CS 3100

Data Structures and Algorithms 2

Lecture 13: Minimum Spanning Tree Algorithms

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4t edition:
* Chapter 21

Announcements

e PS5 due Tomorrow
* PA3 coming soon!

e Office hours
* Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

* Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
* TA office hours posted on our website
e Office hours are not for "checking solutions”

Reminders about Greedy Algorithms

Reminder: Some Terminology

Optimization problems: terminology

e A solution must meet certain constraints:
A solution is feasible

Example: A possible shortest path must meet these criteria:
All edges must be in the graph and form a simple path.

* Solutions judged on some criteria:
Objective function
Example: The sum of edge weights in path is minimum

* One (or more) feasible solutions that scores highest (by the objective
function) is called the optimal solution(s)

The greedy approach is often a good choice for optimization problems
* So is dynamic programming (coming later in the course)

Reminder: Greedy Strategy: An Overview

Greedy strategy:

* Build solution by stages, adding one item to the partial solution we’ve found
before this stage

* At each stage, make locally optimal choice based on the greedy choice
(sometimes called the greedy rule or the selection function)
* Locally optimal, i.e. best given what info we have now

* |rrevocable: a choice can’t be un-done

» Sequence of locally optimal choices leads to globally optimal solution (hopefully)
* Must prove this for a given problem!

Reminder: We’ve Seen Greedy Graph Algorithms

Dijkstra’s Shortest Path is greedy!

Build solution by adding item to partial solution

 Dijkstra’s: add edge to connect kth vertex, where the edges for the k-1 already
selected show the shortest paths to those k-1 vertices

Greedy choice

 Dijkstra’s: for all vertices connected to one of the k-1 vertices already
processed, choose w where dist(s,w) is the minimum

We did have to prove that this sequence of locally optimal choices
leads to globally optimal solution

Minimum Spanning Trees

Readings: CLRS 21
(but not 21.1)

Spanning Tree

* All connected graphs have
spanning tree(s)

* All spanning trees have the same
number of nodes (all of them)

* You can construct a spanning tree
by arbitrarily remove edges from
cycles

®Atree T = (Vr, E7) is a spanning tree for an undirected
How many edges graphG = (V,E)ifV; =V,E; C FE
does T have? (namely, T connects or “spans” all the nodes in G)

Spanning Tree: Example
Original Graph: ?

Possible spanning trees:

et o

Minimum Spanning Tree

Just constructing any spanning tree is simple

Suppose edges have weights

e Cost of building tracks between two stations
* Length of wire between boxes in a house
e Cheapest way to connect all nodes in some kind of network

Each spanning tree has a different total cost (sum of edges included in tree)

The Minimum Spanning Tree is the spanning tree with lowest overall cost

10

Minimum Spanning Tree

® Atree T = (Vr, E+) is a minimum spanning tree for an
How many edges undirected graph G = (V,E) if T is a spanning tree of
does T have? minimal cost

11

MST Algorithms

We'll see two greedy algorithms to find a graph’s MST
* Prim’s algorithm

* Very similar to Dijkstra’s SP algorithm

* Builds a single tree, adding one edge to grow the tree

* Kruskal’s algorithm

* |n a forest of trees, add an edge at each step to grow
one tree or to connect two trees (don’t make a cycle)

e Utilizes an interesting data structure for manipulating
sets

Prim’s Algorithm

CLRS in 21.2

Reminder: Dijkstra’s SP Algorithm

Greedy Choice

1. Start with an empty tree T and add the source to T’
Property!

2. Repeat |[V]| — 1 times:
* At each step, add the node “nearest” to the source into tree T

Initially: At some point later:

Prim’s MST Algorith

The Greedy Choice! Same
strategy, but different
1. Start with an empty tree T and add the source to T /=[50 ae eile-n (oo ==

2. Repeat |V| — 1 times: different problem
* At each step, add the node with minimum connecting edge to anode in T

Initially: At some point later:

16

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

3

17

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

18

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

19

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

20

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

21

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

22

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

23

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

24

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

25

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

26

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation:
 Maintain nodes notin T in a min-heap (priority queue)
* Find the next closest node v by extracting min from priority queue
 Each time node v is added to the tree, update keys for neighbors still in min-heap
* Repeat until no nodes left in min-heap

28

Prim’s Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T

2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
pick a starting node sandsetd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandw(v,u) < dy: key: minimum cost to connect

PQ. decreaseKey(u, w(v,u)) u to nodes in PQ
u.parent = v

29

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

30

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

31

Prim’s Algorithm

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

32

Reminder: Dijkstra’s Algorithm Implementation

1. Start with an empty tree T and add the sourceto T

2. Repeat |V| — 1 times:
e Addthe “nearest” node notyetinT toT

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandd, + w(v,u) < d,: key: length of shortest path
PQ. decreaseKey(u, + w(v, u)) $ = u using nodes in PQ

u.parent = v

33

Prim’s Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T

2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
pick a starting node sandsetd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandw(v,u) < dy: key: minimum cost to connect

PQ. decreaseKey(u, w(v,u)) u to nodes in PQ
u.parent = v

34

Prim’s Algorithm Running Time

Same as for Dijkstra’s Shortest Path algorithm!

Implementation (with nodes in the priority queue):

initialize d,, = oo for each node v Initialization:
add all nodes v € V to the priority queue PQ, using d,, as the key o(vD
pick a starting node s and set d. = 0
while PQ is not empty: |V | iterations
v = PQ. extractMin() O (log|V|)
for each u € V such that (v,u) € E: |E| iterations total

ifu € PQandw(v,u) < d,:
PQ. decreaseKey(u, w(v,u)) O(log|V])
heaps

Overall running time: O(|V|log|V| + |E|log|V|) = O(|E|log|V]|)

35

Kruskal’s MST Algorithm

Readings: CLRS first part of 21.2

Kruskal’s Algorithm

The Greedy Choice
for Kruskal’s

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

37

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

38

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

39

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

40

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

Edge forms a cycle, so do not include 41

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

42

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

43

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

Edge forms a cycle, so do not include 44

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

45

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

46

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

Edge forms a cycle, so do not include 47

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not
create a cycle. (Stop when we’ve added n — 1 edges.)

Edge forms a cycle, so do not include 48

Kruskal’s Algorithm

1. Start with an empty set of edges T
2. Repeatedly add to T the lowest-weight edge that does not

create a cycle. (Stop when we’ve added n — 1 edges.)

Now n — 1 edges have

been added.
All nodes are connected.

Algorithm is done!

49

Kruskal’s Algorithm

1. Start with an empty tree T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

* Data structure that tracks elements partitioned into different sets

* Union: Merges two sets into one

* Find: Given an element, return the index of the set it belongs to

* Both “union” and “find” operations are very fast

Time complexity: 0(a(n)),

where «a is the “inverse Ackermann function” (extremely slow-growing function)
265536

for all “practical” n, a(n) < 5 (e.g., for alln < 22 — 3)

Time Complexity: Kruskal’s Algorithm

1. Start with an empty tree T
2. Repeatedly add to T the lowest-weight edge that does not create a cycle

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

* Data structure that tracks elements partitioned into different sets

* Union: Merges two sets into one

* Find: Given an element, return the index of the set it belongs to

* Both “union” and “find” operations are very fast

« Overall running time: O(|E| log |E|) = O(|E| log |V|)
[E| < [V]* = log|E| = 0(log|V])

52

More on Implementation for Kruskal’s

Let EL be the set of edges sorted ascending by weight
Consider each vertex to be in a tree of size 1

For each edge e in EL
T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1!=T2) //the nodes are not in the same Tree
Add e to the output set of edges T (which becomes the MST)
Combine trees 71 and 72

Seems simple, no?
e But, how do you keep track of what tree a vertex is in?
* Trees are sets of vertices. Need to findset(v) and “union” two sets

53

Can you do Prim’s MST on This?

55

56

Can you do Kruskal’s MST on This?

