CS 3100

Data Structures and Algorithms 2

Lecture 13: Minimum Spanning Tree Algorithms

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4t edition:
* Chapter 21



Announcements

e PS5 due Tomorrow
* PA3 coming soon!

e Office hours
* Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

* Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
* TA office hours posted on our website
e Office hours are not for "checking solutions”



Reminders about Greedy Algorithms




Reminder: Some Terminology

Optimization problems: terminology

e A solution must meet certain constraints:
A solution is feasible

Example: A possible shortest path must meet these criteria:
All edges must be in the graph and form a simple path.

* Solutions judged on some criteria:
Objective function
Example: The sum of edge weights in path is minimum

* One (or more) feasible solutions that scores highest (by the objective
function) is called the optimal solution(s)

The greedy approach is often a good choice for optimization problems
* So is dynamic programming (coming later in the course)



Reminder: Greedy Strategy: An Overview

Greedy strategy:

* Build solution by stages, adding one item to the partial solution we’ve found
before this stage

* At each stage, make locally optimal choice based on the greedy choice
(sometimes called the greedy rule or the selection function)
* Locally optimal, i.e. best given what info we have now

* |rrevocable: a choice can’t be un-done

» Sequence of locally optimal choices leads to globally optimal solution (hopefully)
* Must prove this for a given problem!



Reminder: We’ve Seen Greedy Graph Algorithms

Dijkstra’s Shortest Path is greedy!

Build solution by adding item to partial solution

 Dijkstra’s: add edge to connect kth vertex, where the edges for the k-1 already
selected show the shortest paths to those k-1 vertices

Greedy choice

 Dijkstra’s: for all vertices connected to one of the k-1 vertices already
processed, choose w where dist(s,w) is the minimum

We did have to prove that this sequence of locally optimal choices
leads to globally optimal solution



Minimum Spanning Trees

Readings: CLRS 21
(but not 21.1)



Spanning Tree

* All connected graphs have
spanning tree(s)

* All spanning trees have the same
number of nodes (all of them)

* You can construct a spanning tree
by arbitrarily remove edges from
cycles

®Atree T = (Vr, E7) is a spanning tree for an undirected
How many edges graphG = (V,E)ifV; =V,E; C FE
does T have? (namely, T connects or “spans” all the nodes in G)




Spanning Tree: Example
Original Graph: ?

Possible spanning trees:

et o



Minimum Spanning Tree

Just constructing any spanning tree is simple

Suppose edges have weights

e Cost of building tracks between two stations
* Length of wire between boxes in a house
e Cheapest way to connect all nodes in some kind of network

Each spanning tree has a different total cost (sum of edges included in tree)

The Minimum Spanning Tree is the spanning tree with lowest overall cost
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Minimum Spanning Tree

® Atree T = (Vr, E+) is a minimum spanning tree for an
How many edges undirected graph G = (V,E) if T is a spanning tree of
does T have? minimal cost
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MST Algorithms

We'll see two greedy algorithms to find a graph’s MST
* Prim’s algorithm

* Very similar to Dijkstra’s SP algorithm

* Builds a single tree, adding one edge to grow the tree

* Kruskal’s algorithm

* |n a forest of trees, add an edge at each step to grow
one tree or to connect two trees (don’t make a cycle)

e Utilizes an interesting data structure for manipulating
sets



Prim’s Algorithm

CLRS in 21.2



Reminder: Dijkstra’s SP Algorithm

Greedy Choice

1. Start with an empty tree T and add the source to T’
Property!

2. Repeat |[V]| — 1 times:
* At each step, add the node “nearest” to the source into tree T

Initially: At some point later:




Prim’s MST Algorith

The Greedy Choice! Same
strategy, but different
1. Start with an empty tree T and add the source to T /=[50 ae eile-n (oo ==

2. Repeat |V| — 1 times: different problem
* At each step, add the node with minimum connecting edge to anode in T

Initially: At some point later:
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

