
CS 3100
Data Structures and Algorithms 2

Lecture 13: Minimum Spanning Tree Algorithms

Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:
• Chapter 21



Announcements

• PS5 due Tomorrow
• PA3 coming soon!
• Office hours

• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
• TA office hours posted on our website
• Office hours are not for "checking solutions"
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Reminders about Greedy Algorithms



Reminder: Some Terminology

Optimization problems: terminology
• A solution must meet certain constraints:

A solution is feasible
Example: A possible shortest path must meet these criteria:

All edges must be in the graph and form a simple path.
• Solutions judged on some criteria:

Objective function
Example:  The sum of edge weights in path is minimum
• One (or more) feasible solutions that scores highest (by the objective 

function) is called the optimal solution(s)
The greedy approach is often a good choice for optimization problems

• So is dynamic programming (coming later in the course)
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Reminder: Greedy Strategy: An Overview

Greedy strategy:
• Build solution by stages, adding one item to the partial solution we’ve found 

before this stage
• At each stage, make locally optimal choice based on the greedy choice

(sometimes called the greedy rule or the selection function)
• Locally optimal, i.e. best given what info we have now

• Irrevocable: a choice can’t be un-done
• Sequence of locally optimal choices leads to globally optimal solution (hopefully)

• Must prove this for a given problem!
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Reminder: We’ve Seen Greedy Graph Algorithms

Dijkstra’s Shortest Path is greedy!
Build solution by adding item to partial solution
• Dijkstra’s: add edge to connect kth vertex, where the edges for the k-1 already 

selected show the shortest paths to those k-1 vertices

Greedy choice
• Dijkstra’s: for all vertices connected to one of the k-1 vertices already 

processed, choose w where dist(s,w) is the minimum

We did have to prove that this sequence of locally optimal choices 
leads to globally optimal solution
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Minimum Spanning Trees

Readings:  CLRS 21
(but not 21.1)
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Spanning Tree
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A tree 𝑇 = (𝑉! , 𝐸!) is a spanning tree for an undirected 
graph 𝐺 = (𝑉, 𝐸) if 𝑉! = 𝑉, 𝐸! ⊆ 𝐸

(namely, 𝑇 connects or “spans” all the nodes in 𝐺)
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• All connected graphs have 
spanning tree(s)

• All spanning trees have the same 
number of nodes (all of them)

• You can construct a spanning tree 
by arbitrarily remove edges from 
cycles

How many edges 
does 𝑇 have?



Spanning Tree: Example

9

Original Graph:

Possible spanning trees:



Minimum Spanning Tree
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Just constructing any spanning tree is simple

Suppose edges have weights
• Cost of building tracks between two stations
• Length of wire between boxes in a house
• Cheapest way to connect all nodes in some kind of network

Each spanning tree has a different total cost (sum of edges included in tree)

The Minimum Spanning Tree is the spanning tree with lowest overall cost



Minimum Spanning Tree
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A tree 𝑇 = (𝑉! , 𝐸!) is a minimum spanning tree for an 
undirected graph 𝐺 = (𝑉, 𝐸) if 𝑇 is a spanning tree of 

minimal cost

Cost 𝑇 = .
#∈%!

𝑤(𝑒)
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How many edges 
does 𝑇 have?



MST Algorithms

We’ll see two greedy algorithms to find a graph’s MST
• Prim’s algorithm

• Very similar to Dijkstra’s SP algorithm
• Builds a single tree, adding one edge to grow the tree

• Kruskal’s algorithm
• In a forest of trees, add an edge at each step to grow 

one tree or to connect two trees (don’t make a cycle)
• Utilizes an interesting data structure for manipulating 

sets



Prim’s Algorithm
CLRS in 21.2



1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• At each step, add the node “nearest” to the source into tree 𝑻

Reminder: Dijkstra’s SP Algorithm
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1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• At each step, add the node with minimum connecting edge to a node in 𝑇

Prim’s MST Algorithm
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The Greedy Choice! Same 
strategy, but different 

greedy choice to solve a 
different problem



Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm

19

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
• Maintain nodes not in	𝑇 in a min-heap (priority queue)
• Find the next closest node 𝑣 by extracting min from priority queue
• Each time node 𝑣 is added to the tree, update keys for neighbors still in min-heap
• Repeat until no nodes left in min-heap



Prim’s Algorithm Implementation
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑* = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑* as the key
pick a starting node 𝑠 and set 𝑑+ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑,:
   PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: minimum cost to connect 
𝑢 to nodes in PQ



Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm

32

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Reminder: Dijkstra’s Algorithm Implementation
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1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the “nearest” node not yet in 𝑇 to 𝑇

Implementation:
initialize 𝑑* = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑* as the key
set 𝑑+ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑* +𝑤 𝑣, 𝑢 < 𝑑,:
   PQ. decreaseKey 𝑢, 𝑑* +𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: length of shortest path 
𝑠 → 𝑢 using nodes in PQ



Prim’s Algorithm Implementation
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑* = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑* as the key
pick a starting node 𝑠 and set 𝑑+ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑,:
   PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: minimum cost to connect 
𝑢 to nodes in PQ



Implementation (with nodes in the priority queue):
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
pick a starting node 𝑠 and set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

Prim’s Algorithm Running Time

35

𝑂 𝑉
Initialization:

𝑉  iterations
𝑂 log 𝑉
𝐸  iterations total

𝑂 log 𝑉

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉

Same as for Dijkstra’s Shortest Path algorithm!

