CS 3100

Data Structures and Algorithms 2 Lecture 13: Minimum Spanning Tree Algorithms

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS $4^{\text {th }}$ edition:

- Chapter 21

Announcements

- PS5 due Tomorrow
- PA3 coming soon!
- Office hours
- Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
- Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
- TA office hours posted on our website
- Office hours are not for "checking solutions"

Reminders about Greedy Algorithms

Reminder: Some Terminology

Optimization problems: terminology

- A solution must meet certain constraints:

A solution is feasible
Example: A possible shortest path must meet these criteria:
All edges must be in the graph and form a simple path.

- Solutions judged on some criteria:

Objective function
Example: The sum of edge weights in path is minimum

- One (or more) feasible solutions that scores highest (by the objective function) is called the optimal solution(s)
The greedy approach is often a good choice for optimization problems
- So is dynamic programming (coming later in the course)

Reminder: Greedy Strategy: An Overview

Greedy strategy:

- Build solution by stages, adding one item to the partial solution we've found before this stage
- At each stage, make locally optimal choice based on the greedy choice (sometimes called the greedy rule or the selection function)
- Locally optimal, i.e. best given what info we have now
- Irrevocable: a choice can't be un-done
- Sequence of locally optimal choices leads to globally optimal solution (hopefully)
- Must prove this for a given problem!

Reminder: We've Seen Greedy Graph Algorithms

Dijkstra's Shortest Path is greedy!
Build solution by adding item to partial solution

- Dijkstra's: add edge to connect k th vertex, where the edges for the $k-1$ already selected show the shortest paths to those k - 1 vertices
Greedy choice
- Dijkstra's: for all vertices connected to one of the $k-1$ vertices already processed, choose w where $\operatorname{dist}(s, w)$ is the minimum
We did have to prove that this sequence of locally optimal choices leads to globally optimal solution

Minimum Spanning Trees

Readings: CLRS 21
(but not 21.1)

Spanning Tree

- All connected graphs have spanning tree(s)
- All spanning trees have the same number of nodes (all of them)
- You can construct a spanning tree by arbitrarily remove edges from cycles

How many edges does T have?

$$
\operatorname{graph} G=(V, E) \text { if } V_{T}=V, E_{T} \subseteq E
$$

(namely, T connects or "spans" all the nodes in G)

Spanning Tree: Example

Original Graph:

Possible spanning trees:

Minimum Spanning Tree

Just constructing any spanning tree is simple

Suppose edges have weights

- Cost of building tracks between two stations
- Length of wire between boxes in a house
- Cheapest way to connect all nodes in some kind of network

Each spanning tree has a different total cost (sum of edges included in tree)

The Minimum Spanning Tree is the spanning tree with lowest overall cost

Minimum Spanning Tree

$$
\operatorname{Cost}(T)=\sum_{e \in E_{T}} w(e)
$$

How many edges does T have?

MST Algorithms

We'll see two greedy algorithms to find a graph's MST

- Prim's algorithm
- Very similar to Dijkstra's SP algorithm
- Builds a single tree, adding one edge to grow the tree
- Kruskal's algorithm
- In a forest of trees, add an edge at each step to grow one tree or to connect two trees (don't make a cycle)
- Utilizes an interesting data structure for manipulating sets

Prim's Algorithm

CLRS in 21.2

Reminder: Dijkstra's SP Algorithm

1. Start with an empty tree T and add the source to T
2. Repeat $|V|-1$ times:

Greedy Choice Property!

- At each step, add the node "nearest" to the source into tree T

Initially:

At some point later:

Prim's MST Algorithm

1. Start with an empty tree T and add the source to T 2. Repeat $|V|-1$ times:

The Greedy Choice! Same strategy, but different greedy choice to solve a different problem

- At each step, add the node with minimum connecting edge to a node in T

Initially:

At some point later:

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Implementation:

- Maintain nodes not in T in a min-heap (priority queue)
- Find the next closest node v by extracting min from priority queue
- Each time node v is added to the tree, update keys for neighbors still in min-heap
- Repeat until no nodes left in min-heap

