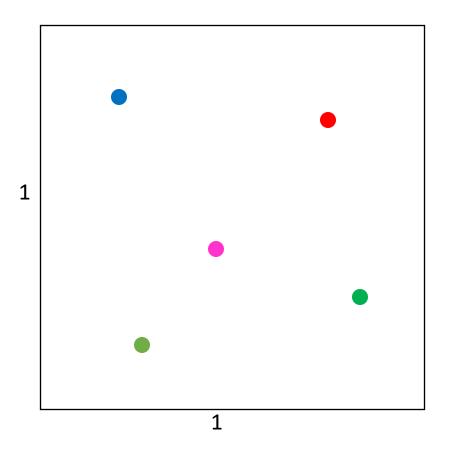
CS 3100 Data Structures and Algorithms 2 Lecture 9: D&C: Closest Pair of Points

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS 4th edition:

• Section 4.5

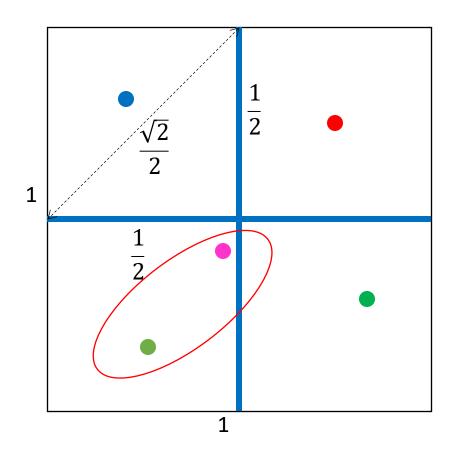


<u>Warm up</u>

Given any 5 points on the unit square, show there's always a pair distance $\leq \frac{\sqrt{2}}{2}$ apart If points p_1, p_2 in same quadrant, then $\delta(p_1, p_2) \le \frac{\sqrt{2}}{2}$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!



Announcements

- PS4 coming soon
- Office hours
 - Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
 - Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
 - TA office hours posted on our website
- Quizzes 1-2 coming February 29, 2024
 - Both quizzes taken the same day
 - If you have SDAC, please schedule for 1 exam (not a quiz)

Divide and Conquer

[CLRS Chapter 4]

Divide:

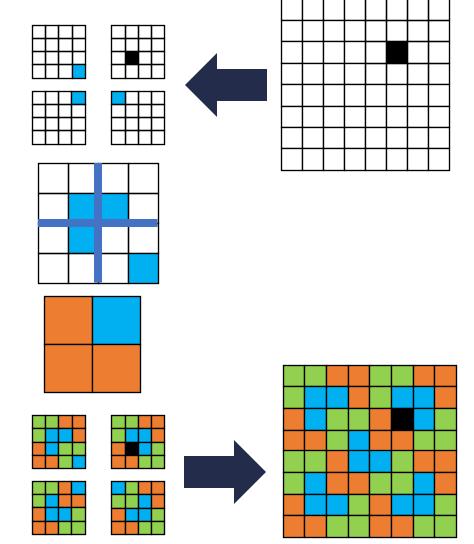
 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

• Merge solutions to subproblems to obtain solution for original problem



Divide and Conquer

Base Case:

• If the problem is "small", solve directly (brute force)

Divide:

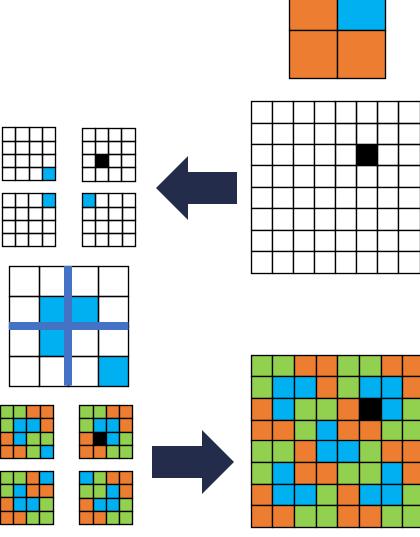
 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

• Solve each subproblem recursively

Combine:

• Merge solutions to subproblems to obtain solution for original problem



[CLRS Chapter 4]

Observation

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \ldots, s_k

Combine: C(n) time

Recurrence:

• $T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$ Many divide and conquer algorithms have recurrences are of form: • $T(n) = a \cdot T(n/b) + f(n)$ a and