3
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation:
 Maintain nodes notin T in a min-heap (priority queue)
* Find the next closest node v by extracting min from priority queue
 Each time node v is added to the tree, update keys for neighbors still in min-heap
* Repeat until no nodes left in min-heap
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Prim’s Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T

2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
pick a starting node sandsetd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandw(v,u) < dy: key: minimum cost to connect

PQ. decreaseKey(u, w(v,u)) u to nodes in PQ
u.parent = v
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

30



Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T
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Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T
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Reminder: Dijkstra’s Algorithm Implementation

1. Start with an empty tree T and add the sourceto T

2. Repeat |V| — 1 times:
e Addthe “nearest” node notyetinT toT

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandd, + w(v,u) < d,: key: length of shortest path
PQ. decreaseKey(u, + w(v, u)) $ = u using nodes in PQ

u.parent = v
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Prim’s Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T

2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
pick a starting node sandsetd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandw(v,u) < dy: key: minimum cost to connect

PQ. decreaseKey(u, w(v,u)) u to nodes in PQ
u.parent = v
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Prim’s Algorithm Running Time

Same as for Dijkstra’s Shortest Path algorithm!

Implementation (with nodes in the priority queue):

initialize d,, = oo for each node v Initialization:
add all nodes v € V to the priority queue PQ, using d,, as the key o(vD
pick a starting node s and set d. = 0
while PQ is not empty: |V | iterations
v = PQ. extractMin() O (log|V|)
for each u € V such that (v,u) € E: |E| iterations total

ifu € PQandw(v,u) < d,:
PQ. decreaseKey(u, w(v,u)) O(log|V])
heaps

Overall running time: O(|V|log|V| + |E|log|V|) = O(|E|log|V]|)
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Kruskal’s MST Algorithm

Readings: CLRS first part of 21.2



Kruskal’s Algorithm

The Greedy Choice
for Kruskal’s

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)
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Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)
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Kruskal’s Algorithm
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Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

Edge forms a cycle, so do not include 41
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Kruskal’s Algorithm
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Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not

create a cycle. (Stop when we’ve added n — 1 edges.)

Now n — 1 edges have

been added.
All nodes are connected.

Algorithm is done!
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Kruskal’s Algorithm

1. Start with an empty tree T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

* Data structure that tracks elements partitioned into different sets

* Union: Merges two sets into one

* Find: Given an element, return the index of the set it belongs to

* Both “union” and “find” operations are very fast

Time complexity: 0(a(n)),

where «a is the “inverse Ackermann function” (extremely slow-growing function)
265536

for all “practical” n, a(n) < 5 (e.g., for alln < 22 — 3)




Time Complexity: Kruskal’s Algorithm

1. Start with an empty tree T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

* Data structure that tracks elements partitioned into different sets

* Union: Merges two sets into one

* Find: Given an element, return the index of the set it belongs to

* Both “union” and “find” operations are very fast

« Overall running time: O(|E| log |E|) = O(|E| log |V|)
[E| < [V]* = log|E| = 0(log|V])
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More on Implementation for Kruskal’s

Let EL be the set of edges sorted ascending by weight
Consider each vertex to be in a tree of size 1

For each edge e in EL
T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1!=T2) //the nodes are not in the same Tree
Add e to the output set of edges T (which becomes the MST)
Combine trees 71 and 72

Seems simple, no?
e But, how do you keep track of what tree a vertex is in?
* Trees are sets of vertices. Need to findset(v) and “union” two sets
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Can you do Prim’s MST on This?
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Can you do Kruskal’s MST on This?




