CS 3100

Data Structures and Algorithms 2
Lecture 10: D&C: CPP & Matrix Multiply

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4t edition:
* Section 4.5

Announcements

PS4 due tomorrow
 PA2 due next Friday, March 1, 2024
* Quizzes 1-2 coming February 29, 2024

* Both quizzes taken the same day
* |f you have SDAC, please schedule for 1 exam (not a quiz)

e Office hours
* Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
* Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
* TA office hours posted on our website
e Office hours are not for "checking solutions"

Divide and Conquer

[CLRS Chapter 4]

Divide:
* Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
* If the suproblems are “large”:
* Solve each subproblem recursively

* If the subproblems are “small”:
* Solve them directly (base case)

Combine:

* Merge solutions to subproblems to obtain
solution for original problem

Closest Pair of Points

Given: A list of points © @

Return: Pair of points with
smallest distance apart @

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair @
of points in each list @

Combine:

* Construct list of points in the boundary

* Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and @
runway points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Looks like another O(n logn)

algorithm — combine step is still ® @
too expensive

Combine:

* Construct list of points in poundary

e Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and @
runway points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

Construct list of points in the boundary

Sort runway points by y-coordinate = =———)
Compare each point in runway to 15 points

above it and save the closest pair

Output closest pair among left, right, and

runway points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

* List of points sorted according to y-
coordinate

Sorting runway points by y-
coordinate now becomes a merge

Listing Points in the Boundary

LeftPoints:
Closest Pair: (1,5), dy 5
Sorted Points: [3,7,5,1]

RightPoints:
Closest Pair: (4,6), d4¢
Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Runway Points: [8,7,6,5,2]

Both of these lists can be computed

by a single pass over the lists

LeftPoints

®

RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Construct list of points in the boundary

e Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

‘ Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

Closest Pair of Points: Divide and Conquer

. L O(nlogn)
What is the running time?
O(nlogn) ol)
2T (n/2)
T(n)
O(n)
T(n) =2T(n/2) + O(n)
O(n)
Case 2 of Master’s Theorem: 0(1)

T(n) = O(nlogn)

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

Matrix Multiplication

n e
m 2 31 12| 4] |6
nl|4 5 6(x]|/8] 1ol [12
7 8 91 114 [16] (18
24+16+42 4+20+448 6+ 24+54
60 72 84
=|132 162 192
Run time? 0(n?) 204 252 300.

Lower Bound? Q(n?) u

Matrix Multiplication Divide and Conquer

Multiply n X n matrices (4 and B)
Divide:

12

Matrix Multiplication Divide and Conquer

Multiply n X n matrices (4 and B)

Aqq } A B{ 4] By,
A — |- > < B = : > , <
Az } A2z | L B>, } Bao |
Combine:
AR — [A1,1B1,1 +A4,,B,;, Ayj1Bi,+ A1,232,2]
Ay 1Bi1+A;,B,1 Az 1By, +A;,B;,

Runtime? T(n) = 8T (;) +4 (g) gc?;ftiocfns

13

Matrix Multiplication Divide and Conquer

T(n) = 8T (2) +4 (ﬁ)

2

2
n

2

2

T(n)=8T()+n2

a=8>b=2,f(n) =n?
Case 1!
nlogpa — plog, 8 — 3

T(n) = 0(n?)
Can we do better?

14

Matrix Multiplication Divide and Conquer

Multiply n X n matrices (4 and B)

Aqq] A B{ 4] By,
A= > | B=[—F ——
A21 }\AZ'Z J LBz,l } By2 |

AB = A1,1B1,1 + Al,ZBZ,l A1,1B1,2 + Al,ZBZ,ZI

AZ,lBl,l + AZ,ZBZ,l AZ,lBl,Z + AZ,ZBZ,Z

ldea: Use a Karatsuba-like technique on this

15

Strassen’s Algorithm

Multiply n X n matrices (4 and B)

Aq] A B{ 4] By,
A= > < B=[——F —
Az’l] . AZ'Z Ve £ BZ;]-] BZ;Z il
Calculate: Find AB:
=(A{{+ A B,,+B
Ql (1,1 2,2)(1,1 2,2) AB _ Ql _I_ Q4 — QS _I_ Q7 Q3 _|_ QS
0 = (Ao + 422)B L+ -0 +05+0
Q3 = A11(B12 — By2)
Q4 = Az2(B21— By,1) 7 Multiplications 18 Additions
Qs = (A11 +A12)B2 5
n n
Qs = (A1 — A11)(Bia + By) T(n) =7T (E) + 18 T

Q; = (A1,2 - AZ,Z)(BZ,l + B3)

16

Strassen’s Algorithm

T(n) =7T (;) | an

9
a=7b=2f(n) =§n2
Case 1!
nlogb a — nlogz 7 ~ 12807

T(Tl) — @(nlogz 7) ~ @(n2.807)

17

|
-1000000

800000 /

600000 /
/ vl
-400000 .

