
CS 3100
Data Structures and Algorithms 2

Lecture 12: Intro. to Greedy Algorithms

Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:
• Chapter 15.   (Today, 15.1 and 15.2)



Announcements

• Quizzes 1-2 Thursday
• Both quizzes taken the same day
• Information on our class website
• If you have SDAC, please schedule for 1 exam (not a quiz)

• PS5 Coming Soon!
• Office hours

• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
• TA office hours posted on our website
• Office hours are not for "checking solutions"
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Coin Changing: A “Simple” Algorithm

Finding the correct change with minimum number of coins
Problem: After someone has paid you cash for something, you must:
• Give back the right amount of change, and…
• Return the fewest number of coins!

Inputs: the dollar-amount to return
• Also, the set of possible coins

Output: a set of coins

Let’s talk about this in more detail
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Coin Changing: A “Simple” Algorithm
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Imagine a world without computerized cash registers!
The problem:  Given an unlimited quantities of pennies, nickels, dimes, 
and quarters (worth value 1, 5, 10, 25 respectively), determine a set of 

coins (the change) for a given value 𝑥 using the fewest number of 
coins.



How Would You Solve This?

Would this be your algorithm?
• Generate each possible set of coins that sum to x.
• Determine which of these sets has the fewest coins.

No, this is probably not at all what you thought of doing!
• It’s correct.  But it’s a brute force approach. 

What would you do?
• Take a moment and try to describe your approach as an algorithm.
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Change Making Algorithm
Given: target value 𝑥, list of coins 𝐶 = [𝑐!, … , 𝑐"]

(in this case 𝐶 = [1, 5, 10, 25])
Repeatedly select the largest coin less than the remaining target value:
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while (𝑥 > 0)
 let 𝑐 = max(𝑐# ∈ {𝑐! , … , 𝑐"}	|	𝑐# ≤ 𝑥)
 add 𝑐 to solution

 𝑥 = 𝑥 − 𝑐

Observation: We can rewrite this to take ⁄𝑛 𝑐  copies of the next largest 
coin at each step, and reduce 𝑥 by (𝑐 < ⁄𝑛 𝑐 )
Avoid call to max() by choosing next 𝑐#  from largest to smallest.
C must be sorted.



Let’s reflect on this

What’s its time-complexity?
• Looks like it’s 𝑂(𝑥) in the worst-case.  (Why do I say that?)

• Maybe it’s 𝑂(𝑘𝑥) if I really have to do a max() operation at each step
• Maybe it’s 𝑂(𝑘) if 𝐶 is sorted.  Or would it be 𝑂 𝑘 log 𝑘 ?

Does this algorithm always work?  I.e. how can we prove it to be 
correct?
• Intuitively you know it’s true for US coins, right?
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Some Terminology Before We Continue…

Optimization problems: terminology
• A solution must meet certain constraints:

A solution is feasible
Example: All edges in solution are in graph, form a simple path.
• Solutions judged on some criteria:

Objective function
Example:  Sum of edge weights in path is smallest
• One (or more) feasible solutions that scores highest (by the objective 

function) is called the optimal solution(s)

Both dynamic programming and the greedy approach are often good 
choices for optimization problems.
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Greedy Strategy: An Overview

Greedy strategy:
• Build solution by stages, adding one item to the partial solution we’ve found 

before this stage
• At each stage, make locally optimal choice based on the greedy choice

(sometimes called the greedy rule or the selection function)
• Locally optimal, i.e. best given what info we have now

• Irrevocable: a choice can’t be un-done
• Sequence of locally optimal choices leads to globally optimal solution (hopefully)

• Must prove this for a given problem!
• Sometimes basis for approximation algorithms or heuristic algorithms used to get something 

close to optimal solution.
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We’ve Seen Greedy Graph Algorithms

Dijkstra’s Shortest Path is greedy!
Build solution by adding item to partial solution
• Dijkstra’s: add edge to connect kth vertex, where the edges for the k-1 already 

selected show the shortest paths to those k-1 vertices

Greedy choice
• Dijkstra’s: for all vertices connected to one of the k-1 vertices processed, 

choose w where dist(s,w) is the minimum

We did have to prove that this sequence of locally optimal choices 
leads to globally optimal solution
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Back to Coin Changing: Correctness?

