
CS 3100
Data Structures and Algorithms 2

Lecture 9: D&C: Closest Pair of Points

Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Section 4.5
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Warm up 

Given any 5 points on the unit 
square, show there’s always a pair 

distance ≤
2

2
 apart

1

1



1

1

1

2

1

22

2
If points 𝑝1, 𝑝2 in same quadrant, then 𝛿 𝑝1, 𝑝2 ≤

2

2

Given 5 points, two must share the same quadrant

Pigeonhole Principle!
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Announcements

• PS4 coming soon

• Office hours
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p

• TA office hours posted on our website

• Quizzes 1-2 coming February 29, 2024
• Both quizzes taken the same day

• If you have SDAC, please schedule for 1 exam (not a quiz)
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Divide and Conquer

Divide: 
• Break the problem into multiple 

subproblems, each smaller instances of the 
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively

• If the subproblems are “small”:
• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain 

solution for original problem

[CLRS Chapter 4]



Divide and Conquer

Base Case:
• If the problem is “small”,

solve directly (brute force)

Divide: 
• Break the problem into multiple 

subproblems, each smaller instances of the 
original

Conquer:
• Solve each subproblem recursively

Combine:
• Merge solutions to subproblems to obtain 

solution for original problem

[CLRS Chapter 4]



Observation

Divide: 𝐷(𝑛) time

Conquer: Recurse on smaller problems of size 𝑠1, … , 𝑠𝑘

Combine: 𝐶(𝑛) time

Recurrence: 
• 𝑇 𝑛 = 𝐷 𝑛 + σ𝑖∈[𝑘] 𝑇(𝑠𝑖) + 𝐶(𝑛)

Many divide and conquer algorithms have recurrences are of form:
• 𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛/𝑏) + 𝑓(𝑛)

Mergesort: 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛

Divide and Conquer Multiplication: 𝑇 𝑛 = 4𝑇 Τ𝑛 2 + 5𝑛

Karatsuba Multiplication: 𝑇 𝑛 = 3𝑇 Τ𝑛 2 + 8𝑛
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𝑎 and 𝑏 are constants



General Recurrence
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𝑇 𝑛 = 𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

𝑛 𝑓(𝑛)

𝑓
𝑛

𝑏
𝑓

𝑛

𝑏
𝑓

𝑛

𝑏

𝑛

𝑏

𝑛

𝑏

𝑛

𝑏

𝑓
𝑛

𝑏2 𝑓
𝑛

𝑏2 𝑓
𝑛

𝑏2
𝑓

𝑛

𝑏2…𝑛

𝑏2

𝑛

𝑏2

𝑛

𝑏2

𝑛

𝑏2

𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1)

… … … … … …

1 1 1 1 1 1 1…

…

… …

1

𝑎

𝑎2

𝑎𝑘

Cost of 
subproblem

𝑓(𝑛)

𝑓 Τ𝑛 𝑏

𝑓 Τ𝑛 𝑏2

Number of 
subproblems

𝑘 levels

𝑓 Τ𝑛 𝑏𝑘



General Recurrence

9

𝑇 𝑛 = 𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

𝑛 𝑓(𝑛)

𝑓
𝑛

𝑏
𝑓

𝑛

𝑏
𝑓

𝑛

𝑏

𝑛

𝑏

𝑛

𝑏

𝑛

𝑏

𝑓
𝑛

𝑏2 𝑓
𝑛

𝑏2 𝑓
𝑛

𝑏2
𝑓

𝑛

𝑏2…𝑛

𝑏2

𝑛

𝑏2

𝑛

𝑏2

𝑛

𝑏2

𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1)

… … … … … …

1 1 1 1 1 1 1…

…

… …

1

𝑎

𝑎2

𝑎log𝑏𝑛 

= 𝑛log𝑏 𝑎

Cost of 
subproblem

𝑓(𝑛)

𝑓 Τ𝑛 𝑏

𝑓 Τ𝑛 𝑏2

Number of 
subproblems

𝑘 levels

𝑓 Τ𝑛 𝑏𝑘



Three Cases

10

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛

𝑏
+ 𝑎2𝑓

𝑛

𝑏2 + 𝑎3𝑓
𝑛

𝑏3 + ⋯ + 𝑎𝑘𝑓
𝑛

𝑏𝑘

Case 1:
Most work happens 

at the leaves

Case 2:
Work happens  

consistently throughout

Case 3:
Most work happens 

at top of tree

𝑘 = log𝑏 𝑛



Master Theorem

𝑇 𝑛 = 𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

𝛿 = log𝑏 𝑎 

Requirement on 𝒇 Implication

Case 1 𝑓 𝑛 ∈ 𝑂 𝑛𝛿−  for some constant 휀 > 0 𝑇 𝑛 ∈ Θ 𝑛𝛿



Master Theorem

𝑇 𝑛 = 𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

𝛿 = log𝑏 𝑎 

Requirement on 𝒇 Implication

Case 1 𝑓 𝑛 ∈ 𝑂 𝑛𝛿−  for some constant 휀 > 0 𝑇 𝑛 ∈ Θ 𝑛𝛿

Case 2 𝑓 𝑛 ∈ Θ 𝑛𝛿 𝑇 𝑛 ∈ Θ 𝑛𝛿 log 𝑛



Master Theorem

𝑇 𝑛 = 𝑎𝑇 Τ𝑛 𝑏 + 𝑓(𝑛)

