CS 3100

Data Structures and Algorithms 2
Lecture 9;: D&C: Closest Pair of Points

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4t edition:
* Section 4.5

Warm up

Given any 5 points on the unit
square, show there’s always a pair

. 2
distance < \/2—_ apart

N =

| | o
If points p,, p, in same quadrant, then §(p, p,) < B V2
)

Given 5 points, two must share the same quadrant 1|~

Pigeonhole Principle!

Announcements

* PS4 coming soon

e (Office hours

* Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
* Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
* TA office hours posted on our website

* Quizzes 1-2 coming February 29, 2024
* Both quizzes taken the same day
* |f you have SDAC, please schedule for 1 exam (not a quiz)

Divide and Conquer

[CLRS Chapter 4]

Divide:
* Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
* If the suproblems are “large”:
* Solve each subproblem recursively

* If the subproblems are “small”:
* Solve them directly (base case)

Combine:

* Merge solutions to subproblems to obtain
solution for original problem

Divide and Conquer
[CLRS Chapter 4]

Base Case:

* If the problem is “small”,
solve directly (brute force)

Divide:
* Break the problem into multiple

subproblems, each smaller instances of the
original

L]

Conquer:
* Solve each subproblem recursively

Combine:

* Merge solutions to subproblems to obtain
solution for original problem

Observation

Divide: D(n) time
Congquer: Recurse on smaller problems of size s, ..., S

Combine: C(n) time

e T(n) =D(n) + + C(n)
T co;‘/oijr*—‘ s

Lebs
Many divide and congquer algdrithms have recurrences are of form:

* T(m) =a-T(n/b) ¥ f(n) a and b are constants

Mergesort: T(n) = 2T(n/2) + n
Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n
Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

General Recurrence

T(n) =aT(n/b) + f(n) Number of Cost of
subproblems subproblem
F) 1 f(n)
a f(n/b)
k levels , ,
Q% a f(n/b*)
7y

ak f(n/b*)

General Recurrence

T(n) =aT(n/b) + f(n) Number of Cost of
subproblems subproblem

n f(n)

k levels

fay | glospn f(n/bk)

Three Cases

alt s we q

o (7)ot () e () 21 () + -+ ()

Case 1:
Most work happens
at the leaves

Case 2

consistently throughout

Work happens

Case 3:
Most work happens
at top of tree

[10

Master Theorem

LD T(n) = aT(n/b) + f (n)
0 =log,a

- Requirement on f Implication

Casel f(n) € O(n‘s"g) for some constant € > 0 T(n) € @(nS)

Master Theorem

T(n) =aT(n/b) + f(n)

0 =log,a

- Requirement on f Implication

Casel f(n) € O(n‘s"g) for some constant € > 0 T(n) € @(nS)
Case 2 f(n) € (%)(n‘s) T(n) € (é)(n5 log n)

Master Theorem

T(n) =aT(n/b) + f(n)

0 =log,a
- Requirement on f
Casel f(n) € 0(n® ¢)for some constant £ > 0 T(n) € 6(n°)
Case 2 f(n) € @(nS) T(n) € G)(n5 log n)
f(n) € Q(n5+£) for some constant £ > 0

C 3 e e AND T ®
(S
a°€ af (g) < @ for constant ¢ < 1 and (n) € 8(f(m)

sufficiently large n

Master Theorem Example 1

n
T(n) =aT (E) + f(n)

Case 1:if f(n) = 0(n'°8» @ ~¢) for some constant € > 0, then T(n) = O(n'°8> %)
Case 2:if f(n) = O(nl°8> @), then T(n) = O(n'°8> *logn)

Case 3:if f(n) = Q(n'°8» 2+€) for some constant € > 0, and if af (%l) < cf (n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

A7 b:=1 n M A
R ' — — v\ @Q’(VL
N T(n) = 2T (2) +n)

Case 2

0(n'°822logn) = O(nlogn)

14

n

n

n
2

)+n

<n//2\>

|

n/2

n/4

—

n/2

—

n/4

n/4

N

n/2

|

n/4

n/4

I

e

n)

>log2 n

Tree method

T(n) = ZT(

15

Master Theorem Example 2

n
T(n) =aT (E) + f(n)

Case 1:if f(n) = 0(n'°8» @ ~¢) for some constant € > 0, then T(n) = O(n'°8> %)
Case 2:if f(n) = O(nl°8> @), then T(n) = O(n'°8> *logn)

Case 3:if f(n) = Q(n'°8» 2+€) for some constant € > 0, and if af (%l) < cf (n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

