CS 3100

Data Structures and Algorithms 2 Lecture 11: D\&C: Median of Medians

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS $4^{\text {th }}$ edition:

- Section 4.5

Announcements

- PA2 due next Friday, March 1, 2024
- Quizzes 1-2 coming February 29, 2024
- Both quizzes taken the same day
- Information on our class website
- If you have SDAC, please schedule for 1 exam (not a quiz)
- Office hours
- Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
- Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
- TA office hours posted on our website
- Office hours are not for "checking solutions"

Divide and Conquer

[CLRS Chapter 4]

Divide:

- Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)

Combine:

- Merge solutions to subproblems to obtain solution for original problem

Quicksort

Like Mergesort:

- Divide and conquer algorithm
- $O(n \log n)$ run time (on expectation)

Unlike Mergesort:

- Divide step is the hard part
- Typically faster than Mergesort (often is the basis of sorting algorithms in standard library implementations)

Quicksort

General idea: choose a pivot element, recursively sort two sublists around that element

Divide: select pivot element $p, \operatorname{Partition}(p)$
Conquer: recursively sort left and right sublists
Combine: nothing!

Partition Procedure (Divide Step)

Input: an unordered list, a pivot p

8	5	7	3	12	10	1	2	4	9	6	11

Goal: All elements $<p$ on left, all $\geq p$ on right

5	7	3	1	2	4	6	8	12	10	9	11

Partition Procedure Summary

1. Choose the pivot p to be the first element of the list
2. Initialize two pointers Begin (just after p), and End (at end of list)
3. While Begin < End:

- If value of Begin $<p$, advance Begin to the right
- Otherwise, swap value of Begin value with value of End value, and advance End to the left

4. If pointers meet at element $<p$: $\operatorname{swap} p$ with pointer position
5. Otherwise, if pointers meet at element $>p: \operatorname{swap} p$ with value to the left

Run time? $\quad \Theta(n)$

Conquer Step

Exactly where it belongs!

Recursively sort Left and Right sublists

Quicksort Run Time (Optimistic)

If the pivot is the median:

2	5	1	3	6	4	7	8	10	9	11	12
2	1	3	5	6	4	7	8	9	10	11	12

Then we divide in half each time

$$
T(n)=2 T(n / 2)+n=\Theta(n \log n)
$$

Quicksort Run Time (Worst-Case)

If the pivot is the extreme ($\mathrm{min} / \mathrm{max}$):

1	5	2	3	6	4	7	8	10	9	11	12

1	2	3	5	6	4	7	8	10	9	11	12

Then we shorten by 1 each time

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =n+(n-1)+\cdots+2+1 \\
& =\frac{n(n+1)}{2}=\Theta\left(n^{2}\right)
\end{aligned}
$$

Good Pivot

What makes a good pivot?

- Roughly even split between left and right
- Ideally: median

Can we find median in linear time?

- Yes! Quickselect algorithm

Quickselect Algorithm

Algorithm to compute the $i^{\text {th }}$ order statistic
$\cdot i^{\text {th }}$ smallest element in the list

- $1^{\text {st }}$ order statistic: minimum
- $n^{\text {th }}$ order statistic: maximum
- $(n / 2)^{\text {th }}$ order statistic: median

Quickselect Algorithm

Finds $i^{\text {th }}$ order statistic

General idea: choose a pivot element, partition around the pivot, and recurse on sublist containing index i

Divide: select pivot element $p, \operatorname{Partition}(p)$
Conquer:

- if $i=$ index of p, then we are done and return p
- if $i<$ index of p recurse left. Otherwise, recurse right

Combine: Nothing!

