
CS 3100
Data Structures and Algorithms 2

Lecture 13: Minimum Spanning Tree Algorithms

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:
• Chapter 21

Announcements

• PS5 due Tomorrow
• PA3 coming soon!
• Office hours

• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
• TA office hours posted on our website
• Office hours are not for "checking solutions"

2

Reminders about Greedy Algorithms

Reminder: Some Terminology

Optimization problems: terminology
• A solution must meet certain constraints:

A solution is feasible
Example: A possible shortest path must meet these criteria:

All edges must be in the graph and form a simple path.
• Solutions judged on some criteria:

Objective function
Example: The sum of edge weights in path is minimum
• One (or more) feasible solutions that scores highest (by the objective

function) is called the optimal solution(s)
The greedy approach is often a good choice for optimization problems

• So is dynamic programming (coming later in the course)

4

Reminder: Greedy Strategy: An Overview

Greedy strategy:
• Build solution by stages, adding one item to the partial solution we’ve found

before this stage
• At each stage, make locally optimal choice based on the greedy choice

(sometimes called the greedy rule or the selection function)
• Locally optimal, i.e. best given what info we have now

• Irrevocable: a choice can’t be un-done
• Sequence of locally optimal choices leads to globally optimal solution (hopefully)

• Must prove this for a given problem!

5

Reminder: We’ve Seen Greedy Graph Algorithms

Dijkstra’s Shortest Path is greedy!
Build solution by adding item to partial solution
• Dijkstra’s: add edge to connect kth vertex, where the edges for the k-1 already

selected show the shortest paths to those k-1 vertices

Greedy choice
• Dijkstra’s: for all vertices connected to one of the k-1 vertices already

processed, choose w where dist(s,w) is the minimum

We did have to prove that this sequence of locally optimal choices
leads to globally optimal solution

6

Minimum Spanning Trees

Readings: CLRS 21
(but not 21.1)

7

Spanning Tree

8

A tree 𝑇 = (𝑉! , 𝐸!) is a spanning tree for an undirected
graph 𝐺 = (𝑉, 𝐸) if 𝑉! = 𝑉, 𝐸! ⊆ 𝐸

(namely, 𝑇 connects or “spans” all the nodes in 𝐺)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

• All connected graphs have
spanning tree(s)

• All spanning trees have the same
number of nodes (all of them)

• You can construct a spanning tree
by arbitrarily remove edges from
cycles

How many edges
does 𝑇 have?

Spanning Tree: Example

9

Original Graph:

Possible spanning trees:

Minimum Spanning Tree

10

Just constructing any spanning tree is simple

Suppose edges have weights
• Cost of building tracks between two stations
• Length of wire between boxes in a house
• Cheapest way to connect all nodes in some kind of network

Each spanning tree has a different total cost (sum of edges included in tree)

The Minimum Spanning Tree is the spanning tree with lowest overall cost

Minimum Spanning Tree

11

A tree 𝑇 = (𝑉! , 𝐸!) is a minimum spanning tree for an
undirected graph 𝐺 = (𝑉, 𝐸) if 𝑇 is a spanning tree of

minimal cost

Cost 𝑇 = .
#∈%!

𝑤(𝑒)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

How many edges
does 𝑇 have?

MST Algorithms

We’ll see two greedy algorithms to find a graph’s MST
• Prim’s algorithm

• Very similar to Dijkstra’s SP algorithm
• Builds a single tree, adding one edge to grow the tree

• Kruskal’s algorithm
• In a forest of trees, add an edge at each step to grow

one tree or to connect two trees (don’t make a cycle)
• Utilizes an interesting data structure for manipulating

sets

Prim’s Algorithm
CLRS in 21.2

1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• At each step, add the node “nearest” to the source into tree 𝑻

Reminder: Dijkstra’s SP Algorithm

15

10

2

6 11

9
5

8

3

7

3

1

8

12

9
10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Initially: At some point later:

TT

Greedy Choice
Property!