=200000

\ f
\ ;

45 —-!zlg!'éaﬁ———-‘—:ﬂ 50 60 70 80 90 100

Is This the Fastest?

naive

29 - Best possible is still unknown

I Strassen an
25 | '%P,Bim o Best lower bound: Q(n?)

2.7 -
2.6
i Schénhage & p omani
2.5 i Coppersmith, Winograd Strassen
2.4 I Coppersmith, Winograd Stothers
Williams
1 T T T B I T T B B T B [B T L Year 19
1950 1960 1970 1980 1990 2000 2010

Divide and Conquer Algorithms (Thus Far)

Mergesort What they have in common:
Divide: Very easy (i.e. 0(1))

Naive Multiplication
Combine: More complex (2(n))

Karatsuba Multiplication
Closest Pair of Points
Strassen’s Algorithm

20

Like Mergesort:

* Divide and conquer algorithm
* O(nlogn) run time (on expectation)

Unlike Mergesort:
* Divide step is the hard part

 Typically faster than Mergesort (often is the basis of sorting algorithms in
standard library implementations)

21

General idea: choose a pivot element, recursively sort two sublists
around that element

Divide: select pivot element p, Partition(p)
Conquer: recursively sort left and right sublists
Combine: nothing!

22

Partition Procedure (Divide Step)

Input: an unordered list, a2 pivot p

. 5 7 3 (12 10| 1 2 4 9 6 | 11

Goal: All elements on left, all = p on right

23

Partition Procedure

Initialize two pointers and End

B o -

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

92
~N
w
[HEY
N
(B
o
[HRY
N
H
o]
(o))}

92
~
w
(B
N
[EEY
o
[EEY
N
D
(\o)
0))

92
~
w
[HEY
N
[HRY
o
[ERY
N
D
X0
(O))]

92
~N
w
[HEY
N
[HY
o
[HY
N
H
\o)
(o))}

H B E B
—
Belelele

Swap!

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

5 7 3 |12 (10 | 1 2

4

5 7 3 |11 (10 | 1 2

4

10 | 1 2

<

5 7 3 6 | 10 | 1 2

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

5 7 3 6 | 10

4
J

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ ‘
. 5 7 3 6 4 1

ppnnnns o

Remaining item: where do we place the pivot?

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ ‘
. 5 7 3 6 4 1

Case 1: meet at element < p
Swap p with

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ ‘
. 5 7 3 6 4 1

W]«] [

Case 2: meet at element > p

Swap p with

Partition Procedure Summary

1. Choose the pivot p to be the first element of the list

2. Initialize two pointers (just after p), and End (at end of list)
3. While < End:
 |Ifvalue of < p, advance to the right
e Otherwise, swap value of value with value of End value, and advance

End to the left
4. If pointers meet at element : swap p with
5. Otherwise, if pointers meet at element > p: swap p with

Run time? 0O(n)

31

Conquer Step

|
All elements < p All elements > p

Exactly where it belongs!

Recursively sort and Right sublists

32

Quicksort Run Time (Optimistic)

If the pivot is the median:

T B T T I

Then we divide in half each time

T(n) =2T(n/2) +n = B(nlogn)

33

Quicksort Run Time (Worst-Case)

If the pivot is the extreme (min/max):

clefa e lef 7o oo [n]x

Then we shorten by 1 each time

Tm)=Tn—1)+n
=n+m-1)++2+1
nn+ 1)
-

= 0(n?) .

Quicksort on a Nearly Sorted List

First element always yields unbalanced pivot

2]]efs o7 s]s]w]u]n)
Then we shorten by 1 each time
T(n) = 0(n?)

35

How to Choose the Pivot?

Good choice: O(nlogn)

Bad choice: O(n?)

Good Pivot

What makes a good pivot?