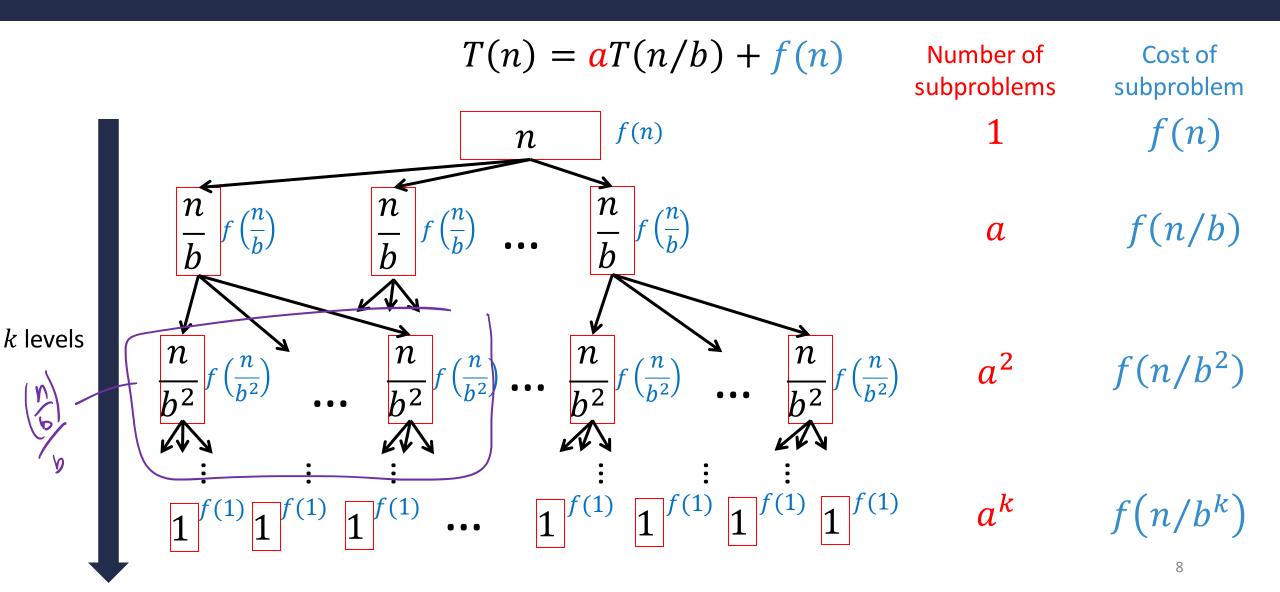
a and b are constants

Mergesort: T(n) = 2T(n/2) + n

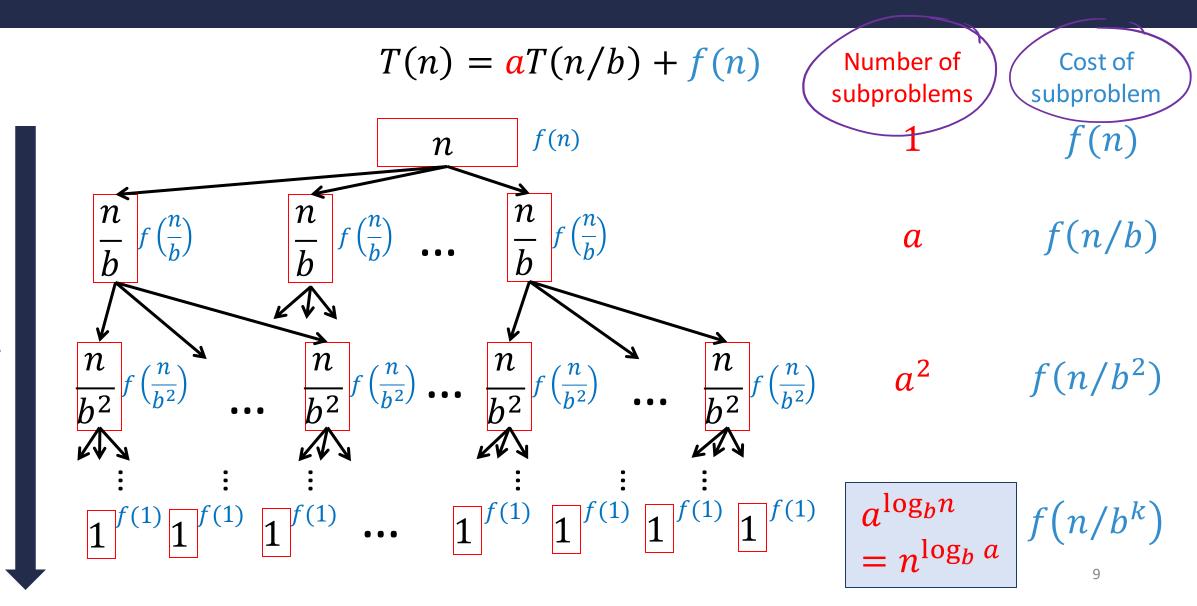
Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n

Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

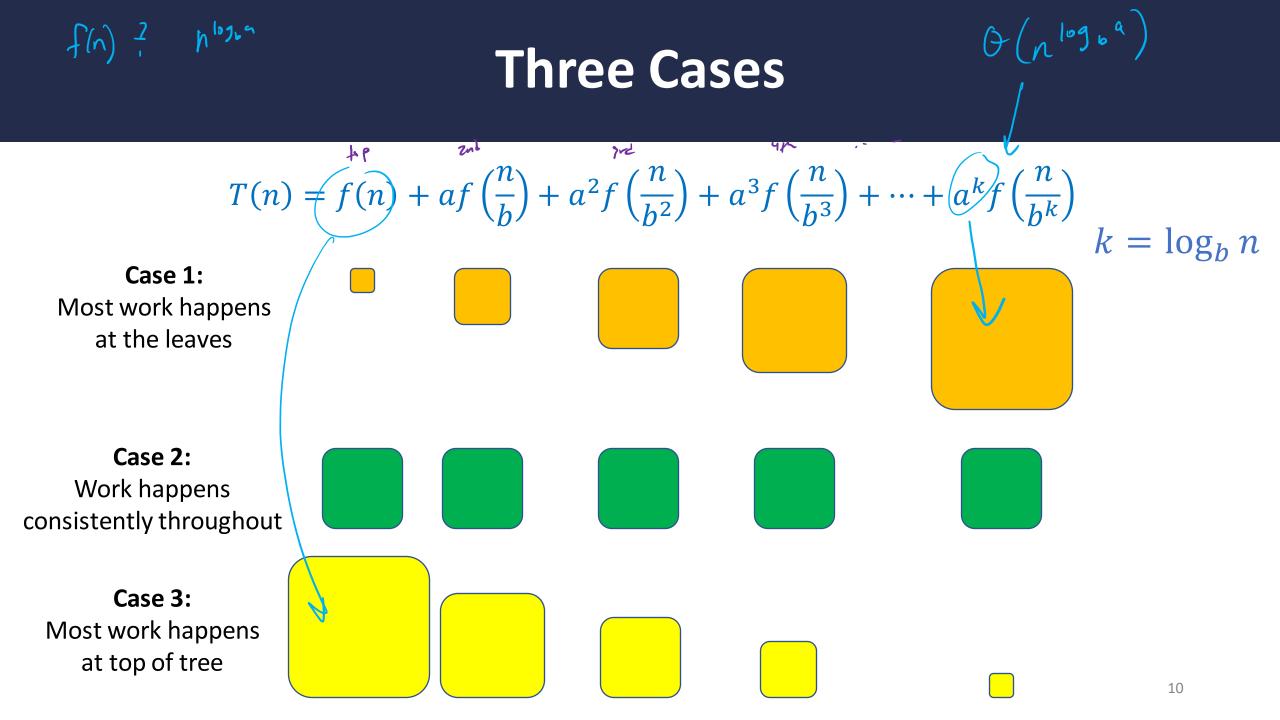
General Recurrence



General Recurrence



k levels



Master Theorem

$$T(n) = aT(n/b) + f(n)$$

nogsa

f(n)

7

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta - \varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ $sufficiently \text{ large } n$	$T(n) \in \Theta(f(n))$

Master Theorem Example 1

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

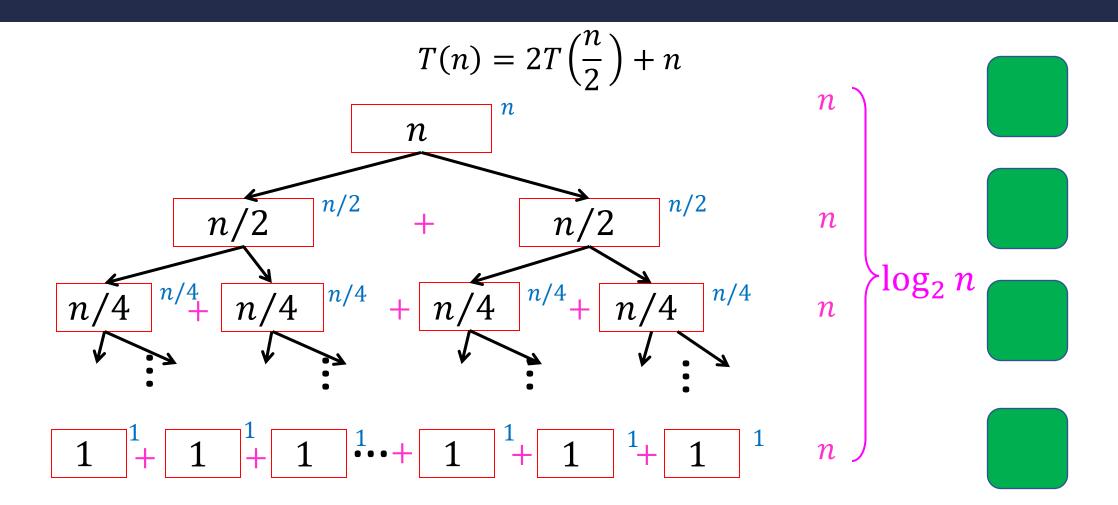
a=2 b=2

$$n^{\log_2 2} = n$$
 $T(n) = 2T\left(\frac{n}{2}\right) + n$ $\frac{f(n)}{n} \neq \frac{n^{\log_2 n}}{n}$

Case 2

$$\Theta(n^{\log_2 2} \log n) = \Theta(n \log n)$$

Tree method



Master Theorem Example 2

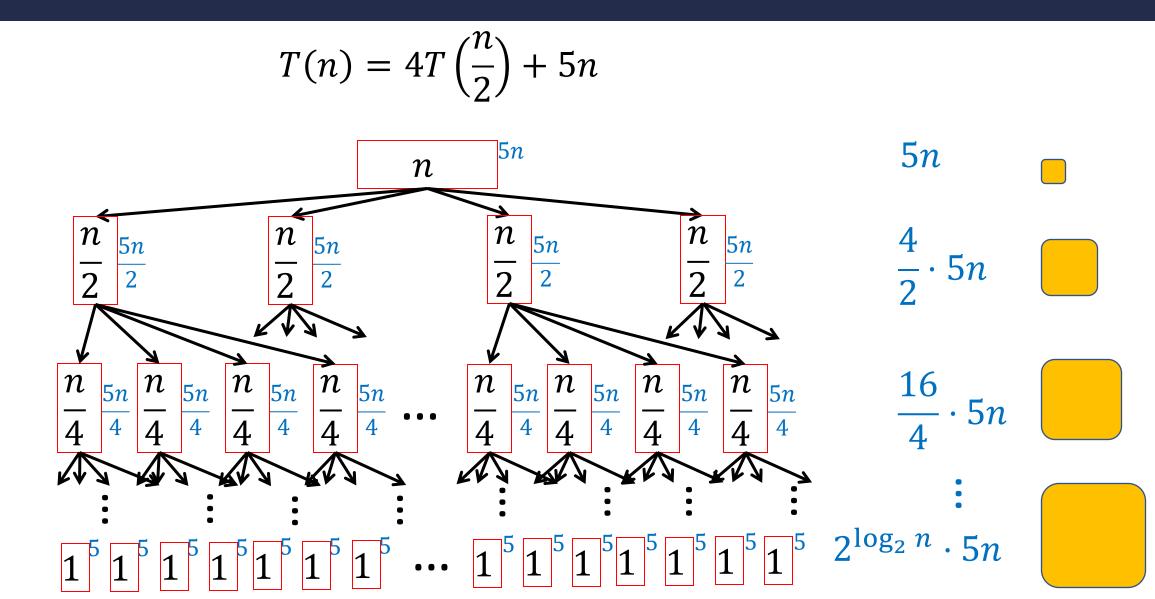
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

