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Decode the line below into English

(hint: use Google or Wolfram Alpha)
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Announcements

• PS6 and PA3 coming soon
• Office hours

• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
• TA office hours posted on our website
• Office hours are not for "checking solutions"
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Reminders about Greedy Algorithms



Reminder: Some Terminology

Optimization problems: terminology
• A solution must meet certain constraints:

  A solution is feasible
Example: A possible shortest path must meet these criteria:

   All edges must be in the graph and form a simple path.
• Solutions judged on some criteria:
  Objective function
Example:  The sum of edge weights in path is minimum
• One (or more) feasible solutions that scores highest (by the objective 

function) is called the optimal solution(s)
The greedy approach is often a good choice for optimization problems

• So is dynamic programming (coming later in the course)
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Reminder: Greedy Strategy: An Overview

Greedy strategy:
• Build solution by stages, adding one item to the partial solution we’ve found 

before this stage
• At each stage, make locally optimal choice based on the greedy choice 

(sometimes called the greedy rule or the selection function)
• Locally optimal, i.e. best given what info we have now

• Irrevocable: a choice can’t be un-done
• Sequence of locally optimal choices leads to globally optimal solution (hopefully)

• Must prove this for a given problem!
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Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴 

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest
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Minimum Spanning Trees

Readings:  CLRS 21
(but not 21.1)
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Prim’s Algorithm

10

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
• Maintain nodes not in	𝑇 in a min-heap (priority queue)
• Find the next closest node 𝑣 (lowest edge weight) by extracting min from priority 

queue
• Each time node 𝑣 (and edge) is added to the tree, update keys for neighbors still in 

min-heap
• Repeat until no nodes left in min-heap



Prim’s Algorithm Implementation
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
pick a starting node 𝑠 and set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: minimum cost to connect 
𝑢 to nodes in PQ



Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm

13

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Reminder: Dijkstra’s Algorithm Implementation
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1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the “nearest” node not yet in 𝑇 to 𝑇

Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑! +𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑑! +𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: length of shortest path 
𝑠 → 𝑢 using nodes in PQ



Prim’s Algorithm Implementation
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
pick a starting node 𝑠 and set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: minimum cost to connect 
𝑢 to nodes in PQ



Implementation (with nodes in the priority queue):
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
pick a starting node 𝑠 and set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

Prim’s Algorithm Running Time
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𝑂 𝑉
Initialization:

𝑉  iterations
𝑂 log 𝑉
𝐸  iterations total

𝑂 log 𝑉

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉

Same as for Dijkstra’s Shortest Path algorithm!

Using indirect 
heaps



Kruskal’s MST Algorithm

Readings:  CLRS first part of 21.2
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Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)
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Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
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create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Now 𝑛 − 1 edges have 
been added.
All nodes are connected.
Algorithm is done! 



Kruskal’s Algorithm

32

Implementation: iterate over each of the edges in the graph (sorted by weight), and 
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

Time complexity: 𝑂 𝛼 𝑛 , 
where 𝛼 is the “inverse Ackermann function” (extremely slow-growing function)

for all “practical” 𝑛, 𝛼 𝑛 < 5 (e.g., for all 𝑛 < 2$!
"##$"

− 3)

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle



Union/Find and Disjoint Sets
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An Abstract Data Type (ADT) for a collection of sets of any kind of item, 
where an item can only belong to one of the sets
• We’ll assume each item is identified by a unique integer value

Need to support the following operations
• void makeSet(int n)  // construct n independent sets
• int findSet(int i)  // given i, which set does i belong to?
• void union(int i, int j) // merge sets containing i and j



Union/Find and Disjoint Sets

34

Represent Sets As Trees
• Represent each set as a tree
• Identify set by its root node’s ID (its “label”)
• findSet() means tracing up to root
• union() makes one root child of the other root

Two sets After a union



Time Complexity: Kruskal’s Algorithm
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Implementation: iterate over each of the edges in the graph (sorted by weight), and 
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

• Overall running time: 𝑂 𝐸 	log 𝐸 = 𝑂 𝐸 	log 𝑉
𝐸 ≤ 𝑉 $ ⇒ log 𝐸 = 𝑂 log 𝑉  

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle



More on Implementation for Kruskal’s
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Let EL be the set of edges sorted ascending by weight
Consider each vertex to be in a tree of size 1
For each edge e in EL

T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1 != T2)    // the nodes are not in the same Tree

Add e to the output set of edges T (which becomes the MST)
Combine trees T1 and T2

Seems simple, no?
• But, how do you keep track of what tree a vertex is in?
• Trees are sets of vertices. Need to findset(v) and “union” two sets



