
CS 3100
Data Structures and Algorithms 2

Lecture 11: D&C: Median of Medians

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Section 4.5

Announcements

• PA2 due next Friday, March 1, 2024

• Quizzes 1-2 coming February 29, 2024
• Both quizzes taken the same day

• Information on our class website

• If you have SDAC, please schedule for 1 exam (not a quiz)

• Office hours
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p

• TA office hours posted on our website

• Office hours are not for "checking solutions"

2

Divide and Conquer

Divide:
• Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively

• If the subproblems are “small”:
• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain

solution for original problem

[CLRS Chapter 4]

Quicksort

Like Mergesort:
• Divide and conquer algorithm

• 𝑂(𝑛 log 𝑛) run time (on expectation)

Unlike Mergesort:
• Divide step is the hard part

• Typically faster than Mergesort (often is the basis of sorting algorithms in
standard library implementations)

4

Quicksort

General idea: choose a pivot element, recursively sort two sublists
around that element

Divide: select pivot element 𝑝, Partition(𝑝)

Conquer: recursively sort left and right sublists

Combine: nothing!

5

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

6

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Partition Procedure Summary

1. Choose the pivot 𝑝 to be the first element of the list

2. Initialize two pointers Begin (just after 𝑝), and End (at end of list)

3. While Begin < End:
• If value of Begin < 𝑝, advance Begin to the right

• Otherwise, swap value of Begin value with value of End value, and advance
End to the left

4. If pointers meet at element < 𝑝: swap 𝑝 with pointer position

5. Otherwise, if pointers meet at element > 𝑝: swap 𝑝 with value to
the left

7

Run time? Θ(𝑛)

Conquer Step

8

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Recursively sort Left and Right sublists

Quicksort Run Time (Optimistic)

Then we divide in half each time

9

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

If the pivot is the median:

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛 = Θ(𝑛 log 𝑛)

Quicksort Run Time (Worst-Case)

Then we shorten by 1 each time

10

If the pivot is the extreme (min/max):

𝑇 𝑛 = 𝑇(𝑛 − 1) + 𝑛

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

= 𝑛 + 𝑛 − 1 + ⋯ + 2 + 1

=
𝑛 𝑛 + 1

2
= Θ 𝑛2

Good Pivot

What makes a good pivot?
•Roughly even split between left and right
• Ideally: median

Can we find median in linear time?
• Yes! Quickselect algorithm

11

Quickselect Algorithm

Algorithm to compute the 𝑖th order statistic
• 𝑖th smallest element in the list
•1st order statistic: minimum
•𝑛th order statistic: maximum
• Τ(𝑛 2)th order statistic: median

12

Quickselect Algorithm

Finds 𝑖th order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index 𝑖

Divide: select pivot element 𝑝, Partition(𝑝)

Conquer:
• if 𝑖 = index of 𝑝, then we are done and return 𝑝

• if 𝑖 < index of 𝑝 recurse left. Otherwise, recurse right

Combine: Nothing!

13

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

14

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Conquer Step

15

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Correct position of 𝑝

Recurse on sublist that contains index 𝑖

(add index of the pivot to 𝑖 if recursing right)

Quickselect Run Time

Then we divide in half each time

16

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑆 𝑛 = 𝑆
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑆 𝑛 = 𝑂(𝑛)

Quickselect Run Time

Then we shorten by 1 each time

17

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑆 𝑛 = 𝑆 𝑛 − 1 + 𝑛

If the partition is always unbalanced:

𝑆 𝑛 = 𝑂(𝑛2)

How to Choose the Pivot?

18

Good choice: Θ 𝑛

Bad choice: Θ 𝑛2

Good Pivot

What makes a good pivot?
• Roughly even split between left and right

• Ideally: median

19

But this is the problem that
Quickselect is supposed to solve!