MST and Kruskal’s Example

Cost(MST) = 16

Disjoint Sets and Find/Union

Algorithms

Readings: CLRS 19.3

Union/Find and Disjoint Sets

An Abstract Data Type (ADT) for a collection of sets of any kind of item,
where an item can only belong to one of the sets

 We'll assume each item is identified by a unique integer value

Need to support the following operations
 void makeSet(int n) // construct n independent sets
* int findSet(int i) // given i, which set does i belong to?
 void union(inti, intj) // merge sets containingiand j

60

Represent Sets As Trees

In our implementation, we’ll represent each set as a tree

Identify set by its root node’s ID (its “label”)
 findSet() means tracing up to root
* union() makes one root child of the other root

Two sets After a union

61

Union/Find and Disjoint Sets

Needs to support the following operations
* void makeSet(int n) //construct n independent sets

Solution:

 Store as array of size n. Each location stores label for
that set.

OEEHBEOBED
0 1 2 3 4 5 6 7

62

Union/Find and Disjoint Sets

Needs to support the following operations
* int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where
index and contents match

e Start at index i and repeat:
e |f a[i] ==ithen returni
e Else seti=ali]

offr 2NN NsRel7
0 1 2 3 4 5 6 7

63

Union/Find and Disjoint Sets

Needs to support the following operations
 void union(inti, intj) //merge setsiand j

Solution: find label for each set (call find() method),
then set one label to point to other

* Labell = find(i); Label2 = find(j)
* a[Labell] = Label2 //OR a[Label2] = Labell

offtfo Nyl Hel7
0 1 2 3 4 5 6 7

64

Union/Find and Disjoint Sets

Example:
* union(4,5)
* union(6,7)
e union(1,2)
* union(5,6)
 find(1); find(4); find(6)

OBEBEOBDD
0 1 2 3 4 5 6 7

65

Example Using MST Example

67

Union/Find and Disjoint Sets

Time-complexity, where n is size of array?

makeSet()
* Linear: just create array and fill it with values

find()

* Linear if have to trace a long way to get to label
e Constant if lucky and input is the label (root note) or near it

union()
* Constant to change the label BUT...

 Could be linear to find the two labels first.
68

Optimization 1: Union by rank

Two Sets: Union’d under 0; Union'd under 3:
(0 (o) (3)
© H ©» O O
o (2)) OO
OO ONONO o

69

Optimization 1: Union by rank

Easy to implement!!

What’s “rank” here?

* Upper bound on height of a node in our
set’s tree

Union by rank:

* Make the root with smaller rank point to
the root with larger rank

MAKE-SET(x)

1 x.p=x
2 x.rank = 0

UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

1 if x.rank > y.rank

2 VP =X

3 elsex.p=y

4 if x.rank == y.rank

5 y.rank = y.rank + 1

70

Optimization 2: Path Compression

Nothing special about tree’s structure,
as long as we can trace back to root

Idea: as we do a find,
each node we visit gets
updated to point
directly to root

Later finds will be faster

71

Optimization 2: Path Compression

Also easy to implement
* CLRS code uses recursion =

, FIND-SET(x)
* Or would loop and keep a list

1 ifx #x.p
2 x.p = FIND-SET(x.p)
def find_set(x): 3 return x.p
path = []
while X != X.p:
path.append(x)
X = X.p
for n 1n path:
n.p = xX.p

return x.p

72

Complexity for Kruskal’s

Union-by-rank and path compression yields m operations in @(m * a(n))

* where a(n) a VERY slowly growing function. (See textbook for details)

* mis the number of times you run the operation. So constant time, for each
operation

So overall Kruskal’s with path compression:
O(E *xlog(V) + E 1) = O(E *log(V)) //now the heap is slowest part

Originally:
OCE xlog(V)+ ExV)=0(E*V) = 0(V3) //Assumed find and union linear time

73

Summary

What did we learn?

Minimum Spanning Trees

Prim’s Algorithm
* Very similar to Dijkstra’s SP algorithm
* Different greedy choice to add next edge to tree

Kruskal’s Algorithm
Find-union
 How to implement

* How to optimize
* How it affects runtime of Kruskal’s algorithm.

75