A= V,) b=1 n V+& L) ﬁ:—
NP T(n) = 4T (5) + 5n s €D U\L>
= 1
Case 1l AT

@(nlogz 4) — @(le) ﬁ’“GOCA\ V\Z" = /L

Tree method

Tree method

T(n) = 4T (g) +5n

Cost is increasing with the recursion depth
(due to large number of subproblems)

Most of the work happening in the leaves

Master Theorem Example 3

n
T(n) =aT (E) + f(n)

Case 1:if f(n) = 0(n'°8» @ ~¢) for some constant € > 0, then T(n) = O(n'°8> %)
Case 2:if f(n) = O(nl°8> @), then T(n) = O(n'°8> *logn)

Case 3:if f(n) = Q(n'°8» 2+€) for some constant € > 0, and if af (%l) < cf (n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

&=y, b2 n ,P[‘,\ Ll-i.f_,
f\hj?B ; T(n) — 3T (E) + 8Tl fy\ Cc (7 Ch[nrh} ~ ().)
Casel =05

@(nlogz 3) ~ @(Tll'SSS)

19

Karatsuba

8-1n (]

8

o on B

®o 0

4n
588.8. 81818 18- 185 18 8,310g2nn
111/ 1711 11 Slogn

Master Theorem Example 4

n
T(n) =aT (E) + f(n)

Case 1:if f(n) = 0(n'°8» @ ~¢) for some constant € > 0, then T(n) = O(n'°8> %)
Case 2:if f(n) = O(nl°8> @), then T(n) = O(n'°8> *logn)

Case 3:if f(n) = Q(n'°8» 2+€) for some constant € > 0, and if af (%l) < cf (n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

a= 7, b7 n B)I’C,th P("‘\ b
V\IOJ1/23 o T(Tl) = 2T (E) + 157’),3 f‘rn’l c IL({EZ[ZM)
¢=1

Case 3

21

Master Theorem Example 4

g

T(n) = aT()+f(n)
Case 1:if f(n) = O(nl°8 ¢ ~¢) for some constant € > 0, then T(n) = O (n'°82~

Case 2:if f(n) = O(nl°8> @), then T(n) = O(n'°8> *logn)

Case 3:if f(n) = Q(n'°8 &) for some constant € > 0, and w cf{n) for some constant
c < 1 and all sufficiently large n, then T(n) = 0(f(n

n Important: For Case 3, need to additionally check
T(n) =2T (=) + !
() (2) @ tha < c¢f (n) for constant/c < 1 and

Case 3 sufficiently large n S~ C
300 , 1
o(n3) 2f(n/2) —30(n/2)3 = gn @15113)

Master Theorem Example 4 (Visually)

T(n) = 2T(n/2) + 15n3 §

15n3 157’133)

n

— . T

)
-

njz) w2 () 154”3 D
u

‘W\ 15 (%) ﬂgg\

15 (" 3]
n/4 n/4 n/4 n/4 @) 15 logzm
TS T i~ VN 1

15 15 15
1 1 1 &0 11 1 | 1 |¥15l0g,n J

Master Theorem Example 4 (Visually)

T(n) = 2T(n/2) + 15n3 §

Cost is decreasing with the recursion depth 15,3
(due to high non-recursive cost)

p
[
. 15n3
Most of the work happening at the top 1 D

1573 }logzn
16

15log, n D

Robbie’s Yard

There Has to be an Easier Way!

, 3

R
RN

m OB
:-,‘ \‘\& '\.: .'

LA AR 5 o
BT UG :r'c:k

Trees and Plants

Constraints

How wide can the robot be?

9]
Q
Q
| -
)
(T
@
e
q0)
o
i)
(Vs
Q
v
O
&)
L®)
-
=

Objective

Closest Pair of Points

Given: A list of points © @

Return: Pair of points with
smallest distance apart @

28

Closest Pair of Points: Naive

Given: A list of points @% __ 20

Return: Pair of points with @
smallest distance apart @

Algorithm: Test every
pair of points, return the

closest e) 6

o Time: 2
Running Time: O(n/) ” ©)
Goal: O logn)’:/ﬂmVﬁL%* "

Closest Pair of Points: Divide and Conquer

Divide: How? @
| | @
At median x coordinate

Closest Pair of Points: Divide and Conquer

Divide: 0 ©

At median x coordinate

Conquer: @
Recursively find closest pairs ®

from LeftPoints and RightPoints

N

31 LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Divide: 0 ©

At median x coordinate

Conquer: @
Recursively find closest pairs ®

from LeftPoints and RightPoints

Combine:
Return smaller of left
and right pairs Problem? ©)

32 LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Combine: ©

Case 1: Closest pair is
completely in LeftPoints or

RightPoints ®
Case 2: Closest pair spans our

o

cut

7

Need to test points across the
cut

33 LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our Q@
ucutn %
Need to test points across the 0,
cut
o dn 2
Compare all pairs of points within
~d = min{d;,dyp} of the cut o < : o
How many are there?
@
®
L2d @