1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• At each step, add the node with minimum connecting edge to a node in 𝑇

Prim’s MST Algorithm

16

10

2

6 11

9
5

8

3

7

3

1

8

12

9
10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

9

7

8

∞
5

∞

8

Initially: At some point later:

TT

The Greedy Choice! Same
strategy, but different

greedy choice to solve a
different problem

Prim’s Algorithm

17

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

18

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

19

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

20

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

21

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

22

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

23

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

24

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

25

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

26

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

28

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
• Maintain nodes not in	𝑇 in a min-heap (priority queue)
• Find the next closest node 𝑣 by extracting min from priority queue
• Each time node 𝑣 is added to the tree, update keys for neighbors still in min-heap
• Repeat until no nodes left in min-heap

Prim’s Algorithm Implementation

29

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑* = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑* as the key
pick a starting node 𝑠 and set 𝑑+ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑,:
 PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: minimum cost to connect
𝑢 to nodes in PQ

Prim’s Algorithm

30

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

9

7

∞
5

∞

8

Prim’s Algorithm

31

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

9

7

6

11

8

Prim’s Algorithm

32

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

1

3
11

8

Reminder: Dijkstra’s Algorithm Implementation

33

1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the “nearest” node not yet in 𝑇 to 𝑇

Implementation:
initialize 𝑑* = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑* as the key
set 𝑑+ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑* +𝑤 𝑣, 𝑢 < 𝑑,:
 PQ. decreaseKey 𝑢, 𝑑* +𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: length of shortest path
𝑠 → 𝑢 using nodes in PQ

Prim’s Algorithm Implementation

34

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑* = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑* as the key
pick a starting node 𝑠 and set 𝑑+ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑,:
 PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: minimum cost to connect
𝑢 to nodes in PQ

Implementation (with nodes in the priority queue):
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
pick a starting node 𝑠 and set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑#:
 PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Prim’s Algorithm Running Time

35

𝑂 𝑉
Initialization:

𝑉 iterations
𝑂 log 𝑉
𝐸 iterations total

𝑂 log 𝑉

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉

Same as for Dijkstra’s Shortest Path algorithm!

Using indirect
heaps

Kruskal’s MST Algorithm

Readings: CLRS first part of 21.2

36

Kruskal’s Algorithm

37

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

The Greedy Choice
for Kruskal’s

Kruskal’s Algorithm

38

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

39

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

40

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

41

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

42

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

43

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

44

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

45

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

46

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

47

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

48

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

49

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Now 𝑛 − 1 edges have
been added.
All nodes are connected.
Algorithm is done!

Kruskal’s Algorithm

51

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

Time complexity: 𝑂 𝛼 𝑛 ,
where 𝛼 is the “inverse Ackermann function” (extremely slow-growing function)

for all “practical” 𝑛, 𝛼 𝑛 < 5 (e.g., for all 𝑛 < 2-!
"##$"

− 3)

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

Time Complexity: Kruskal’s Algorithm

52

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

• Overall running time: 𝑂 𝐸 	log 𝐸 = 𝑂 𝐸 	log 𝑉
𝐸 ≤ 𝑉 - ⇒ log 𝐸 = 𝑂 log 𝑉

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

More on Implementation for Kruskal’s

53

Let EL be the set of edges sorted ascending by weight
Consider each vertex to be in a tree of size 1
For each edge e in EL

T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1 != T2) // the nodes are not in the same Tree

Add e to the output set of edges T (which becomes the MST)
Combine trees T1 and T2

Seems simple, no?
• But, how do you keep track of what tree a vertex is in?
• Trees are sets of vertices. Need to findset(v) and “union” two sets

Practice

55

MST

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8

1

Can you do Prim’s MST on This?