$$a=\frac{4}{n^{\log_2 4}} = n^2 \qquad T(n) = 4T\left(\frac{n}{2}\right) + 5n \qquad \frac{f(n)}{5n} = 0 \begin{pmatrix} n^{1-n} \\ n^2 \end{pmatrix}$$

$$case 1 \qquad e = 1$$

$$\Theta(n^{\log_2 4}) = \Theta(n^2) \qquad 5neO(n) \qquad n^{\log_2 4} = 0$$

Tree method

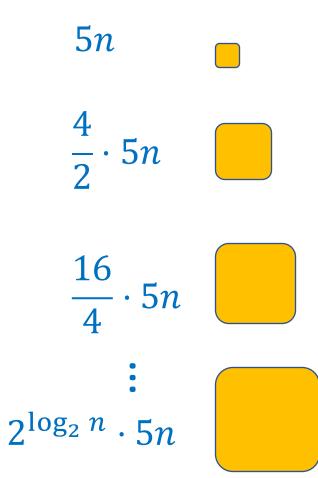


Tree method

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Cost is <u>increasing</u> with the recursion depth (due to large number of subproblems)

Most of the work happening in the leaves



Master Theorem Example 3

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

$$a=3, b=2$$

$$n^{\log_2 3}= T(n) = 3T\left(\frac{n}{2}\right) + 8n \qquad \qquad f(n) = 0 \qquad n^{\log_2 3}$$

$$Case 1 \qquad \qquad e=0.3$$

$$\Theta(n^{\log_2 3}) \approx \Theta(n^{1.585})$$

$$19$$

1

Karatsuba

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$n = 3T\left(\frac{n}{2}\right) + 8n$$

$$8 \cdot 1n$$

$$\frac{n}{2} \frac{8n}{2} - \frac{n}{2} \frac{8n}{2} - \frac{n}{2} \frac{8n}{2} - \frac{2}{2} - \frac{8}{2} \cdot 3n$$

$$\frac{n}{4} \frac{8n}{4} \frac{n}{4} \frac{8n}{4} - \frac{n}{4} \frac{8n}{4} \frac{n}{4} \frac{8n}{4} - \frac{8}{4} - \frac{8}{4}$$

Master Theorem Example 4

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
Case 1: if $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n))$

a= 2, b= 2

$$n^{byn^2=}n$$
 $T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$
 $\frac{F(n)}{15n^3} c \left(\frac{n^{byn^2}}{2(n^{tm})}\right) c^{byn^2}$
 $\epsilon=1$

Case 3

Master Theorem Example 4

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Case 1: if $f(n) = O(n^{\log_b a} - \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$

Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$

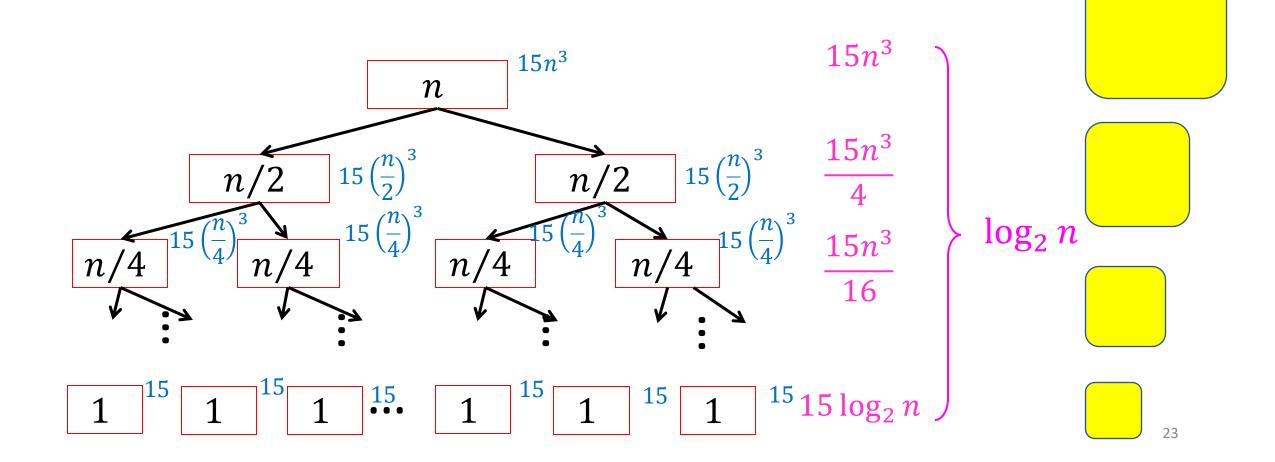
Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^{3}$$
Important: For Case 3, need to additionally check that $2f(n/2) \le cf(n)$ for constant $c < 1$ and sufficiently large n

$$2f(n/2) = 30(n/2)^{3} = \frac{30}{8}n^{3} \le \frac{1}{4}(15n^{3})$$

Master Theorem Example 4 (Visually)

 $T(n) = 2T(n/2) + 15n^3$

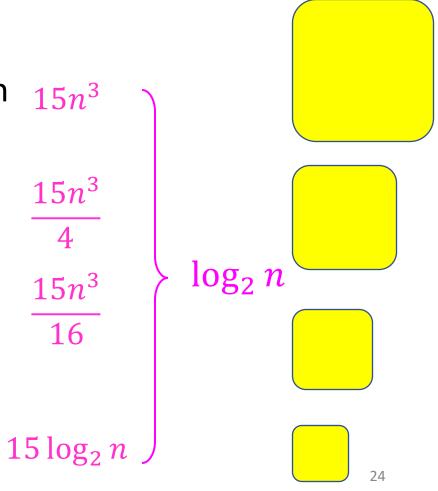


Master Theorem Example 4 (Visually)

$$T(n) = 2T(n/2) + 15n^3$$

Cost is <u>decreasing</u> with the recursion depth $15n^{3}$ (due to high *non-recursive* cost)