What’s next: an algorithm for choosing a “decent” pivot (median of medians)

Good Pivot for Quickselect

What makes a good Pivot for Quickselect?
• Roughly even split between left and right
• Ideally: median

Here’s what’s next:
• First, median of medians algorithm

• Finds something close to the median in Θ(𝑛) time

• Second, we can prove that when its result used with Quickselect’s partition, then
Quickselect is guaranteed Θ(𝑛)
• Because we now have a Θ(𝑛) way to find the median, this guarantees Quicksort will be Θ(𝑛 lg 𝑛)

• Notes:
• We have to do all this for every call to Partition in Quicksort
• We could just use the value returned by median of medians for Quicksort’s Partition

20

Good Pivot

Decent pivot: both sides of Pivot >30%

21

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

Fast way to select a “good” pivot

Guarantees pivot is greater than ≈30% of elements and less
than ≈30% of the elements

• I.e. it’s in the middle 40% (±20% of the true median)

Main idea: break list into blocks, find the median of each
blocks, use the median of those medians

22

Median of Medians

1. Break list into chunks of size 5

23

2. Find the median of each chunk
 (using insertion sort: n=5, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this
 algorithm, called recursively, on list of medians)

List could be long, many
more than 5 chunks!

List could be long, many
more than 5 medians!

Why is this good?

Each chunk sorted, chunks ordered by their medians

24

<
<

<
<

<
<

<
<

<
<

<
<

< <
<

<
<

<
<

<
<

< <

MedianofMedians
is Greater than all

of these

𝑛

5

5

List could be long, so not
a small number!

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Why is this good?

25

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

Τ𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Number of lists to the “left”
Exclude list on the endpoint,

and “middle” list

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Why is this good?

26

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Τ𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Elements greater than
MedianofMedians:

Back to: Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

27

𝑀 𝑛 + Θ(𝑛)

median of medians algorithm

partition algorithm

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left. Else
recurse right (with index 𝑖 − 𝑝)

Combine: Nothing!

28

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑀 𝑛 + Θ(𝑛)

𝑀 𝑛 + Θ(𝑛)

Median of Medians

1. Break list into blocks of size 5

29

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(𝑛)

Θ(𝑛)

𝑆
𝑛

5

𝑀 𝑛 = 𝑆
𝑛

5
+ Θ(𝑛)

Quickselect

30

𝑀 𝑛 = 𝑆
𝑛

5
+ Θ(𝑛)𝑆 𝑛 ≤ 𝑆

7𝑛

10
+ 𝑀 𝑛 + Θ(𝑛)

= 𝑆
7𝑛

10
+ 𝑆

𝑛

5
+ Θ(𝑛)

𝑆 𝑛 = O(𝑛)

= 𝑆
7𝑛

10
+ 𝑆

2𝑛

10
+ Θ(𝑛)

≤ 𝑆
9𝑛

10
+ Θ(𝑛)

Master theorem Case 3!

Because 𝑆 𝑛 = Ω(𝑛)

𝑆 𝑛 = Θ(𝑛)

CLRS gives a more rigorous proof!
See p. 203 for more details

Phew! Back to Quicksort

31

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

32

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + Θ(𝑛)

𝑇 𝑛 = Θ(𝑛 log 𝑛)

A Worthwhile Choice?

Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) worst-case run-time

Approach has very large constants
• If you really want Θ(𝑛 log 𝑛), better off using MergeSort

More efficient approach: Random pivot
• Very small constant (very fast algorithm)

• Expected to run in Θ(𝑛 log 𝑛) time

• Why? Unbalanced partitions are very unlikely

33

Quicksort Running Time

34

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)

If the pivot is always (Τ𝑛 10)th order statistic:

Quicksort Running Time

35

𝑛

𝑇(𝑛) = 𝑇 Τ𝑛 10 + 𝑇 Τ9𝑛 10 + Θ(𝑛)

Τ𝑛 10 Τ9𝑛 10

Τ𝑛 100 Τ9𝑛 100 Τ9𝑛 100 Τ81𝑛 100

… … … …

1
1

1
1

1

1
1

1

Θ 𝑛

Θ(log 𝑛)

Θ 𝑛

Θ 𝑛

Quicksort Running Time

36

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)

= Θ 𝑛 log 𝑛

If the pivot is always (Τ𝑛 10)th order statistic:

This is true if the pivot is any Τ𝑛 𝑘 th order statistic for any
constant 𝑘 > 1 (as long as the size of the smaller list is a

constant fraction of the full list, we get Θ 𝑛 log 𝑛 running time)

Quicksort Running Time

Then we shorten by 𝑑 each time

37

1 5 2 3 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

= Θ(𝑛2)

What’s the probability of this occurring (for a random pivot)?