Prim's Algorithm Implementation

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
each node also maintains a
parent, initially NULL pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:

$$
\text { if } u \in P Q \text { and } w(v, u)<d_{u}: \quad \text { key: minimum cost to connect }
$$

$$
\text { PQ. decreaseKey }(u, w(v, u))
$$

u to nodes in PQ

$$
u . \text { parent }=v
$$

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Reminder: Dijkstra's Algorithm Implementation

1. Start with an empty tree T and add the source to T
2. Repeat $|V|-1$ times:

- Add the "nearest" node not yet in T to T

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
each node also maintains a
parent, initially NULL
set $d_{S}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:

$$
\begin{aligned}
& \text { if } u \in P Q \text { and } d_{v}+w(v, u)<d_{u}: \\
& \quad \mathrm{PQ} . \operatorname{decrease} \operatorname{Key}\left(u, d_{v}+w(v, u)\right) \\
& \quad u . \text { parent }=v
\end{aligned}
$$

key: length of shortest path
$s \rightarrow u$ using nodes in PQ

Prim's Algorithm Implementation

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
each node also maintains a
parent, initially NULL pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:

$$
\text { if } u \in P Q \text { and } w(v, u)<d_{u}: \quad \text { key: minimum cost to connect }
$$

$$
\text { PQ. decreaseKey }(u, w(v, u))
$$ u to nodes in PQ

$$
u . \text { parent }=v
$$

Prim's Algorithm Running Time

Same as for Dijkstra's Shortest Path algorithm!

Implementation (with nodes in the priority queue):
initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $w(v, u)<d_{u}$:

$$
\begin{aligned}
& \text { PQ. decreaseKey }(u, w(v, u)) \\
& u . \text { parent }=v
\end{aligned}
$$

Initialization:

$$
O(|V|)
$$

$|V|$ iterations
$O(\log |V|)$
$|E|$ iterations total
$O(\log |V|)$
Using indirect heaps

Overall running time: $O(|V| \log |V|+|E| \log |V|)=O(|E| \log |V|)$

Kruskal's MST Algorithm

Readings: CLRS first part of 21.2

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Edge forms a cycle, so do not include

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Edge forms a cycle, so do not include

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Edge forms a cycle, so do not include

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

Edge forms a cycle, so do not include

Kruskal's Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle. (Stop when we've added $n-1$ edges.)

```
Now n-1 edges have been added. All nodes are connected. Algorithm is done!
```


Kruskal's Algorithm

1. Start with an empty tree T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle

Implementation: iterate over each of the edges in the graph (sorted by weight), and maintain nodes in a union-find (also called disjoint-set) data structure:

- Data structure that tracks elements partitioned into different sets
- Union: Merges two sets into one
- Find: Given an element, return the index of the set it belongs to
- Both "union" and "find" operations are very fast

Time complexity: $O(\alpha(n))$,
where α is the "inverse Ackermann function" (extremely slow-growing function)

$$
\text { for all "practical" } n, \alpha(n)<5 \text { (e.g., for all } n<2^{2^{2^{65536}}}-3 \text {) }
$$

Time Complexity: Kruskal's Algorithm

1. Start with an empty tree T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle

Implementation: iterate over each of the edges in the graph (sorted by weight), and maintain nodes in a union-find (also called disjoint-set) data structure:

- Data structure that tracks elements partitioned into different sets
- Union: Merges two sets into one
- Find: Given an element, return the index of the set it belongs to
- Both "union" and "find" operations are very fast
- Overall running time: $O(|E| \log |E|)=O(|E| \log |V|)$

$$
|E| \leq|V|^{2} \Rightarrow \log |E|=O(\log |V|)
$$

More on Implementation for Kruskal's

Let $E L$ be the set of edges sorted ascending by weight Consider each vertex to be in a tree of size 1
For each edge e in $E L$
T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1 != T2) // the nodes are not in the same Tree
Add e to the output set of edges T (which becomes the MST) Combine trees T1 and T2

Seems simple, no?

- But, how do you keep track of what tree a vertex is in?
- Trees are sets of vertices. Need to findset(v) and "union" two sets

Practice

Can you do Prim's MST on This?

Can you do Kruskal's MST on This?