Most of the work happening at the top



 $15n^{3}$

4

 $15n^{3}$

16

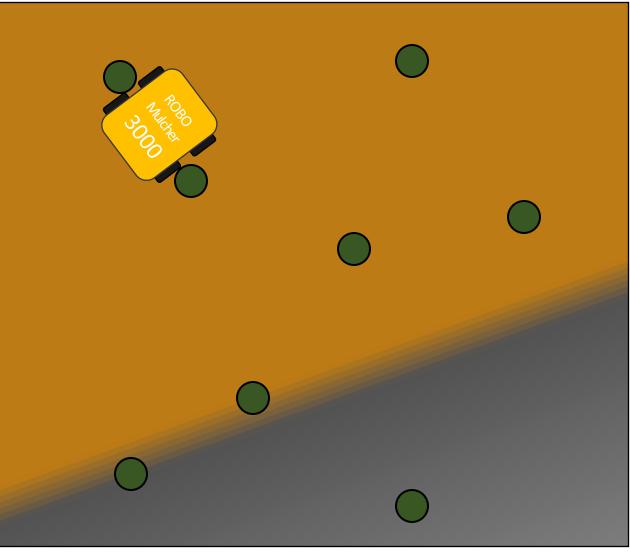
Robbie's Yard

There Has to be an Easier Way!

Constraints: Trees and Plants

How wide can the robot be?

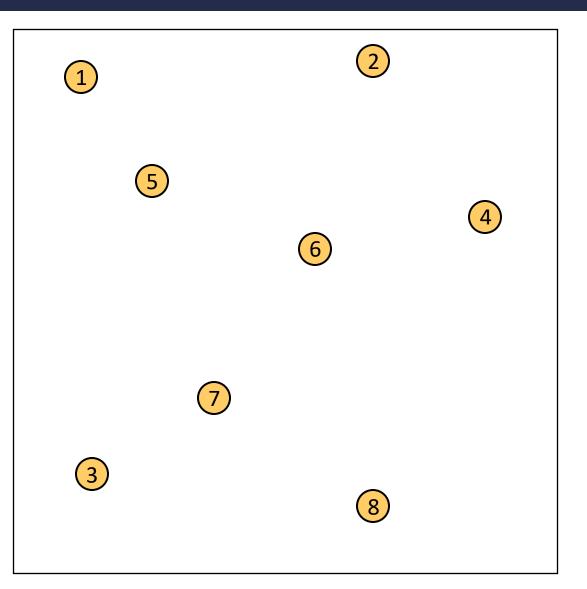
Objective: find closest pair of trees



Closest Pair of Points

Given: A list of points

Return: Pair of points with smallest distance apart

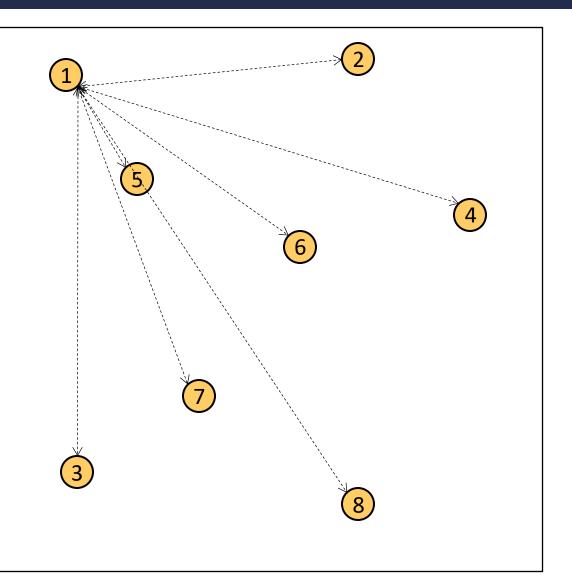


Closest Pair of Points: Naïve

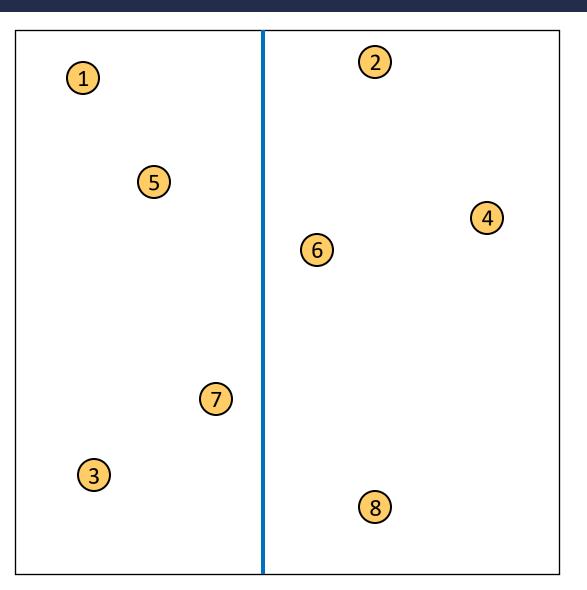
Given: A list of points

Return: Pair of points with smallest distance apart

Algorithm: Test every pair of points, return the closest (n) = 0**Running Time:** $O(n^2)$ **Goal:** $O(n \log n) \approx \tau(n) = \mathcal{I}(\frac{1}{2}) + \frac{1}{n}$



Divide: How?