𝛿 = log𝑏 𝑎 

Requirement on 𝒇 Implication

Case 1 𝑓 𝑛 ∈ 𝑂 𝑛𝛿−  for some constant 휀 > 0 𝑇 𝑛 ∈ Θ 𝑛𝛿

Case 2 𝑓 𝑛 ∈ Θ 𝑛𝛿 𝑇 𝑛 ∈ Θ 𝑛𝛿 log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛𝛿+  for some constant 휀 > 0

 AND

𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Master Theorem Example 1

Case 1: if 𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎 − ) for some constant 휀 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Case 2: if 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+ ) for some constant 휀 > 0, and if 𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

14

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

Case 2

Θ 𝑛log2 2 log 𝑛 = Θ(𝑛 log 𝑛)



Tree method
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𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛/2 𝑛/2

𝑛/4 𝑛/4 𝑛/4 𝑛/4

1 1 1 11 1

𝑛

𝑛

𝑛

𝑛

+

+ + +

+ + + + +

log2 𝑛



Master Theorem Example 2
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𝑇 𝑛 = 4𝑇
𝑛

2
+ 5𝑛

Case 1

Θ 𝑛log2 4 = Θ(𝑛2)

Case 1: if 𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎 − ) for some constant 휀 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Case 2: if 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+ ) for some constant 휀 > 0, and if 𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)



Tree method
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𝑇 𝑛 = 4𝑇
𝑛

2
+ 5𝑛

𝑛 5𝑛

5𝑛

2

5

5𝑛

2

5𝑛

2

𝑛

2

𝑛

2

𝑛

2

𝑛

2
5𝑛

2

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4

5𝑛

4
…𝑛

4

𝑛

4

𝑛

4

𝑛

4

𝑛

4

𝑛

4

𝑛

4

𝑛

4
5𝑛

4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4

2
⋅ 5𝑛

16

4
⋅ 5𝑛

2log2 𝑛 ⋅ 5𝑛

…



Tree method
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𝑇 𝑛 = 4𝑇
𝑛

2
+ 5𝑛

5𝑛

4

2
⋅ 5𝑛

16

4
⋅ 5𝑛

2log2 𝑛 ⋅ 5𝑛

…

Cost is increasing with the recursion depth 
(due to large number of subproblems)

Most of the work happening in the leaves



Master Theorem Example 3
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𝑇 𝑛 = 3𝑇
𝑛

2
+ 8𝑛

Case 1

Θ 𝑛log2 3 ≈ Θ(𝑛1.585)

Case 1: if 𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎 − ) for some constant 휀 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Case 2: if 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+ ) for some constant 휀 > 0, and if 𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)



Karatsuba

20

𝑇 𝑛 = 3𝑇
𝑛

2
+ 8𝑛

𝑛 8𝑛

8𝑛

2

8𝑛

2

8𝑛

2

𝑛

2

𝑛

2

𝑛

2

8𝑛

4

8𝑛

4

8𝑛

4

8𝑛

4

8𝑛

4

8𝑛

4
…𝑛

4

𝑛

4

𝑛

4

𝑛

4

𝑛

4

𝑛

4

8 8 8 8 8 8 8 8 8 8

… … … … … …

1 1 1 1 1 1 1 1 1 1…

8 ⋅ 1𝑛

8

2
⋅ 3𝑛

8

4
⋅ 9𝑛

8

2log2 𝑛
⋅ 3log2 𝑛𝑛

…



Master Theorem Example 4
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𝑇 𝑛 = 2𝑇
𝑛

2
+ 15𝑛3

Case 3

Case 1: if 𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎 − ) for some constant 휀 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Case 2: if 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+ ) for some constant 휀 > 0, and if 𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)



Master Theorem Example 4
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𝑇 𝑛 = 2𝑇
𝑛

2
+ 15𝑛3

Case 3

Θ 𝑛3

Case 1: if 𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎 − ) for some constant 휀 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Case 2: if 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+ ) for some constant 휀 > 0, and if 𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

Important: For Case 3, need to additionally check 
that 2𝑓 Τ𝑛 2 ≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 
sufficiently large 𝑛 

2𝑓 Τ𝑛 2 = 30 Τ𝑛 2 3 =
30

8
𝑛3 ≤

1

4
15𝑛3



Master Theorem Example 4 (Visually)