Proof of Correctness: Exchange Argument

Common technique to show correctness of a greedy algorithm

General idea: argue that at every step, the greedy choice is part of 
some optimal solution

Approach: Start with an arbitrary optimal solution and show that 
exchanging an item from the optimal solution with your greedy choice 
makes the new solution no worse (i.e., the greedy choice is as good as 
the optimal choice)

37



Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with your greedy 

choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:

• Show: “I can remove any item from your sandwich, and it would be no worse by 
replacing it with the same item from my sandwich”

38



Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴 

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest

39



Sam Morse

Engineer
and artist
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Message Encoding

Problem: need to electronically send a message to two 
people at a distance.
Channel for message is binary (either on or off)

41
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How can we do it?

Take the message, send it over character-by-
character with an encoding

42

wiggle, wiggle, wiggle like a gypsy queen
wiggle, wiggle, wiggle all dressed in green a: 2

d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character 
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding 



How efficient is this?

Each character requires 4 bits
ℓH = 4
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wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Cost of encoding:

𝐵 𝑇, 𝑓% = S
%&'('%)*(	%

ℓ%𝑓% = 68 ⋅ 4 = 272

Better Solution: Allow for different 
characters to have different-size encodings
(high frequency → short code) 

a: 2
d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character 
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding 



More efficient coding
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𝐵 𝑇, 𝑓% = S
%&'('%)*(	%

ℓ%𝑓%

When this is big

Make this small

Codeword Size
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Morse Code
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Problem with Morse Code

46

Decode:
A A

ET ET
R T
EN T

Ambiguous Decoding



Prefix-Free Code

A prefix-free code is codeword table 𝑇 such that for any 
two characters 𝑐I, 𝑐J, if 𝑐I ≠ 𝑐J then 𝑐𝑜𝑑𝑒(𝑐I) is not a 
prefix of 𝑐𝑜𝑑𝑒(𝑐J)
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Binary Trees = Prefix-free Codes

I can represent any prefix-free code as a binary tree
I can create a prefix-free code from any binary tree
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Goal: Shortest Prefix-Free Encoding

Input: A set of character frequencies {𝑓!}
Output: A prefix-free code 𝑇 which minimizes

𝐵 𝑇, 𝑓! = (
!"#$#!%&$	!

ℓ!𝑓!

49

Huffman Coding!!



Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴 

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree

53

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Subproblem of size 𝑛 − 1!



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2

Q:1 U:1
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6

Q:1 U:1
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Huffman Algorithm
Choose the least frequent pair, combine into 
a subtree
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G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1
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14

0 1

240 1

410 1

680 1



Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no 

worse by replacing it with the same item from my sandwich”
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Remember: Interval Scheduling Algorithm

Find event ending earliest, add to solution, 
Remove it and all conflicting events, 
Repeat until all events removed, return solution
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Remember: Exchange Argument

Claim: earliest ending interval is always part of some optimal solution

Let  𝑂𝑃𝑇K,L  be an optimal solution for time range [𝑖, 𝑗]
Let 𝑎∗ be the first interval in [𝑖, 𝑗] to finish overall (greedy choice)
If 𝑎∗ ∈ 𝑂𝑃𝑇K,L  then claim holds
Else if 𝑎∗ ∉ 𝑂𝑃𝑇K,L, let 𝑎 be the first interval to end in 𝑂𝑃𝑇K,L
• By definition 𝑎∗ ends before 𝑎, and therefore does not conflict with any other 

events in 𝑂𝑃𝑇-,/
• Therefore 𝑂𝑃𝑇-,/ − {𝑎} + {𝑎∗} is also an optimal solution (same number 

events)
• Thus claim holds
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Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least 

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution
• Optimal Substructure argument
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Showing Huffman is Optimal

First Step: Show any optimal tree is “full” (each node has either 0 or 2 
children)
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W

R Y

0 1

0

0 1

W

R Y

10

0 1
𝑇 𝑇′

𝑇′ is a “better” tree than 𝑇, because all codes in 
red subtree are shorter in 𝑇′, without creating 
any longer codes



Huffman Exchange Argument
Claim: if 𝑐I, 𝑐J are the least-frequent characters, then there is an optimal 
prefix-free code s.t. 𝑐I, 𝑐J are siblings
• i.e. codes for 𝑐0, 𝑐$ are the same length and differ only by their last bit

65𝑐0

𝑇!"#

𝑐$

Case 1: Consider some optimal tree 𝑇12). If 𝑐0, 𝑐$ are siblings in this 
tree, then claim holds



Huffman Exchange Argument
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𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

Case 2: Consider some optimal tree 𝑇12), in which 𝑐0, 𝑐$ are not siblings

Let 𝑎, 𝑏 be the two characters of lowest 
depth that are siblings 
(Why must they exist?)