* Roughly even split between left and right
* ldeally: median

Can we find median in linear time?
e Yes! Quickselect algorithm

37

Quickselect Algorithm

Algorithm to compute the it order statistic
 ith smallest element in the list
e 15t order statistic: minimum
« nth order statistic: maximum
* (n/2)% order statistic: median

38

Quickselect Algorithm

Finds ith order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index i

Divide: select pivot element p, Partition(p)

Conquer:
 if i = index of p, then we are done and return p
* if i <index of p recurse left. Otherwise, recurse right

Combine: Nothing!

39

CLRS Pseudocode for Quickselect

elseif i < k
return RANDOMIZED-SELECT (A, p,q — 1,1)
else return RANDOMIZED-SELECT(A,q + 1,r,i — k)

A — the list

RANDOMIZED-SELECT (A, p,r,1) p — index of first item

. r —index of last item
1 lfp ==T i —find ith smallestitem
2 return A[p] g — pivot location
3 g = RANDOMIZED-PARTITION (4, p,) k= numberon left + 1
4 k=qg—p+1 [Inumber of elements in left sub-list + 1
5 ifi == // the pivot value is the answer
6 return A[q]
7
8
9

/[note adjustment to 1 when recursing on right side

Note: In CLRS, they’re using a partition that randomly chooses the pivot element.
That’s why you see “Randomized” in the names here. Ignore that for the moment. 0

Partition Procedure (Divide Step)

Input: an unordered list, a2 pivot p

. 5 7 3 (12 10| 1 2 4 9 6 | 11

Goal: All elements on left, all = p on right

41

Conquer Step

|
All elements < p All elements > p

Correct position of p

Recurse on sublist that contains index i
(add index of the pivot to i if recursing right)

42

Quickselect Run Time (Optimistic)

If the pivot is the median:

T B T T I

Then we divide in half each time

T(n) =T(n/2) +n = 0(n)

43

Quickselect Run Time (Worst-Case)

If the pivot is the extreme (min/max):

e s le]e]]]o]o[n]n)
Then we shorten by 1 each time

T(n) =Tn—1)+n = 0(n?)

44

How to Choose the Pivot?

Good choice: O(n)

Bad choice: O(n?)

Good Pivot

What makes a good pivot? Q.
* Roughly even split between left and right QO ’
e |deally: median ' -ifb

But this is the problem that

Quickselect is supposed to solve!

What’s next: an algorithm for choosing a “decent” pivot (median of medians)

46

Good Pivot

Decent pivot: both sides of Pivot >30%

>30%

O Select Pivot from
r this range

>30% 47

Median of Medians

Fast way to select a “good” pivot

Guarantees pivot is greater than =30% of elements and less than =30%
of the elements

Main idea: break list into blocks, find the median of each blocks, use the
median of those medians

48

Median of Medians

1. Break list into blocks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)
[]

49

Median of Medians

Each chunk sorted, chunks ordered by their medians

N

MedianofMedians
is larger than all
of these '} A A A A

5 .

Median of Medians

MedianofMedians
is larger than all AN A
of these '} A A A A

f

[n/5]
Elements smaller than L n .
— . | — _ > -
MedianofMedians: s ([z [5” 2) = 10 6 elements

Number of lists to the “left”

Exclude list on the endpoint,

51

and “middle” list

Median of Medians

MedianofMedians
is larger than all
of these

Elements smaller than
MedianofMedians:

Elements greater than
MedianofMedians:

N\ AN AN AN
A AN AN N\ N\
< < < <
A JAN JAN N N\
A N\ N\ N\ N\
\ J
|
[n/5]
3(— i —2)23—n—6elements
5 10
3(1-E —2)23—n—6elements
2 |5 10

52

Divide: select an element p using Median of Medians, Partition(p)

M(n) + ©0(n)

median of medians algorithm

partition algorithm

53

Divide: select an element p using Median of Medians, Partition(p)

M(n) + ©0(n)

Conquer: if i = index of p, done, if i <index of p recurse left. Else
recurse right (with index i — p)

m
<s(=)
Combine: Nothing! 10

) + M(n) + 0(n)

54

Median of Medians

1. Break list into blocks of size 5 O(n)

2. Find the median of each chunk O(n)

3. Return median of medians (using Quickselect) ¢ (g)
[]

Mn)=S (g) + 0(n)

55

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

Conquer: if i = index of p, done, if i <index of p recurse left. Else
recurse right

m
<s(=)
Combine: Nothing! 10

) + M(n) + 0(n)

56

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

Conquer: if i = index of p, done, if i <index of p recurse left. Else
recurse right

m
<s(=)
Combine: Nothing! 10

Sn)<S (10) + S (7;) + 0(n) = 0(n))

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

Using Quickselect, always pivot about the median

anoppnE

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

58

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

Using Quickselect, always pivot about the median

anoppnE

T(n) =2T(n/2) + O(n)

T(n) = 0(nlogn)

59

A Worthwhile Choice?