MST and Kruskal's Example

Disjoint Sets and Find/Union Algorithms

Readings: CLRS 19.3

Union/Find and Disjoint Sets

An Abstract Data Type (ADT) for a collection of sets of any kind of item, where an item can only belong to one of the sets

- We'll assume each item is identified by a unique integer value

Need to support the following operations

- void makeSet(int n)
- int findSet(int i) // given i, which set does i belong to?
- void union(int $\mathrm{i}, \mathrm{int} \mathrm{j})$ // merge sets containing i and j

Represent Sets As Trees

In our implementation, we'll represent each set as a tree
Identify set by its root node's ID (its "label")

- findSet() means tracing up to root
- union() makes one root child of the other root

Two sets

Union/Find and Disjoint Sets

Needs to support the following operations

- void makeSet(int n) //construct n independent sets

Solution:

- Store as array of size n. Each location stores label for that set.

0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7

Union/Find and Disjoint Sets

Needs to support the following operations

- int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where index and contents match

- Start at index i and repeat:
- If a[i] == i then return i
- Else set $\mathrm{i}=\mathrm{a}[\mathrm{i}]$

0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7

Union/Find and Disjoint Sets

Needs to support the following operations

- void union(int i, int $j) \quad / / m e r g e ~ s e t s i a n d ~ j$

Solution: find label for each set (call find() method), then set one label to point to other

- Label1 = find(i); Label2 = find(j)
- a[Label1] = Label2 //OR a[Label2] = Label1

0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7

Union/Find and Disjoint Sets

Example:

- union $(4,5)$
- union $(6,7)$
- union $(1,2)$
- union(5,6)
- find(1); find(4); find(6)

0	1	2	3	4	5	6	7
0	1	2	3	4	5	6	7

Example Using MST Example

Union/Find and Disjoint Sets

Time-complexity, where n is size of array?
makeSet()

- Linear: just create array and fill it with values
find()
- Linear if have to trace a long way to get to label
- Constant if lucky and input is the label (root note) or near it
union()
- Constant to change the label BUT...
- Could be linear to find the two labels first.

Optimization 1: Union by rank

Two Sets:

Union'd under 0:

Union'd under 3:

Optimization 1: Union by rank

Easy to implement!!
What's "rank" here?

- Upper bound on height of a node in our set's tree
Union by rank:
- Make the root with smaller rank point to the root with larger rank

```
MaKe-SET(x)
1 x.p = x
2 x.rank = 0
UNION(x,y)
1 Link(Find-SEt(x), Find-Set(y))
LINK (x,y)
if x.rank > y.rank
    y.p =x
    else }x.p=
    if x.rank == y.rank
        y.rank = y.rank +1
```


Optimization 2: Path Compression

Nothing special about tree's structure, as long as we can trace back to root
Idea: as we do a find, each node we visit gets updated to point directly to root
Later finds will be faster

Optimization 2: Path Compression

Also easy to implement

- CLRS code uses recursion \rightarrow
- Or would loop and keep a list
def find_set(x):
path = []
while x ! $=x . p:$
path.append (x)
$\mathrm{x}=\mathrm{x} . \mathrm{p}$
for n in path:

$$
\mathrm{n} . \mathrm{p}=\mathrm{x} \cdot \mathrm{p}
$$

return x.p

Find-Set (x)
1 if $x \neq x . p$
$2 \quad x \cdot p=\operatorname{Find}-\operatorname{Set}(x . p)$
3 return $x . p$

Complexity for Kruskal's

Union-by-rank and path compression yields m operations in $\Theta(m * \alpha(n))$

- where $\alpha(n)$ a VERY slowly growing function. (See textbook for details)
- m is the number of times you run the operation. So constant time, for each operation
So overall Kruskal's with path compression:

$$
\Theta(E * \log (V)+E * 1)=\Theta(E * \log (V)) \quad / / \text { now the heap is slowest part }
$$

Originally:

$$
\Theta(E * \log (V)+E * V)=\Theta(E * V)=\boldsymbol{O}\left(V^{3}\right) / / \text { Assumed find and union linear time }
$$

Summary

What did we learn?

Minimum Spanning Trees
Prim's Algorithm

- Very similar to Dijkstra's SP algorithm
- Different greedy choice to add next edge to tree

Kruskal's Algorithm
Find-union

- How to implement
- How to optimize
- How it affects runtime of Kruskal's algorithm.