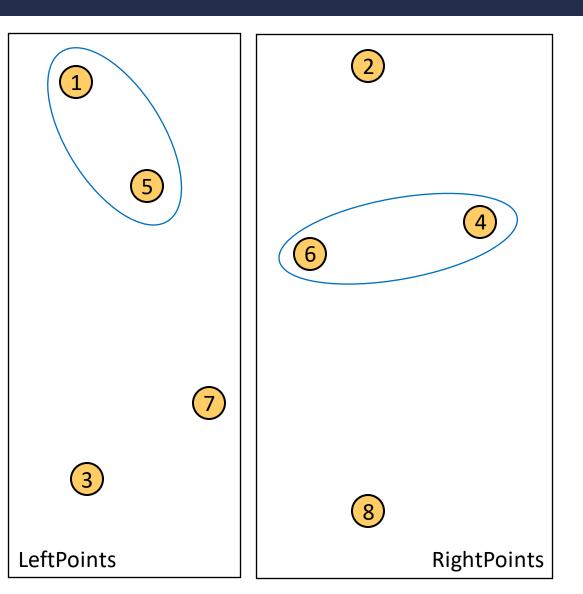


Divide:

At median *x* coordinate

Conquer:

Recursively find closest pairs from LeftPoints and RightPoints



Divide:

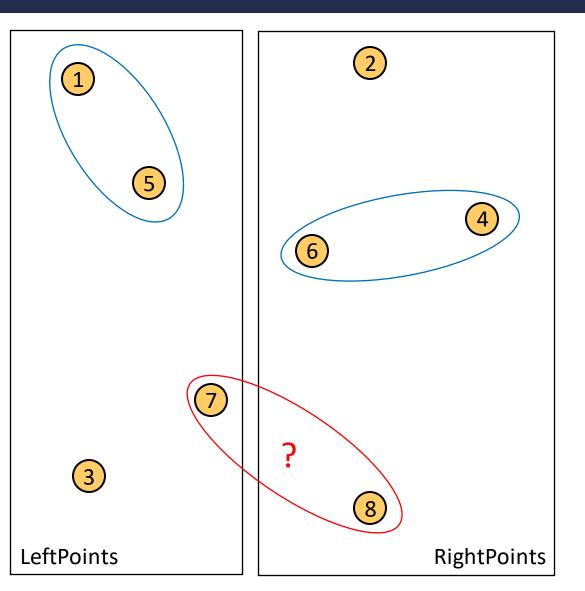
At median *x* coordinate

Conquer:

Recursively find closest pairs from LeftPoints and RightPoints

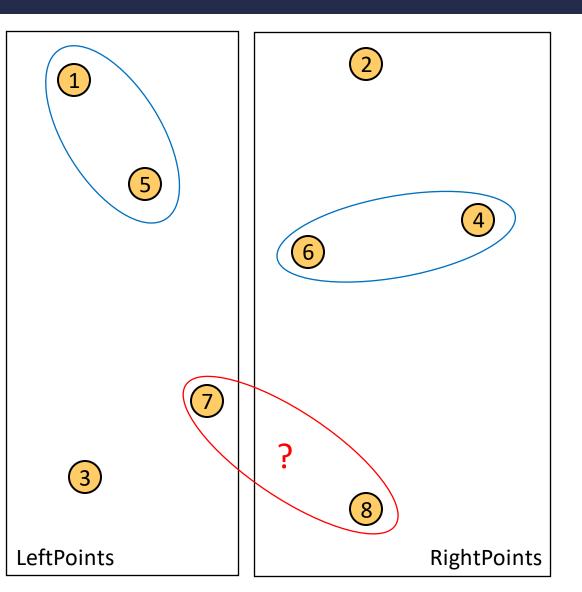
Combine:

Return smaller of left and right pairs **Problem?**



Combine:

- **Case 1:** Closest pair is completely in LeftPoints or RightPoints
- **Case 2:** Closest pair spans our "cut"
- Need to test points across the cut

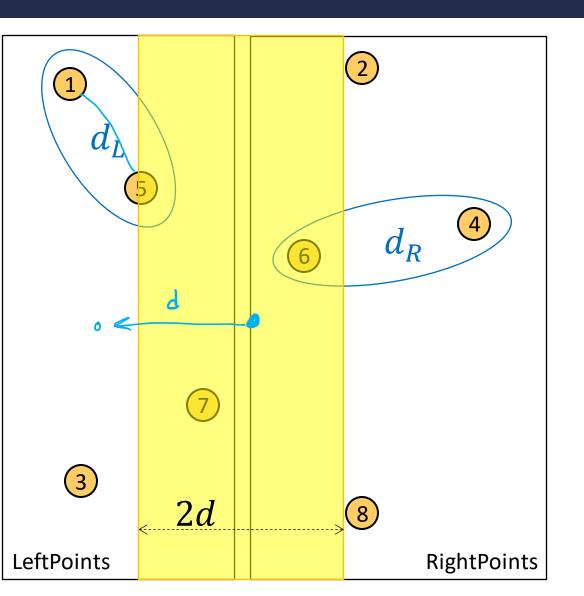


Case 2: Closest pair spans our "cut"

Need to test points across the cut

Compare all pairs of points within $d = \min\{d_L, d_R\}$ of the cut

How many are there?