Using Quickselect to pick median guarantees ©(n logn) worst-case run-time

Approach has very large constants
* If you really want ®(nlogn), better off using MergeSort

More efficient approach: Random pivot
* Very small constant (very fast algorithm)
* Expectedtorunin ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

60

Quicksort Running Time

If the pivot is always (n/10)™ order statistic:

Tn)=Tn/10)+ TO9n/10) + O(n)

61

Quicksort Running Time

T(n) =T(n/10) +T(9n/10) + ©(n)

. O(n)
/\
n/10 I /10 0(n)
/\ /\

Quicksort Running Time

If the pivot is always (n/10)™ order statistic:

Tn)=Tn/10)+ TO9n/10) + O(n)
= 0O(nlogn)

This is true if the pivot is any (n/k)™ order statistic for any

constant k > 1 (as long as the size of the smaller listis a

constant fraction of the full list, we get ®(nlogn) running time)

Quicksort Running Time

If the pivot is always d™ order statistic:

Then we shorten by d each time

Tn)=Tn—d)+n
= 0(n?)

What'’s the probability of this occurring (for a random pivot)?

64

Probability of Always Choosing d'! Order Statistic

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: %

e M 1 d
Probability second pivot is among d smallest: —

Probability all pivots are among d smallest:

Very small probability!

d d d d
EX n_dx n_de---xﬁx1=(gx(g—l)x---xl) = =

I
(=Y
p—

65

Formal Argument for n log n Average

We will focus on counting the number of comparisons

For simplicity: suppose all elements are distinct

Quicksort only compares against a pivot

* Element i only compared to element j if one of them was the
pivot

66

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
— Why? Otherwise | would not know their order
— Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot 67

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1234567.9 10 | 11 | 12

Consider the sorted version of the list

Assuming pivot is chosen

PI‘[WC compare 1 and 12] = E uniformly at random

Elements only compared if 1 or 12 was chosen as the
first pivot since otherwise they are in different sublists

68

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Z-B 4 5 6 7 8 9 | 10 | 11 | 12

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be in right sublist and will be
processed in future invocation of Quicksort

Pr[we compare i and j| = Pr[we compare i and j in Quicksort([p + 1, ...,n])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Z-B 4 5 6 7 8 9 | 10 | 11 | 12

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be
processed in future invocation of

[p + 1, ...,n] denotes the right
sublist (in some order) that we are

recursively sorting

Pr[we compare i and j| = Pr[we compare i and j in Quicksort([p + 1, ...,n])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Case 2: Pivot greater than j
Then sublist [i,i + 1, ..., j] will be in left sublist and will be
processed in future invocation of Quicksort

Pr[we compare i and j| = Pr[we compare i and j in Quicksort(|1, ..., p|)

Formal Argument for n log n Average

What is the probability of comparing two given elements?

123456.89101112

Case 3.1: Pivot contained in[i + 1,...,j — 1]
Then i and j are in different sublists and will never be
compared

Pr[we compareiand j] =0

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1234.6789101112

i J

Case 3.2: Pivot is either i orj
Then we will always compare i and j

Pr[we compareiand j] =1

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Case 1: Pivot less than i
Pr[we compare i and j] = Pr[we compare i and j in Quicksort(|[p + 1, ...,n])
Case 2: Pivot greater than j
Pr[we compare i and j] = Pr[we compare i and j in Quicksort([1, ..., p])
Case 3: Pivotin [i,i + 1, ...,]]

2
Pr[we compare i and j| = Pr[i orj is selected as pivot] =j —Tr 1

Formal Argument for n log n Average

Probability of comparing element i with element j:

2
b and il =
r[we compare i and] T+l

75

Formal Argument for n log n Average

Probability of comparing element i with element j:

2
j—i+1

Pr{we compare i and j]| =

Expected number of comparisons:

—1 n-—1

n
1<2 Zl
k k

=1 1 =1 k=1

n—1n-—i
2
_ k+1
l k=1 [
Substitution:
k =j—1 76

n-—1

S

=
Il

Formal Argument for n log n Average

Substitution:
k=j—1i

Intuition (not proof!):

|3
1

Formal Argument for n log n Average

Z_{i —z+1:22 Z

=1 k=1

qu
|

n—1
= 2 Z O(logn) = O(nlogn)
i=1

1
Useful fact: 2 e O(logn)

M'
i1

78

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 10: D&C: CPP & Matrix Multiply
	Slide 2: Announcements
	Slide 3: Divide and Conquer
	Slide 4: Closest Pair of Points
	Slide 5: Closest Pair of Points: Divide and Conquer
	Slide 6: Closest Pair of Points: Divide and Conquer
	Slide 7: Closest Pair of Points: Divide and Conquer
	Slide 8: Listing Points in the Boundary
	Slide 9: Closest Pair of Points: Divide and Conquer
	Slide 10: Closest Pair of Points: Divide and Conquer
	Slide 11: Matrix Multiplication
	Slide 12: Matrix Multiplication Divide and Conquer
	Slide 13: Matrix Multiplication Divide and Conquer
	Slide 14: Matrix Multiplication Divide and Conquer
	Slide 15: Matrix Multiplication Divide and Conquer
	Slide 16: Strassen’s Algorithm
	Slide 17: Strassen’s Algorithm
	Slide 18
	Slide 19: Is This the Fastest?
	Slide 20: Divide and Conquer Algorithms (Thus Far)
	Slide 21: Quicksort
	Slide 22: Quicksort
	Slide 23: Partition Procedure (Divide Step)
	Slide 24: Partition Procedure
	Slide 25: Partition Procedure
	Slide 26: Partition Procedure
	Slide 27: Partition Procedure
	Slide 28: Partition Procedure
	Slide 29: Partition Procedure
	Slide 30: Partition Procedure
	Slide 31: Partition Procedure Summary
	Slide 32: Conquer Step
	Slide 33: Quicksort Run Time (Optimistic)
	Slide 34: Quicksort Run Time (Worst-Case)
	Slide 35: Quicksort on a Nearly Sorted List
	Slide 36: How to Choose the Pivot?
	Slide 37: Good Pivot
	Slide 38: Quickselect Algorithm
	Slide 39: Quickselect Algorithm
	Slide 40: CLRS Pseudocode for Quickselect
	Slide 41: Partition Procedure (Divide Step)
	Slide 42: Conquer Step
	Slide 43: Quickselect Run Time (Optimistic)
	Slide 44: Quickselect Run Time (Worst-Case)
	Slide 45: How to Choose the Pivot?
	Slide 46: Good Pivot
	Slide 47: Good Pivot
	Slide 48: Median of Medians
	Slide 49: Median of Medians
	Slide 50: Median of Medians
	Slide 51: Median of Medians
	Slide 52: Median of Medians
	Slide 53: Quickselect
	Slide 54: Quickselect
	Slide 55: Median of Medians
	Slide 56: Quickselect
	Slide 57: Quickselect
	Slide 58: Phew! Back to Quicksort
	Slide 59: Phew! Back to Quicksort
	Slide 60: A Worthwhile Choice?
	Slide 61: Quicksort Running Time
	Slide 62: Quicksort Running Time
	Slide 63: Quicksort Running Time
	Slide 64: Quicksort Running Time
	Slide 65: Probability of Always Choosing d t h Order Statistic
	Slide 66: Formal Argument for n l o g n Average
	Slide 67: Formal Argument for n l o g n Average
	Slide 68: Formal Argument for n l o g n Average
	Slide 69: Formal Argument for n l o g n Average
	Slide 70: Formal Argument for n l o g n Average
	Slide 71: Formal Argument for n l o g n Average
	Slide 72: Formal Argument for n l o g n Average
	Slide 73: Formal Argument for n l o g n Average
	Slide 74: Formal Argument for n l o g n Average
	Slide 75: Formal Argument for n l o g n Average
	Slide 76: Formal Argument for n l o g n Average
	Slide 77: Formal Argument for n l o g n Average
	Slide 78: Formal Argument for n l o g n Average