Probability of Always Choosing 𝒅𝐭𝐡 Order Statistic

We must consistently select pivot from within the first 𝑑 terms

38

Probability first pivot is among 𝑑 smallest:
𝑑

𝑛

Probability second pivot is among 𝑑 smallest:
𝑑

𝑛−𝑑

Probability all pivots are among 𝑑 smallest:

𝑑

𝑛
×

𝑑

𝑛 − 𝑑
×

𝑑

𝑛 − 2𝑑
× ⋯ ×

𝑑

2𝑑
× 1 =

𝑛

𝑑
×

𝑛

𝑑
− 1 × ⋯ × 1

−1

=
1
𝑛
𝑑

!

Very small probability!

Maximum Sum Continuous Subarray

The maximum-sum subarray of a given array of integers 𝐴 is the
interval [𝑎, 𝑏] such that the sum of all values in the array between 𝑎
and 𝑏 inclusive is maximal.

Given an array of 𝑛 integers (may include both positive and negative
values), give a 𝑂(𝑛 log 𝑛) algorithm for finding the maximum-sum
subarray.

52

Divide and Conquer Θ(𝑛 log 𝑛)

53

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively

Solve on Left

Recursively
Solve on Right

Divide and Conquer Θ(𝑛 log 𝑛)

54

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively

Solve on Left
19

Recursively
Solve on Right

25Find Largest
sum that spans

the cut

2-13-6-3-716 -20-42-37135-128

Largest sum
that ends here

+ Largest sum
that starts here

Divide and Conquer Θ(𝑛 log 𝑛)

55

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively

Solve on Left
19

Recursively
Solve on Right

25Find Largest
sum that spans

the cut
19

2-13-6-3-716 -20-42-37135-128

Return the Max of
Left, Right, Center

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

Divide and Conquer Summary

Divide
• Break the list in half

Conquer
• Find the best subarrays on the left and right

Combine
• Find the best subarray that “spans the divide”

• I.e. the best subarray that ends at the divide concatenated with the best that
starts at the divide

Typically multiple subproblems.
Typically all roughly the same size.

Generic Divide and Conquer Solution

def myDCalgo(problem):

 if baseCase(problem):

 solution = solve(problem) #brute force if necessary

 return solution

 subproblems = Divide(problem)

 for sub in subproblems:

 subsolutions.append(myDCalgo(sub))

 solution = Combine(subsolutions)

 return solution

57

MSCS Divide and Conquer Θ(𝑛 log 𝑛)

def MSCS(list):

 if list.length < 2:

 return list[0] #list of size 1 the sum is maximal

 {listL, listR} = Divide (list)

 for list in {listL, listR}:

 subSolutions.append(MSCS(list))

 solution = max(solnL, solnR, span(listL, listR))

 return solution

58

Types of “Divide and Conquer”

Divide and Conquer
• Break the problem up into several subproblems of roughly equal size,

recursively solve

• E.g. Karatsuba, Closest Pair of Points, Mergesort…

Decrease and Conquer
• Break the problem into a single smaller subproblem, recursively solve

• E.g. Quickselect, Binary Search

Pattern So Far

Typically looking to divide the problem by some fraction
(½, ¼ the size)

Not necessarily always the best!
• Sometimes, we can write faster algorithms by finding unbalanced divides.

Chip and Conquer

Divide
• Make a subproblem of all but the last element

Conquer
• Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
• Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

Combine
• New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
• New best on the left:

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

25 Find Largest
sum ending at

the cut
22

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

25 Find Largest
sum ending at

the cut
0

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

25 Find Largest
sum ending at

the cut
0

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

25 Find Largest
sum ending at

the cut
25

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

19 Find Largest
sum ending at

the cut
17

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

19 Find Largest
sum ending at

the cut
0

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

13 Find Largest
sum ending at

the cut
12

Chip and Conquer

Divide
• Make a subproblem of all but the last element

Conquer
• Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
• Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

Combine
• New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
• New best on the left:

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

Was unbalanced better?