Partition Procedure (Divide Step)

Input: an unordered list, a pivot p

8	5	7	3	12	10	1	2	4	9	6	11

Goal: All elements $<p$ on left, all $\geq p$ on right

5	7	3	1	2	4	6	8	12	10	9	11

Conquer Step

Correct position of p

Recurse on sublist that contains index i (add index of the pivot to i if recursing right)

Quickselect Run Time

If the pivot is always the median:

2	5	1	3	6	4	7	8	10	9	11	12

2	1	3	5	6	4	7	8	9	10	11	12

Then we divide in half each time

$$
\begin{gathered}
S(n)=S\left(\frac{n}{2}\right)+n \\
S(n)=O(n)
\end{gathered}
$$

Quickselect Run Time

If the partition is always unbalanced:

1	5	2	3	6	4	7	8	10	9	11	12

1	2	3	5	6	4	7	8	10	9	11	12

Then we shorten by 1 each time

$$
\begin{gathered}
S(n)=S(n-1)+n \\
S(n)=O\left(n^{2}\right)
\end{gathered}
$$

How to Choose the Pivot?

Good choice: $\Theta(n)$
Bad choice: $\Theta\left(n^{2}\right)$

Good Pivot

What makes a good pivot?

- Roughly even split between left and right
- Ideally: median

But this is the problem that Quickselect is supposed to solve!

What's next: an algorithm for choosing a "decent" pivot (median of medians)

Good Pivot for Quickselect

What makes a good Pivot for Quickselect?

- Roughly even split between left and right
- Ideally: median

Here's what's next:

- First, median of medians algorithm
- Finds something close to the median in $\Theta(n)$ time
- Second, we can prove that when its result used with Quickselect's partition, then Quickselect is guaranteed $\Theta(n)$
- Because we now have a $\Theta(n)$ way to find the median, this guarantees Quicksort will be $\Theta(n \lg n)$
- Notes:
- We have to do all this for every call to Partition in Quicksort
- We could just use the value returned by median of medians for Quicksort's Partition

Good Pivot

Decent pivot: both sides of Pivot >30\%

Median of Medians

Fast way to select a "good" pivot
Guarantees pivot is greater than $\approx 30 \%$ of elements and less than $\approx 30 \%$ of the elements

- I.e. it's in the middle 40% ($\pm 20 \%$ of the true median)

Main idea: break list into blocks, find the median of each blocks, use the median of those medians

Median of Medians

1. Break list into chunks of size 5
2. Find the median of each chunk (using insertion sort: $\mathrm{n}=5$, max 20 comparisons per chunk)
\square
3. Return median of medians (using Quickselect, this algorithm, called recursively, on list of medians)

Why is this good?

Each chunk sorted, chunks ordered by their medians

Why is this good?

Elements smaller than MedianofMedians:

$$
3\left(\left[\frac{1}{2} \cdot\left[\frac{n}{5}\right]\right]-2\right) \geq \frac{3 n}{10}-6 \text { elements }
$$

Number of lists to the "left"

Why is this good?

Elements smaller than MedianofMedians:

$$
3\left(\left[\frac{1}{2} \cdot\left[\frac{n}{5}\right]\right]-2\right) \geq \frac{3 n}{10}-6 \text { elements }
$$

Elements greater than MedianofMedians:
$3\left(\left[\frac{1}{2} \cdot\left[\frac{n}{5}\right]\right]-2\right) \geq \frac{3 n}{10}-6$ elements

Back to: Quickselect

Divide: select an element p using Median of Medians, $\operatorname{Partition}(p)$

$$
M(n)+\Theta(n)
$$

median of medians algorithm
partition algorithm

Quickselect

Divide: select an element p using Median of Medians, $\operatorname{Partition(p)}$

$$
M(n)+\Theta(n)
$$

Conquer: if $i=$ index of p, done, if $i<$ index of p recurse left. Else recurse right (with index $i-p$)

Combine: Nothing!