56

MST

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8

1

v1
{v1, v4}
{v1, v2}
{v4, v3}
{v4, v7}
{v7, v6}
{v7, v5}

v1

v4

v2

v3

v7v6

v5

Can you do Kruskal’s MST on This?

v4

v7

v2

v3 v5

v6

v1

2

2

5

4

7

1 10

4 6

3

8

1

MST and Kruskal’s Example

v4

v7

v2

v3 v5

v6

v1

2

2

5

4

7

1 10

4 6

3

8

1

v1

v4

v2

v3

v7
v6

v5

Cost(MST) = 16

Disjoint Sets and Find/Union
Algorithms
Readings: CLRS 19.3

59

Union/Find and Disjoint Sets

60

An Abstract Data Type (ADT) for a collection of sets of any kind of item,
where an item can only belong to one of the sets
• We’ll assume each item is identified by a unique integer value

Need to support the following operations
• void makeSet(int n) // construct n independent sets
• int findSet(int i) // given i, which set does i belong to?
• void union(int i, int j) // merge sets containing i and j

Represent Sets As Trees

61

In our implementation, we’ll represent each set as a tree
Identify set by its root node’s ID (its “label”)
• findSet() means tracing up to root
• union() makes one root child of the other root

Two sets After a union

Union/Find and Disjoint Sets

62

Needs to support the following operations
• void makeSet(int n) //construct n independent sets

Solution:
• Store as array of size n. Each location stores label for

that set.

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

63

Needs to support the following operations
• int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where
index and contents match
• Start at index i and repeat:
• If a[i] == i then return i
• Else set i = a[i]

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

64

Needs to support the following operations
• void union(int i, int j) //merge sets i and j

Solution: find label for each set (call find() method),
then set one label to point to other
• Label1 = find(i); Label2 = find(j)
• a[Label1] = Label2 //OR a[Label2] = Label1

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

65

Example:
• union(4,5)
• union(6,7)
• union(1,2)
• union(5,6)
• find(1); find(4); find(6)

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Example Using MST Example

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8
1

v1

v4

v2

v3

v7v6

v5

67

Union/Find and Disjoint Sets

68

Time-complexity, where n is size of array?

makeSet()
• Linear: just create array and fill it with values

find()
• Linear if have to trace a long way to get to label
• Constant if lucky and input is the label (root note) or near it

union()
• Constant to change the label BUT…
• Could be linear to find the two labels first.

Optimization 1: Union by rank

69

Two Sets: Union’d under 0: Union’d under 3:

Optimization 1: Union by rank

70

Easy to implement!!
What’s “rank” here?

• Upper bound on height of a node in our
set’s tree

Union by rank:
• Make the root with smaller rank point to

the root with larger rank

Optimization 2: Path Compression

71

Nothing special about tree’s structure,
as long as we can trace back to root
Idea: as we do a find,
each node we visit gets
updated to point
directly to root
Later finds will be faster

Optimization 2: Path Compression

72

Also easy to implement
• CLRS code uses recursion à
• Or would loop and keep a list

def find_set(x):
 path = []
 while x != x.p:
 path.append(x)
 x = x.p
 for n in path:
 n.p = x.p
 return x.p

Complexity for Kruskal’s

73

Union-by-rank and path compression yields m operations in Θ 𝑚 ∗ 𝛼 𝑛
• where 𝛼 𝑛 a VERY slowly growing function. (See textbook for details)
• m is the number of times you run the operation. So constant time, for each

operation

So overall Kruskal’s with path compression:
Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 1 = Θ(𝐸 ∗ log 𝑉) //now the heap is slowest part

Originally:
Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 𝑉 = Θ 𝐸 ∗ 𝑉 = 𝑶 𝑽𝟑 //Assumed find and union linear time

Summary

74

What did we learn?

75

Minimum Spanning Trees
Prim’s Algorithm
• Very similar to Dijkstra’s SP algorithm
• Different greedy choice to add next edge to tree

Kruskal’s Algorithm
Find-union
• How to implement
• How to optimize
• How it affects runtime of Kruskal’s algorithm.