Old:
• We divided in Half
• We solved 2 different problems:

• Find the best overall on BOTH the left/right
• Find the best which end/start on BOTH the left/right respectively

• Linear time combine

New:
• We divide by 1, n-1
• We solve 2 different problems:

• Find the best overall on the left ONLY
• Find the best which ends on the left ONLY

• Constant time combine

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

𝑇 𝑛 = 1𝑇 𝑛 − 1 + 1

𝑇 𝑛 = Θ(𝑛 log 𝑛)

𝑇 𝑛 = Θ(𝑛)

YES

MSCS Problem - Redux

Solve in 𝑂(𝑛) by increasing the problem size by 1 each time.

Idea: Only include negative values if the positives on both sides of it are
“worth it”

Θ(𝑛) Solution

72

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Begin here

Remember two values: Best So Far Best ending here
5 5

Θ(𝑛) Solution

73

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 13

Θ(𝑛) Solution

74

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 9

Θ(𝑛) Solution

75

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 12

Θ(𝑛) Solution

76

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 19

Θ(𝑛) Solution

77

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 4

Θ(𝑛) Solution

78

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 14

Θ(𝑛) Solution

79

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 0

Θ(𝑛) Solution

80

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 17

Θ(𝑛) Solution

81

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
25 25

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 11: D&C: Median of Medians
	Slide 2: Announcements
	Slide 3: Divide and Conquer
	Slide 4: Quicksort
	Slide 5: Quicksort
	Slide 6: Partition Procedure (Divide Step)
	Slide 7: Partition Procedure Summary
	Slide 8: Conquer Step
	Slide 9: Quicksort Run Time (Optimistic)
	Slide 10: Quicksort Run Time (Worst-Case)
	Slide 11: Good Pivot
	Slide 12: Quickselect Algorithm
	Slide 13: Quickselect Algorithm
	Slide 14: Partition Procedure (Divide Step)
	Slide 15: Conquer Step
	Slide 16: Quickselect Run Time
	Slide 17: Quickselect Run Time
	Slide 18: How to Choose the Pivot?
	Slide 19: Good Pivot
	Slide 20: Good Pivot for Quickselect
	Slide 21: Good Pivot
	Slide 22: Median of Medians
	Slide 23: Median of Medians
	Slide 24: Why is this good?
	Slide 25: Why is this good?
	Slide 26: Why is this good?
	Slide 27: Back to: Quickselect
	Slide 28: Quickselect
	Slide 29: Median of Medians
	Slide 30: Quickselect
	Slide 31: Phew! Back to Quicksort
	Slide 32: Phew! Back to Quicksort
	Slide 33: A Worthwhile Choice?
	Slide 34: Quicksort Running Time
	Slide 35: Quicksort Running Time
	Slide 36: Quicksort Running Time
	Slide 37: Quicksort Running Time
	Slide 38: Probability of Always Choosing d t h Order Statistic
	Slide 52: Maximum Sum Continuous Subarray
	Slide 53: Divide and Conquer n log n
	Slide 54: Divide and Conquer n log n
	Slide 55: Divide and Conquer n log n
	Slide 56: Divide and Conquer Summary
	Slide 57: Generic Divide and Conquer Solution
	Slide 58: MSCS Divide and Conquer n log n
	Slide 59: Types of “Divide and Conquer”
	Slide 60: Pattern So Far
	Slide 61: Chip and Conquer
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Chip and Conquer
	Slide 70: Was unbalanced better?
	Slide 71: MSCS Problem - Redux
	Slide 72: n Solution
	Slide 73: n Solution
	Slide 74: n Solution
	Slide 75: n Solution
	Slide 76: n Solution
	Slide 77: n Solution
	Slide 78: n Solution
	Slide 79: n Solution
	Slide 80: n Solution
	Slide 81: n Solution