$$
\leq S\left(\frac{7 n}{10}\right)
$$

$$
S(n) \leq S\left(\frac{7 n}{10}\right)+M(n)+\Theta(n)
$$

Median of Medians

1. Break list into blocks of size 5
$\Theta(n)$

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

$$
M(n)=S\left(\frac{n}{5}\right)+\Theta(n)
$$

Quickselect

$$
\begin{aligned}
S(n) & \leq S\left(\frac{7 n}{10}\right)+M(n)+\Theta(n) \quad M(n)=S\left(\frac{n}{5}\right)+\Theta(n) \\
& =S\left(\frac{7 n}{10}\right)+S\left(\frac{n}{5}\right)+\Theta(n) \\
& =S\left(\frac{7 n}{10}\right)+S\left(\frac{2 n}{10}\right)+\Theta(n) \\
& \leq S\left(\frac{9 n}{10}\right)+\Theta(n) \quad \text { Because } S(n)=\Omega(n) \quad \begin{array}{c}
\text { CLRS gives a more rigorous proof! } \\
\text { See } p .203 \text { for more details }
\end{array}
\end{aligned}
$$

$$
s(n)=0(n) \quad S(n)=\Theta(n)
$$

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

2	5	1	3	6	4	7	8	10	9	11	12

Using Quickselect, always pivot about the median

2	1	3	5	6	4	7	8	9	10	11	12

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

2	5	1	3	6	4	7	8	10	9	11	12

Using Quickselect, always pivot about the median

2	1	3	5	6	4	7	8	9	10	11	12

$$
\begin{gathered}
T(n)=2 T(n / 2)+\Theta(n) \\
T(n)=\Theta(n \log n)
\end{gathered}
$$

A Worthwhile Choice?

Using Quickselect to pick median guarantees $\Theta(n \log n)$ worst-case run-time Approach has very large constants

- If you really want $\Theta(n \log n)$, better off using MergeSort

More efficient approach: Random pivot

- Very small constant (very fast algorithm)
- Expected to run in $\Theta(n \log n)$ time
- Why? Unbalanced partitions are very unlikely

Quicksort Running Time

If the pivot is always $(n / 10)^{\text {th }}$ order statistic:

$$
T(n)=T(n / 10)+T(9 n / 10)+\Theta(n)
$$

Quicksort Running Time

$$
T(n)=T(n / 10)+T(9 n / 10)+\Theta(n)
$$

Quicksort Running Time

If the pivot is always $(n / 10)^{\text {th }}$ order statistic:

$$
\begin{aligned}
T(n) & =T(n / 10)+T(9 n / 10)+\Theta(n) \\
& =\Theta(n \log n)
\end{aligned}
$$

This is true if the pivot is any $(n / k)^{\text {th }}$ order statistic for any constant $k>1$ (as long as the size of the smaller list is a constant fraction of the full list, we get $\Theta(n \log n)$ running time)

Quicksort Running Time

If the pivot is always $d^{\text {th }}$ order statistic:

1	5	2	3	6	4	7	8	10	9	11	12

Then we shorten by d each time

$$
\begin{aligned}
T(n) & =T(n-d)+n \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

What's the probability of this occurring (for a random pivot)?

Probability of Always Choosing $d^{\text {th }}$ Order Statistic

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: $\frac{d}{n}$
Probability second pivot is among d smallest: $\frac{d}{n-d}$
Probability all pivots are among d smallest:
Very small probability!

$$
\frac{d}{n} \times \frac{d}{n-d} \times \frac{d}{n-2 d} \times \cdots \times \frac{d}{2 d} \times 1=\left(\frac{n}{d} \times\left(\frac{n}{d}-1\right) \times \cdots \times 1\right)^{-1}=\frac{1}{\left(\frac{n}{d}\right)!}
$$

Maximum Sum Continuous Subarray

The maximum-sum subarray of a given array of integers A is the interval $[a, b]$ such that the sum of all values in the array between a and b inclusive is maximal.
Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Divide and Conquer $\Theta(n \log n)$

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13
Recursively													
Solve on Left													

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Return the Max of
Left, Right, Center

Divide and Conquer Summary

Divide

Typically multiple subproblems. Typically all roughly the same size.