34 LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ Q
llcut”
Need to test points across the @
cut O
Compare all pairs of points within
d = min{d;,dz} of the cut ®
How many are there? @
In the worst case, all of the points!
n
T(n) = 2T (=) + Q(n?) € Q(n?
(W) = 2T (5) + 2 € a(n?) 0, ®
. LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ Q
llcutll
Need to test points across the
cut ®
®
LR Do we need to test every
d = min{d,, pair of points in the
How many a boundary region (runway)? @ 7 ®
In the worst case, all of the points!) d
—_ 2 2 2
T(n) —2T(2)+Q(n) € Q(n?) | @

y LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ Q
llcutll
Need to test points across the @
cut O
Observation: We don’t need)
to test all pairs! 0,
@

Only need to test points within
distance d of each another

| ®

37 LeftPoints RightPoints

Reducing Search Space

Case 2: Closest pair spans our

o

cut

”

Need to test points across the
cut

Divide the runway into
squares with dimension d /2

How many points can be in a
square? atmostl

38

N | Q.
é\\ o

__

__

...

...

...

__

Reducing Search Space

Case 2: Closest pair spans our

o

cut

”

Need to test points across the
cut

Divide the runway into
squares with dimension d /2

How many squares can contain a
point < d away?

. at most 15

__

...

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair @
of points in each list @

Combine:

* Construct list of points in the boundary

* Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and @
runway points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Looks like another O(n logn)

algorithm — combine step is still ® @
too expensive

Combine:

* Construct list of points in poundary

e Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and @
runway points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

Construct list of points in the boundary

Sort runway points by y-coordinate = =———)
Compare each point in runway to 15 points

above it and save the closest pair

Output closest pair among left, right, and

runway points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

* List of points sorted according to y-
coordinate

Sorting runway points by y-
coordinate now becomes a merge

Listing Points in the Boundary

LeftPoints:
Closest Pair: (1,5), dy 5
Sorted Points: [3,7,5,1]

RightPoints:
Closest Pair: (4,6), d4¢
Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Runway Points: [8,7,6,5,2]

Both of these lists can be computed

by a single pass over the lists

LeftPoints

®

RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Construct list of points in the boundary

e Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

‘ Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

Closest Pair of Points: Divide and Conquer

. L O(nlogn)
What is the running time?
O(nlogn) ol)
2T (n/2)
T(n)
O(n)
T(n) =2T(n/2) + O(n)
O(n)
Case 2 of Master’s Theorem: 0(1)

T(n) = O(nlogn)

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 9: D&C: Closest Pair of Points
	Slide 2
	Slide 3
	Slide 4: Announcements
	Slide 5: Divide and Conquer
	Slide 6: Divide and Conquer
	Slide 7: Observation
	Slide 8: General Recurrence
	Slide 9: General Recurrence
	Slide 10: Three Cases
	Slide 11: Master Theorem
	Slide 12: Master Theorem
	Slide 13: Master Theorem
	Slide 14: Master Theorem Example 1
	Slide 15: Tree method
	Slide 16: Master Theorem Example 2
	Slide 17: Tree method
	Slide 18: Tree method
	Slide 19: Master Theorem Example 3
	Slide 20: Karatsuba
	Slide 21: Master Theorem Example 4
	Slide 22: Master Theorem Example 4
	Slide 23: Master Theorem Example 4 (Visually)
	Slide 24: Master Theorem Example 4 (Visually)
	Slide 25: Robbie’s Yard
	Slide 26: There Has to be an Easier Way!
	Slide 27: Constraints: Trees and Plants
	Slide 28: Closest Pair of Points
	Slide 29: Closest Pair of Points: Naïve
	Slide 30: Closest Pair of Points: Divide and Conquer
	Slide 31: Closest Pair of Points: Divide and Conquer
	Slide 32: Closest Pair of Points: Divide and Conquer
	Slide 33: Closest Pair of Points: Divide and Conquer
	Slide 34: Spanning the Cut
	Slide 35: Spanning the Cut
	Slide 36: Spanning the Cut
	Slide 37: Spanning the Cut
	Slide 38: Reducing Search Space
	Slide 39: Reducing Search Space
	Slide 41: Closest Pair of Points: Divide and Conquer
	Slide 42: Closest Pair of Points: Divide and Conquer
	Slide 43: Closest Pair of Points: Divide and Conquer
	Slide 44: Listing Points in the Boundary
	Slide 45: Closest Pair of Points: Divide and Conquer
	Slide 46: Closest Pair of Points: Divide and Conquer