Can you think of how you might argue this strategy (algorithm) always 
choose the optimal solution for coin-changing?

Maybe argue along these lines:
• If an algorithm did something different than what our algorithm does, then it 

won’t choose optimal solution.
• We’ll see proof later in slides.
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Warm Up?, take 2

Given access to unlimited quantities of pennies, nickels, dimes, toms, 
and quarters (worth value 1, 5, 10, 11, 25 respectively), give 90 cents 

change using the fewest number of coins.
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11
cents



Greedy method’s solution

90 cents
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11
cents



Greedy solution not optimal!

90 cents
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Warm Up?, take 2

Given access to unlimited quantities of pennies, nickels, dimes, toms, 
and quarters (worth value 1, 5, 10, 11, 25 respectively), give 90 cents 

change using the fewest number of coins.
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11
cents

We can solve coin changing 
with dynamic programming 
(to be discussed soon).
 
That strategy will work for 
this set of coins!



Summary of the Greedy Approach

Problem must have Optimal Substructure
• Optimal solution to a problem contains optimal solutions to subproblems
• Next slide has more details

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

Greedy approach only considers one subproblem at each stage
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Change Making Choice Property

Our algorithm’s Greedy choice:
Choose largest coin less than or equal to target value
Leads to optimal solution?
• For standard U.S. coins:  Yes, coin chosen must be part of some optimal 

solution.  We can prove it!
• For “unusual” sets of coins? We saw a counter-example.
• For U.S. postage stamps?  Hmm…
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More on Optimal Substructure Property

Detailed discussion in CLRS 14.3 (chapter on Dynamic Programming)
• If A is an optimal solution to a problem, then the components of A are optimal 

solutions to subproblems

Another example: Shortest Path in graph problem
• Say P is min-length path from CHO to LA and includes DAL
• Let P1 be component of P from CHO to DAL, and P2 be component of P from DAL 

to LA
• P1 must be shortest path from CHO to DAL, and P2 must be shortest path from 

DAL to LA
• Why is this true?  Can you prove it?  Yes, by contradiction. (Try this at home!)
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Correctness of Greedy Algorithm
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Optimal solution must satisfy following properties:
• At most 4 pennies
• At most 1 nickel
• At most 2 dimes
• Cannot contain 2 dimes and 1 nickel



Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

Case 1: Suppose 𝑥 < 5
• Optimal solution must contain a penny (no other option available)
• Greedy choice: penny

Case 2: Suppose 5 ≤ 𝑥 < 10
• Optimal solution must contain a nickel

• Suppose otherwise. Then optimal solution can only contain pennies (there are no other 
options), so it must contain 𝑥 > 4 pennies (contradiction)

• Greedy choice: nickel

Case 3: Suppose 10 ≤ 𝑥 < 25
• Optimal solution must contain a dime

• Suppose otherwise. By construction, the optimal solution can contain at most 1 nickel, so 
there must be at least 6 pennies in the optimal solution (contradiction)

• Greedy choice: dime
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Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

Case 4: Suppose 25 ≤ 𝑥
• Optimal solution must contain a quarter

• Suppose otherwise. There are two possibilities for the optimal solution:
• If it contains 2 dimes, then it can contain 0 nickels, in which case it 

contains at least 5 pennies (contradiction)
• If it contains fewer than 2 dimes, then it can contain at most 1 nickel, 

so it must also contain at least 10 pennies (contradiction)
• Greedy choice: quarter
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Conclusion: in every case, the greedy choice is 
consistent with some optimal solution



Correctness of Greedy Algorithm

What about that 11-cent coin, the “tom”?  How’s that break this proof?

Claim: argue that at every step, greedy choice is part of some optimal solution

Case 1: SupposeSuppose otherwise. Then optimal solution can only contain pennies (there are no other options), so it must contain 𝑛 > 4 pennies (contradiction)
• Greedy choice: nicke

Revised Case 3: Suppose 11 ≤ 𝑥 < 25
• Optimal solution must contain a dime tom

• Suppose otherwise. By construction, the optimal solution can 
contain at most 1 nickel, so there must be at least 6 pennies in the 
optimal solution (contradiction).