- Break the list in half

Conquer

- Find the best subarrays on the left and right

Combine

- Find the best subarray that "spans the divide"
- I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):
solution = solve(problem) \#brute force if necessary
return solution
subproblems = Divide(problem)
for sub in subproblems:
subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution

MSCS Divide and Conquer $\Theta(n \log n)$

def MSCS(list):
if list.length < 2:
return list[0] \#list of size 1 the sum is maximal
$\{$ listL, listR\} $=$ Divide (list)
for list in $\{$ listL, listR\}:
subSolutions.append(MSCS(list))
solution $=\max ($ solnL, solnR, $\operatorname{span}($ listL, listR $)$)
return solution

Types of "Divide and Conquer"

Divide and Conquer

- Break the problem up into several subproblems of roughly equal size, recursively solve
- E.g. Karatsuba, Closest Pair of Points, Mergesort...

Decrease and Conquer

- Break the problem into a single smaller subproblem, recursively solve
- E.g. Quickselect, Binary Search

Pattern So Far

Typically looking to divide the problem by some fraction ($1 / 2,1 / 4$ the size)
Not necessarily always the best!

- Sometimes, we can write faster algorithms by finding unbalanced divides.

Chip and Conquer

Divide

- Make a subproblem of all but the last element

Conquer

- Find best subarray on the left ($\operatorname{BSL}(n-1)$)
- Find the best subarray ending at the divide ($B E D(n-1)$)

Combine

- New Best Ending at the Divide:
- $\operatorname{BED}(n)=\max (B E D(n-1)+\operatorname{arr}[n], 0)$
- New best on the left:
- $B S L(n)=\max (B S L(n-1), B E D(n))$

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13
Recursively													

Solve on Left

Find Largest
sum ending at
the cut

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	12		3	4	5	6	7	8	9	10	11	12	13
Recursively												Divide	
Solve on Left													

Find Largest
sum ending at
the cut

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13
Recursively													
Solve on Left													

Find Largest
sum ending at
the cut
25

Recursively Divide Solve on Left

13
Find Largest
sum ending at
the cut
12

Chip and Conquer

Divide

- Make a subproblem of all but the last element

Conquer

- Find best subarray on the left ($\operatorname{BSL}(n-1)$)
- Find the best subarray ending at the divide ($B E D(n-1)$)

Combine

- New Best Ending at the Divide:
- $\operatorname{BED}(n)=\max (B E D(n-1)+\operatorname{arr}[n], 0)$
- New best on the left:
- $B S L(n)=\max (B S L(n-1), B E D(n))$

Was unbalanced better? YES

Old:

- We divided in Half
- We solved 2 different problems:
- Find the best overall on BOTH the left/right

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

- Find the best which end/start on BOTH the left/right respectively
- Linear time combine

New:

- We divide by 1, n-1
- We solve 2 different problems:

$$
T(n)=1 T(n-1)+1
$$

- Find the best overall on the left ONLY
- Find the best which ends on the left ONLY
- Constant time combine

$$
T(n)=\Theta(n)
$$

MSCS Problem - Redux

Solve in $O(n)$ by increasing the problem size by 1 each time.
Idea: Only include negative values if the positives on both sides of it are "worth it"

$\theta(n)$ Solution

Remember two values:

Best So Far 5

Best ending here
5

$\theta(n)$ Solution

Remember two values:
Best So Far 13

Best ending here
13

$\theta(n)$ Solution

Remember two values:

Best So Far 13

Best ending here
9

$\theta(n)$ Solution

Remember two values:

Best So Far 13

Best ending here
12

$\theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here
19

$\theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here 4

$\theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here
14

$\theta(n)$ Solution

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Remember two values:
Best So Far 19

Best ending here 0

$\theta(n)$ Solution

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Remember two values:
Best So Far 19

Best ending here
17

$\theta(n)$ Solution

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Remember two values:

Best So Far
25

Best ending here
25