MST and Kruskal’s Example

Cost(MST) = 16



Disjoint Sets and Find/Union

Algorithms

Readings: CLRS 19.3



Union/Find and Disjoint Sets

An Abstract Data Type (ADT) for a collection of sets of any kind of item,
where an item can only belong to one of the sets

 We'll assume each item is identified by a unique integer value

Need to support the following operations
 void makeSet(int n) // construct n independent sets
* int findSet(int i) // given i, which set does i belong to?
 void union(inti, intj) // merge sets containingiand j
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Represent Sets As Trees

In our implementation, we’ll represent each set as a tree

Identify set by its root node’s ID (its “label”)
 findSet() means tracing up to root
* union() makes one root child of the other root

Two sets After a union
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Union/Find and Disjoint Sets

Needs to support the following operations
* void makeSet(int n) //construct n independent sets

Solution:

 Store as array of size n. Each location stores label for
that set.

OEEHBEOBED
0 1 2 3 4 5 6 7
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Union/Find and Disjoint Sets

Needs to support the following operations
* int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where
index and contents match

e Start at index i and repeat:
e |f a[i] ==ithen returni
e Else seti=ali]

offr 2NN NsRel7
0 1 2 3 4 5 6 7
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Union/Find and Disjoint Sets

Needs to support the following operations
 void union(inti, intj) //merge setsiand j

Solution: find label for each set (call find() method),
then set one label to point to other

* Labell = find(i); Label2 = find(j)
* a[Labell] = Label2 //OR a[Label2] = Labell

offtfo Nyl Hel7
0 1 2 3 4 5 6 7
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Union/Find and Disjoint Sets

Example:
* union(4,5)
* union(6,7)
e union(1,2)
* union(5,6)
 find(1); find(4); find(6)

OBEBEOBDD
0 1 2 3 4 5 6 7
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Example Using MST Example
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Union/Find and Disjoint Sets

Time-complexity, where n is size of array?

makeSet()
* Linear: just create array and fill it with values

find()

* Linear if have to trace a long way to get to label
e Constant if lucky and input is the label (root note) or near it

union()
* Constant to change the label BUT...

 Could be linear to find the two labels first.
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Optimization 1: Union by rank

Two Sets: Union’d under 0; Union'd under 3:
(0 (o) (3)
© H ©» O O
o (2) ) OO
OO ONONO o
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Optimization 1: Union by rank

Easy to implement!!

What’s “rank” here?

* Upper bound on height of a node in our
set’s tree

Union by rank:

* Make the root with smaller rank point to
the root with larger rank

MAKE-SET(x)

1 x.p=x
2 x.rank = 0

UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

1 if x.rank > y.rank

2 VP =X

3 elsex.p=y

4 if x.rank == y.rank

5 y.rank = y.rank + 1
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Optimization 2: Path Compression

Nothing special about tree’s structure,
as long as we can trace back to root

Idea: as we do a find,
each node we visit gets
updated to point
directly to root

Later finds will be faster

71



Optimization 2: Path Compression

Also easy to implement
* CLRS code uses recursion =

, FIND-SET(x)
* Or would loop and keep a list

1 ifx #x.p
2 x.p = FIND-SET(x.p)
def find_set(x): 3 return x.p
path = []
while X != X.p:
path.append(x)
X = X.p
for n 1n path:
n.p = xX.p

return x.p
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Complexity for Kruskal’s

Union-by-rank and path compression yields m operations in @(m * a(n))

* where a(n) a VERY slowly growing function. (See textbook for details)

* mis the number of times you run the operation. So constant time, for each
operation

So overall Kruskal’s with path compression:
O(E *xlog(V) + E 1) = O(E *log(V)) //now the heap is slowest part

Originally:
OCE xlog(V)+ ExV)=0(E*V) = 0(V3) //Assumed find and union linear time
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Summary




What did we learn?

Minimum Spanning Trees

Prim’s Algorithm
* Very similar to Dijkstra’s SP algorithm
* Different greedy choice to add next edge to tree

Kruskal’s Algorithm
Find-union
 How to implement

* How to optimize
* How it affects runtime of Kruskal’s algorithm.
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