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …
1 1 1 … 1 1 1

15𝑛3

15
𝑛

2

3

15
𝑛

2

3

15
𝑛

4

3
15

𝑛

4

3

15
𝑛

4

3

15
𝑛

4

3

15 15 15 1515 15

15𝑛3

15𝑛3

4

15𝑛3

16

15 log2 𝑛

log2 𝑛

23

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 15𝑛3



Master Theorem Example 4 (Visually)

15𝑛3

15𝑛3

4

15𝑛3

16

15 log2 𝑛

log2 𝑛
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𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 15𝑛3

Cost is decreasing with the recursion depth
(due to high non-recursive cost)

Most of the work happening at the top



Robbie’s Yard
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There Has to be an Easier Way!
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Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

1
2

3

4

5

6

7

8



Closest Pair of Points

28

1
2

3

4

5

6

7

8

Given: A list of points

Return: Pair of points with 
smallest distance apart



Algorithm: Test every 
pair of points, return the 
closest

Closest Pair of Points: Naïve

29

1
2

3

4

5

6

7

8

Given: A list of points

Return: Pair of points with 
smallest distance apart

𝑂(𝑛2)Running Time:

Goal: 𝑂 𝑛 log 𝑛



Closest Pair of Points: Divide and Conquer

1
2

3

4

5

6

7

8

Divide: How?

At median 𝑥 coordinate
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Closest Pair of Points: Divide and Conquer

1
2

3

4

5

6

7

8

Conquer: 

LeftPoints RightPoints

Recursively find closest pairs 
from LeftPoints and RightPoints

31

Divide: 

At median 𝑥 coordinate



Closest Pair of Points: Divide and Conquer

1
2

3

4

5

6

7

8

LeftPoints RightPoints

Combine: 
Return smaller of left 
and right pairs Problem? ?

32

Conquer: 

Divide: 

At median 𝑥 coordinate

Recursively find closest pairs 
from LeftPoints and RightPoints



Closest Pair of Points: Divide and Conquer

1
2

3

4

5

6

7

8

LeftPoints RightPoints

Combine: 

?

Case 1: Closest pair is 
completely in LeftPoints or 
RightPoints

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

33



Spanning the Cut

1
2

3

4

5

6

7

8

LeftPoints RightPoints

𝑑𝐿

𝑑𝑅

2𝑑
34

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

Compare all pairs of points within 
𝑑 = min{𝑑𝐿 , 𝑑𝑅} of the cut

How many are there?



Spanning the Cut

1
2

3

4

5

6

7

8

LeftPoints RightPoints

𝑑𝐿

𝑑𝑅

2𝑑
𝑇 𝑛 = 2𝑇

𝑛

2
+ Ω 𝑛2 ∈ Ω 𝑛2

35

Compare all pairs of points within 
𝑑 = min{𝑑𝐿 , 𝑑𝑅} of the cut

How many are there?

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

In the worst case, all of the points!



Spanning the Cut

1
2

3

4

5

6

7

8

LeftPoints RightPoints

𝑑𝐿

𝑑𝑅

2𝑑
𝑇 𝑛 = 2𝑇

𝑛

2
+ Ω 𝑛2 ∈ Ω 𝑛2

36

Compare all pairs of points within 
𝑑 = min{𝑑𝐿 , 𝑑𝑅} of the cut

How many are there?

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

In the worst case, all of the points!

Do we need to test every 
pair of points in the 

boundary region (runway)?



Spanning the Cut

1
2

3

4

5

6

7

8

LeftPoints RightPoints

𝑑𝐿

𝑑𝑅

2𝑑
37

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

Observation: We don’t need 
to test all pairs!

Only need to test points within 
distance 𝑑 of each another



Reducing Search Space

2 ⋅ 𝑑

𝑑

2

𝑑

2

Divide the runway into 
squares with dimension Τ𝑑 2 

How many points can be in a 
square?

38

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

at most 1

𝑑

2



Reducing Search Space

Divide the runway into 
squares with dimension Τ𝑑 2 

39

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

2 ⋅ 𝑑

7

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

How many squares can contain a 
point < 𝑑 away?

at most 15



Closest Pair of Points: Divide and Conquer

1
2

3

4

5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Construct list of points in the boundary
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Construct list of points in the boundary
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points

Closest Pair of Points: Divide and Conquer

1
2

3

4

5

6

7

8

LeftPoints RightPoints

?

Looks like another 𝑂 𝑛 log 𝑛  
algorithm – combine step is still 

too expensive



Closest Pair of Points: Divide and Conquer

Solution: Maintain additional 
information in the recursion
• Minimum distance among pairs of 

points in the list
• List of points sorted according to 𝑦-

coordinate

Sorting runway points by 𝑦-
coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Construct list of points in the boundary
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Listing Points in the Boundary
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LeftPoints:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝑑1,5

Sorted Points: [3,7,5,1]

RightPoints:

Closest Pair: (4,6), 𝑑4,6

Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed 
by a single pass over the lists



Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Construct list of points in the boundary
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points



Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem: 
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
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