• Greedy choice: dime tom
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This argument no longer holds. Sometimes, it’s 
better to take the dime; other times, it’s better 

to take the 11-cent piece.
For 15: 1 tom + 4 pennies vs. 1 dime + 1 nickel.
For 12:  1 tom + 1 penny vs. 1 dime + 2 pennies



Wrap-up on Greedy basics

An approach to solving optimization problems
• Finds optimal solution among set of feasible solutions

Works in stages, applying greedy choice at each stage
• Makes locally optimal choice, with goal of reaching overall optimal solution 

for entire problem

Proof needed to show correctness

Remember: Problem must have optimal substructure property
• This will also be true for problems solved by dynamic programming
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Interval Scheduling

CLRS Section 15.1
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Interval Scheduling

Input: List of events with their start and end times (sorted by end time)
Output: largest set of non-conflicting events (start time of each event is 
after the end time of all preceding events)
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[1, 2.25] Lunch with friends at Roots
[2, 3:30] CS3100 Office Hours
[3, 4]  Streaming CS department talk
[4, 5.25] Afternoon Tea
[4.5, 6]  Discussion section
[5, 7.5]  Super Smash Brothers game night
[7.75, 11] UVA Basketball watch party 



Interval Scheduling DP
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𝑠! 𝑠" 𝑠#$! 𝑒" 𝑒#

𝐵𝑒𝑠𝑡(𝑡) = max # events that can be scheduled before time 𝑡

𝐵𝑒𝑠𝑡 e# = max
𝐵𝑒𝑠𝑡 s# + 1

𝑒#$!𝑠#

𝐵𝑒𝑠𝑡 e#$%

Include event 𝑛

Exclude event 𝑛



Greedy Interval Scheduling

Step 1: Identify a greedy choice property

27



Greedy Interval Scheduling

Step 1: Identify a greedy choice property
• Options:

• Shortest interval

• Fewest conflicts

• Earliest start

• Earliest end
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Prove using Exchange Argument



Interval Scheduling Algorithm
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Find event ending earliest, add to solution, 
Remove it and all conflicting events, 
Repeat until all events removed, return solution



Interval Scheduling Algorithm

Find event ending earliest, add to solution, 
Remove it and all conflicting events, 
Repeat until all events removed, return solution
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Interval Scheduling Algorithm

Find event ending earliest, add to solution, 
Remove it and all conflicting events, 
Repeat until all events removed, return solution
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Interval Scheduling Algorithm

Find event ending earliest, add to solution, 
Remove it and all conflicting events, 
Repeat until all events removed, return solution
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Interval Scheduling Run Time
Find event ending earliest, add to solution, 
Remove it and all conflicting events, 
Repeat until all events removed, return solution
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Sort intervals by finish time

StartTime = 0
for each interval (in order of finish time):
 if begin of interval > StartTime: 
  add interval to solution
  StartTime = end of interval



Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with your greedy 

choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:

• Show: “I can remove any item from your sandwich, and it would be no worse by 
replacing it with the same item from my sandwich”
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Exchange Argument for Earliest End Time
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Exchange Argument for Earliest End Time

Claim: earliest ending interval is always part of some optimal solution

Let  𝑂𝑃𝑇#,6 be an optimal solution for time range [𝑖, 𝑗]
Let 𝑎∗ be the first interval in [𝑖, 𝑗] to finish overall
If 𝑎∗ ∈ 𝑂𝑃𝑇#,6 then claim holds
Else if 𝑎∗ ∉ 𝑂𝑃𝑇#,6, let 𝑎 be the first interval to end in 𝑂𝑃𝑇#,6
• By definition 𝑎∗ ends before 𝑎, and therefore does not conflict with any other 

events in 𝑂𝑃𝑇',)
• Therefore 𝑂𝑃𝑇',) − {𝑎} + {𝑎∗} is also an optimal solution
• Thus claim holds
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