Idea: show that swapping 𝑐0 with 𝑎 does 
not increase cost of the tree. 
Similar for 𝑐$ and 𝑏
Assume: 𝑓%0 ≤ 𝑓' and 𝑓%$ ≤ 𝑓3

Claim: if 𝑐I, 𝑐J are the least-frequent characters, then there is an optimal 
prefix-free code s.t. 𝑐I, 𝑐J are siblings
• i.e. codes for 𝑐0, 𝑐$ are the same length and differ only by their last bit



Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()
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𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in 
some optimal tree
𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓' 

𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0



Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()
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𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓' 

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0

𝐵 𝑇12) − 𝐵 𝑇4 = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' − (𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0)

= 𝑓%0ℓ%0 + 𝑓'ℓ' − 𝑓%0ℓ' − 𝑓'ℓ%0
= 𝑓%0(ℓ%0 − ℓ') + 𝑓'(ℓ' − ℓ%0)
= (𝑓'−𝑓%0)(ℓ' − ℓ%0)

≥ 0 ⇒ 𝑇′ optimal

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in 
some optimal tree



Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()
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𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓' 

𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0

𝐵 𝑇12) − 𝐵 𝑇4 = (𝑓'−𝑓%0)(ℓ' − ℓ%0)
≥ 0 ≥ 0

𝐵 𝑇12) − 𝐵 𝑇4 ≥ 0
𝑇′ is also optimal!

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in 
some optimal tree



Case 2:Repeat to swap 𝑐&, 𝑏!
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𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐$ with 𝑏 does not increase cost of the tree.
Assume: 𝑓%$ ≤ 𝑓3 

𝑏

𝑐0

𝑎

𝑇′′

𝑐$

𝐵 𝑇′ = 𝐶 + 𝑓%$ℓ%$ + 𝑓3ℓ3 𝐵 𝑇′′ = 𝐶 + 𝑓%$ℓ3 + 𝑓3ℓ%$

𝐵 𝑇′ − 𝐵 𝑇44 = (𝑓3−𝑓%$)(ℓ3 − ℓ%$)
≥ 0 ≥ 0

𝐵 𝑇′ − 𝐵 𝑇44 ≥ 0
𝑇′′ is also optimal! Claim holds!

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in 
some optimal tree



Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least 

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution
• Optimal Substructure argument
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Proving Optimal Substructure

Goal: show that if 𝑥 is in an optimal solution, then the rest of the 
solution is an optimal solution to the subproblem.
Usually by Contradiction:
• Assume that 𝑥 must be an element of my optimal solution
• Assume that solving the subproblem induced from choice 𝑥, then adding in 𝑥 

is not optimal
• Show that removing 𝑥 from a better overall solution must produce a better 

solution to the subproblem



Huffman Optimal Substructure

Goal: show that if 𝑐I, 𝑐J are siblings in an optimal solution, then an 
optimal prefix free code can be found by using a new character with 
frequency 𝑓H! + 𝑓H" and then making 𝑐I, 𝑐J its children.
By Contradiction:
• Assume that 𝑐0, 𝑐$ are siblings in at least one optimal solution
• Assume that solving the subproblem with this new character, then adding in 
𝑐0, 𝑐$ is not optimal
• Show that removing 𝑐0, 𝑐$ from a better overall solution must produce a 

better solution to the subproblem



Finishing the Proof

Show Recursive Substructure
• Show treating 𝑐0, 𝑐$ as a new “combined” character gives optimal solution
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Why does solving this smaller problem:

Give an optimal solution to this?:
𝑐! 𝑐"

𝑐! 𝑐"

𝜎



Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 
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𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹



Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 
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𝑇

𝑐0

𝜎

𝑐$

𝑇′
𝜎

If this is optimal Then this is optimal

𝑓N = 𝑓HI + 𝑓HJ

𝐵 𝑇O = 𝐵 𝑇 − 𝑓HI − 𝑓HJ

ℓHI = ℓN + 1
ℓHJ = ℓN + 1



Substructure
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𝑇

𝑐0

𝜎

𝑐$

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐0

𝑈

𝑐$

Toward contradiction

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 



Substructure
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𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐0

𝑈

𝑐$

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓HI − 𝑓HJ
< 𝐵 𝑇 − 𝑓HI − 𝑓HJ
= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is 
optimal!

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 



Optimal Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 
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𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐0

𝜎
𝑐$

𝑐0

𝑈

𝑐$

>
>Contradiction!