Case 2: Closest pair spans our "cut"

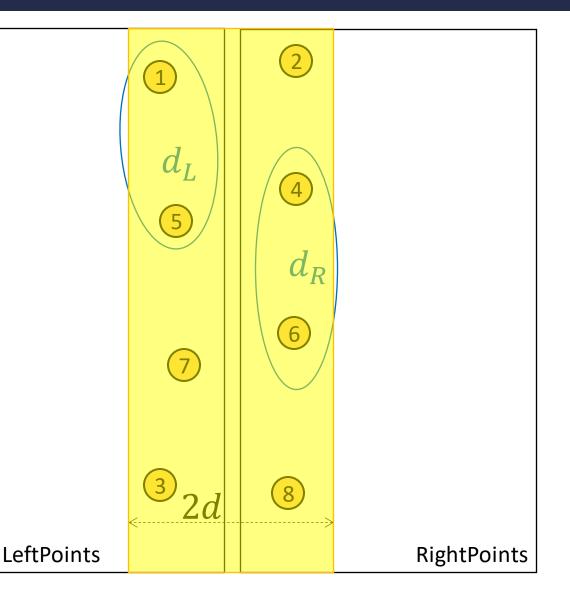
Need to test points across the cut

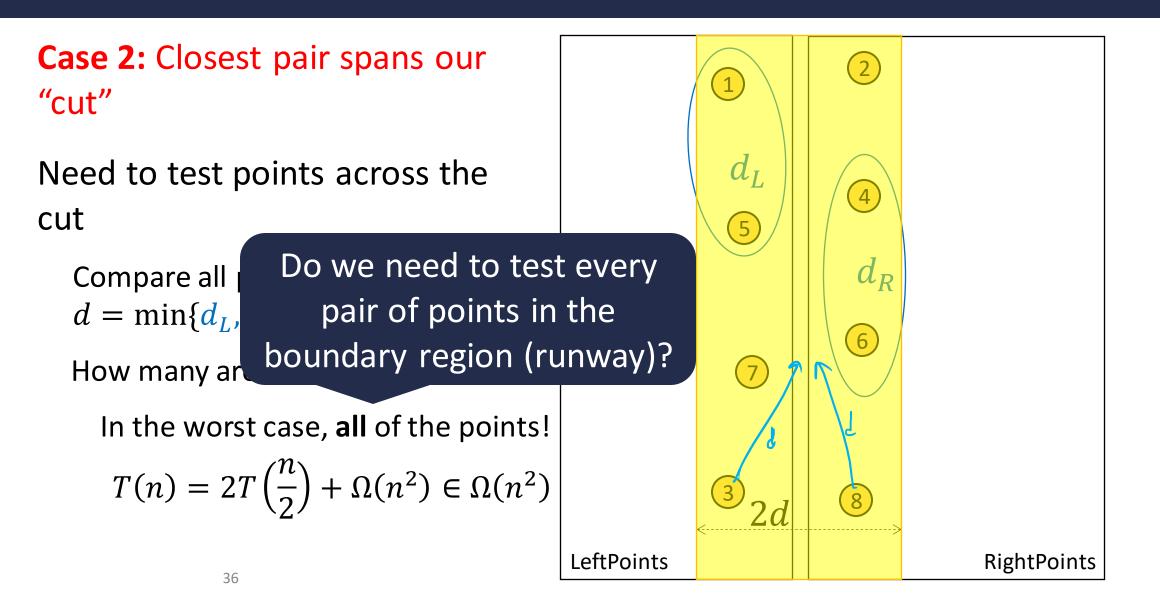
Compare all pairs of points within $d = \min\{d_L, d_R\}$ of the cut

How many are there?

In the worst case, **all** of the points!

$$T(n) = 2T\left(\frac{n}{2}\right) + \Omega(n^2) \in \Omega(n^2)$$



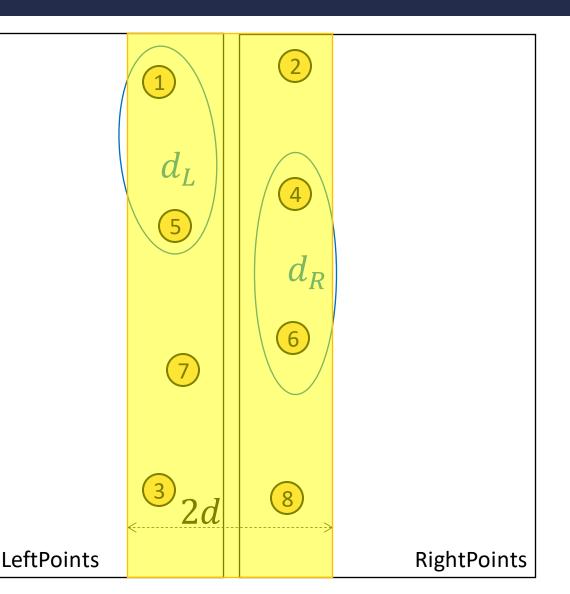


Case 2: Closest pair spans our "cut"

Need to test points across the cut

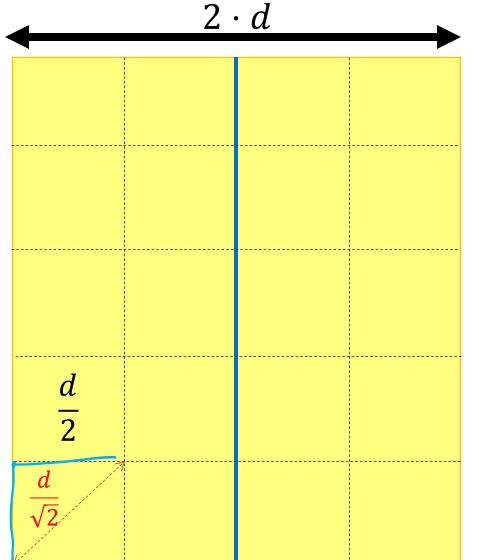
Observation: We don't need to test all pairs!