Using indirect 
heaps



Kruskal’s MST Algorithm

Readings:  CLRS first part of 21.2
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Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)
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The Greedy Choice 
for Kruskal’s



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)
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Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)
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Kruskal’s Algorithm
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Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)



Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Now 𝑛 − 1 edges have 
been added.
All nodes are connected.
Algorithm is done! 



Kruskal’s Algorithm
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Implementation: iterate over each of the edges in the graph (sorted by weight), and 
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

Time complexity: 𝑂 𝛼 𝑛 , 
where 𝛼 is the “inverse Ackermann function” (extremely slow-growing function)

for all “practical” 𝑛, 𝛼 𝑛 < 5 (e.g., for all 𝑛 < 2-!
"##$"

− 3)

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle



Time Complexity: Kruskal’s Algorithm

52

Implementation: iterate over each of the edges in the graph (sorted by weight), and 
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

• Overall running time: 𝑂 𝐸 	log 𝐸 = 𝑂 𝐸 	log 𝑉
𝐸 ≤ 𝑉 - ⇒ log 𝐸 = 𝑂 log 𝑉  

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle



More on Implementation for Kruskal’s
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Let EL be the set of edges sorted ascending by weight
Consider each vertex to be in a tree of size 1
For each edge e in EL

T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1 != T2)    // the nodes are not in the same Tree

Add e to the output set of edges T (which becomes the MST)
Combine trees T1 and T2

Seems simple, no?
• But, how do you keep track of what tree a vertex is in?
• Trees are sets of vertices. Need to findset(v) and “union” two sets



Practice
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Can you do Kruskal’s MST on This?
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MST and Kruskal’s Example
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Cost(MST) = 16



Disjoint Sets and Find/Union 
Algorithms
Readings:  CLRS 19.3
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Union/Find and Disjoint Sets
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An Abstract Data Type (ADT) for a collection of sets of any kind of item, 
where an item can only belong to one of the sets
• We’ll assume each item is identified by a unique integer value

Need to support the following operations
• void makeSet(int n) // construct n independent sets
• int findSet(int i) // given i, which set does i belong to?
• void union(int i, int j) // merge sets containing i and j



Represent Sets As Trees

61

In our implementation, we’ll represent each set as a tree
Identify set by its root node’s ID (its “label”)
• findSet() means tracing up to root
• union() makes one root child of the other root

Two sets After a union



Union/Find and Disjoint Sets
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Needs to support the following operations
• void makeSet(int n) //construct n independent sets

Solution:
• Store as array of size n. Each location stores label for 

that set.

  0       1       2       3       4       5       6       7

  0       1       2       3       4       5       6       7



Union/Find and Disjoint Sets
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Needs to support the following operations
• int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where 
index and contents match
• Start at index i and repeat:
• If a[i] == i then return i
• Else set i = a[i]

  0      1        2       3       4       5       6      7

  0       1       2       3       4       5       6       7



Union/Find and Disjoint Sets
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Needs to support the following operations
• void union(int i, int j) //merge sets i and j

Solution: find label for each set (call find() method), 
then set one label to point to other
• Label1 = find(i); Label2 = find(j)
• a[Label1] = Label2 //OR a[Label2] = Label1

  0       1       2       3       4       5       6      7

  0       1       2       3       4       5       6      7 



Union/Find and Disjoint Sets
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Example:
• union(4,5)
• union(6,7)
• union(1,2)
• union(5,6)
• find(1); find(4); find(6)

  0       1       2       3       4       5       6      7

  0       1       2       3       4       5       6      7 
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Union/Find and Disjoint Sets
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Time-complexity, where n is size of array?

makeSet()
• Linear: just create array and fill it with values

find()
• Linear if have to trace a long way to get to label
• Constant if lucky and input is the label (root note) or near it

union()
• Constant to change the label BUT…
• Could be linear to find the two labels first.



Optimization 1: Union by rank
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Two Sets:                   Union’d under 0:             Union’d under 3:



Optimization 1: Union by rank
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Easy to implement!!
What’s “rank” here?

• Upper bound on height of a node in our 
set’s tree

Union by rank:
• Make the root with smaller rank point to 

the root with larger rank 



Optimization 2: Path Compression
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Nothing special about tree’s structure,
as long as we can trace back to root
Idea: as we do a find,
each node we visit gets
updated to point
directly to root
Later finds will be faster



Optimization 2: Path Compression
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Also easy to implement
• CLRS code uses recursion à
• Or would loop and keep a list 

def find_set(x):
  path = []
  while x != x.p:
     path.append(x)
     x = x.p
  for n in path:
     n.p = x.p
  return x.p



Complexity for Kruskal’s
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Union-by-rank and path compression yields m operations in Θ 𝑚 ∗ 𝛼 𝑛
• where 𝛼 𝑛 a VERY slowly growing function. (See textbook for details)
• m is the number of times you run the operation. So constant time, for each 

operation

So overall Kruskal’s with path compression:
Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 1 = Θ(𝐸 ∗ log 𝑉 ) //now the heap is slowest part

Originally:
Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 𝑉 = Θ 𝐸 ∗ 𝑉 = 𝑶 𝑽𝟑 //Assumed find and union linear time



Summary
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What did we learn?

75

Minimum Spanning Trees
Prim’s Algorithm
• Very similar to Dijkstra’s SP algorithm
• Different greedy choice to add next edge to tree

Kruskal’s Algorithm
Find-union
• How to implement
• How to optimize
• How it affects runtime of Kruskal’s algorithm.


