular choice doesn't matter, we use it as a "black box"
- Goal: find least-energy seam to remove

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Identify Recursive Structure

Let $S(i, j)=$ least energy seam from the bottom of the image up to pixel $p_{i, j}$

Finding the Least Energy Seam

Want to delete the least energy seam going from bottom to top, so delete:

$$
\min _{k=1}(S(n, k))
$$

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$
(i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)
$S(n, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{n, k}\right) \\ p_{n, k} \\ s(n-1, k)+e\left(p_{n, k}\right) \\ S(n-1, k+1)+e\left(p_{n, k}\right)\end{array}\right.$
$s(n-1, k-1)=s(n-1, k)$
$s(n-1, k+1)$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:
$X=$ ATCTGAT
$Y=$ TGCATA
$L C S=T C T A$

Brute force: Compare every subsequence of X with Y
$\Omega\left(2^{n}\right)$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:

1. Identify the substructure of the problem

- What are the options for the "last thing" done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\text { Case 1: } X[i]=Y[j] \quad \begin{aligned}
X & =\operatorname{ATCTGCGT} \\
Y & =\operatorname{TGCATAT} \\
\operatorname{LCS}(i, j) & =\operatorname{LCS}(i-1, j-1)+1
\end{aligned}
$$

Case 2: $X[i] \neq Y[j]$

$$
\begin{array}{cc}
X=A T C T G C G A & X=A T C T G C G T \\
Y=T G C A T A T & Y=T G C A T A C \\
\operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) & \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j)
\end{array}
$$

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:

1. Identify the substructure of the problem

- What are the options for the "last thing" done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\text { Case 1: } X[i]=Y[j] \quad \begin{aligned}
X & =\operatorname{ATCTGCGT} \\
Y & =\operatorname{TGCATAT} \\
\operatorname{LCS}(i, j) & =\operatorname{LCS}(i-1, j-1)+1
\end{aligned}
$$

Case 2: $X[i] \neq Y[j]$

$$
\begin{array}{cc}
X=A T C T G C G A & X=A T C T G C G T \\
Y=T G C A T A T & Y=T G C A T A C \\
\operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) & \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j)
\end{array}
$$

$$
\underset{\quad}{\operatorname{LCS}(i, j)} \begin{aligned}
& \text { Read from M }[i, j] \\
& \text { Save to } \mathrm{M}[i, j]
\end{aligned}=\left\{\begin{array}{lc}
0 & \text { if } i=0 \text { or } j=0 \\
\operatorname{LCS}(i-1, j-1)+1 & \text { if present } X[i]=Y[j] \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }
\end{array}\right.
$$

X = "alkjdflaksjdf"
$Y=$ "lakjsdflkasjdlfs"
$M=2 d$ array of len (X) rows and len (Y) columns, initialized to -1
def LCS(int i, int j):
\# returns the length of the LCS shared between the length-i prefix of X and length-j prefix of Y \# memoization
if $M[i, j]>-1$:
return $\mathrm{M}[\mathrm{i}, \mathrm{j}]$
\#base case:
if $i=0$ or $j=0$:
ans $=0$
elif $X[i]==Y[j]$:
ans $=\operatorname{LCS}(\mathrm{i}-1, \mathrm{j}-1)+1$
else:

$$
\text { ans }=\max (\operatorname{LCS}(\mathrm{i}, \mathrm{j}-1), \operatorname{LCS}(\mathrm{i}-1, \mathrm{j}))
$$

$M[i, j]=$ ans
return ans
$\operatorname{print}(\operatorname{LCS}(\operatorname{len}(X)+1, \operatorname{len}(Y)+1))$ \# the answer for the entirety of X and Y

$$
\operatorname{LCS}(i, j)=\left\{\begin{array}{l}
0 \\
\operatorname{LCS}(i-1, j-1)+1 \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j))
\end{array}\right.
$$

if $i=0$ or $j=0$
if $X[i]=Y[j]$
otherwise

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:

1. Identify the substructure of the problem

- What are the options for the "last thing" done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

\& $X=$		0	A 1	T 2	C 3	T 4	G 5	A 6	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A	6	0	1	2	2	3	3	4	4

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

$$
\begin{aligned}
& \operatorname{CCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0\end{cases} \\
& \operatorname{LCS}(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
\end{aligned}
$$

Run Time: $\Theta(n \cdot m)($ for $|X|=n,|Y|=m)$

Reconstructing the LCS

$$
\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