Only need to test points within distance d of each another



Reducing Search Space

- **Case 2:** Closest pair spans our "cut"
- Need to test points across the cut
- Divide the runway into squares with dimension d/2
- How many points can be in a square? at most 1

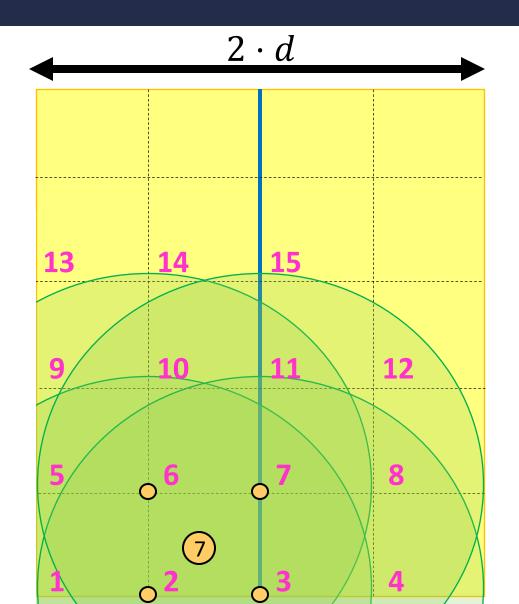


Reducing Search Space

- **Case 2:** Closest pair spans our "cut"
- Need to test points across the cut
- Divide the runway into squares with dimension d/2

39

- How many squares can contain a point < d away?
 - at most <mark>15</mark>



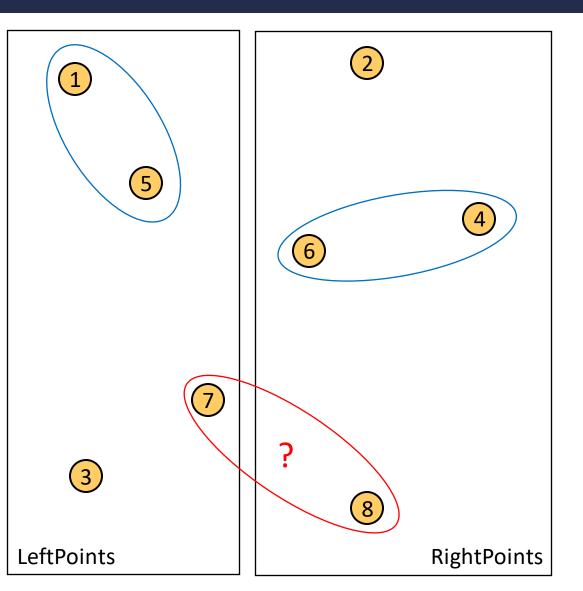
Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by *y*-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points



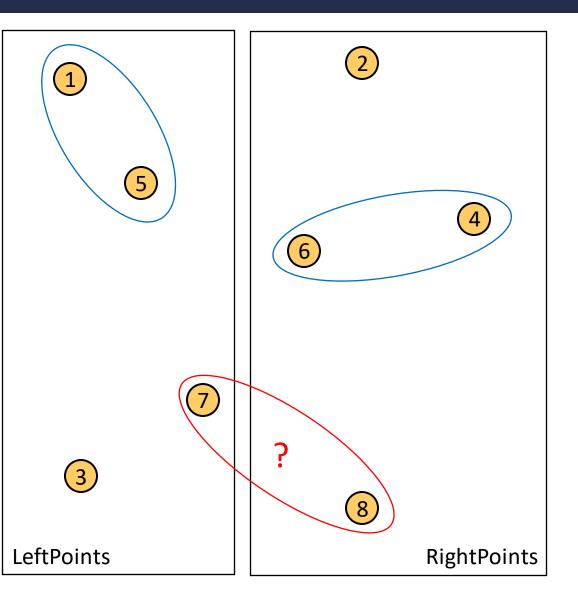
Initialization: Sort points by *x*-coordinate

Divide. Partition points into two lists of points

Looks like another $O(n \log n)$ algorithm – combine step is still too expensive

Combine:

- Construct list of points in the boundary
- Sort runway points by *y*-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points



Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by *y*-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Solution: Maintain additional

information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to *y*-coordinate

Sorting runway points by *y*-coordinate now becomes a **merge**

Listing Points in the Boundary

LeftPoints:

Closest Pair: $(1, 5), d_{1,5}$ Sorted Points: [3,7,5,1]

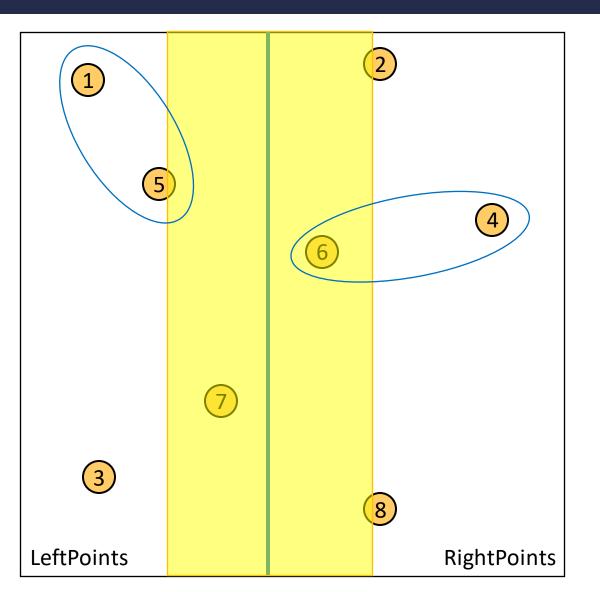
RightPoints:

Closest Pair: (4,6), $d_{4,6}$ Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]

Runway Points: [8,7,6,5,2]

Both of these lists can be computed by a *single* pass over the lists



Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Construct list of points in the boundary
- Sort runway points by *y*-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

What is the running time?

 $\Theta(n \log n)$

T(n)

 $T(n) = 2T(n/2) + \Theta(n)$

Case 2 of Master's Theorem: $T(n) = \Theta(n \log n)$

 $\Theta(1)$ 2T(n/2)

 $\Theta(n)$

 $\Theta(n)$

 $\Theta(1$

 $\Theta(n \log n)$ **Initialization:** Sort points by *x*-coordinate

> **Divide:** Partition points into two lists of points based on *x*-coordinate

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points