
CS 3100
Data Structures and Algorithms 2

Lecture 5: Topological Sort, Connected Components

Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Chapter 20:  Sections 20-3, 20-4, and 20-5



Announcements

• PS2 due tomorrow

• PA1 due Friday

• Office hours
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p

• TA office hours posted on our website
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Single-Source Shortest Path Problem
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Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph 𝐺 = (𝑉, 𝐸) and a start node (i.e., source) 𝑠 ∈ 𝑉, 
 for each 𝑣 ∈ 𝑉 find the minimum-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))
Assumption (for this unit): all edge weights are positive

10

2

3

9
5

8

3

7

3

1

8

12

9

6



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the 
priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢) where 𝛿(𝑠, 𝑢) is the shortest distance

• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢
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Graph Cuts
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A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 respects a cut 
if 𝑣1 , 𝑣2 ∈ 𝑆 or if 𝑣1 , 𝑣2 ∈ 𝑉 − 𝑆
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Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes 𝑣1 = 𝑠, … , 𝑣𝑖  have been 
removed from PQ, and for each of them 𝑑𝑣𝑖

= 𝛿(𝑠, 𝑣𝑖), and there is a 
path from 𝑠 to 𝑣𝑖  with distance 𝑑𝑣𝑖

 (whenever 𝑑𝑣𝑖
< ∞)

Base case:
• 𝑖 = 0: 𝑣1 = 𝑠

• Claim holds trivially
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Correctness of Dijkstra’s Algorithm: Claim 1

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

Proof:
• Suppose 𝑑𝑢 < ∞

• This means that PQ. decreaseKey was invoked on node 𝑢 on an earlier 
iteration

• Consider the last time PQ. decreaseKey is invoked on node 𝑢

• PQ. decreaseKey is only invoked when there exists an edge 𝑣, 𝑢 ∈ 𝐸 and 
node 𝑣 was extracted from PQ in a previous iteration

• In this case, 𝑑𝑢 = 𝑑𝑣 + 𝑤 𝑣, 𝑢

• By the inductive hypothesis, there is a path 𝑠 → 𝑣 of length 𝑑𝑣 in 𝐺 and since 
there is an edge 𝑣, 𝑢 ∈ 𝐸, there is a path 𝑠 → 𝑢 of length 𝑑𝑢 in 𝐺
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)
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shortest path from 𝑠 to 𝑥
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Correctness of Dijkstra’s Algorithm

Conclusion:  We used proof by induction to show:

When node 𝑢 is removed from the priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

In other words, all paths 𝑠, … , 𝑢  are no shorter than 𝑑𝑢

which makes it the shortest path (or one of equally shortest paths).
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Topological Sort
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Topological Sort

A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a 
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the 
permutation
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Topological Sort
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What are allowable orderings I can take all these CS classes?
• Note there are many possible orderings

• Unlike sorting a list



Topological Sort
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Remember: DFS
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def dfs_sweep(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 for s in graph.V:
       if s not seen:
             dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done):
 mark curr as seen
 for v in neighbors(current):
       if v not seen:
             dfs_rec(graph, v, seen, done)
 mark curr as done    
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Topologically sorted vertices appear in reverse order of their finish times!

We Can Use DFS and Finish Times

This is the same graph 
with a different layout.

Notes:
• “Finish” time same as “done” time.
• dfs_sweep() used to visit all nodes 
in the digraph.



DFS: Topological sort
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def dfs_sweep(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 for s in graph.V:
       if s not seen:
             dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done):
 mark curr as seen
 for v in neighbors(current):
       if v not seen:
             dfs_rec(graph, v, seen, done)
 mark curr as done    

Idea: List in reverse 
order by finish time
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DFS: Topological sort
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def top_sort(graph): # has loop like dfs_sweep
 seen = [False, False, False, …] # length matches |𝑉|
 finished = []
 for s in graph.V:
       if s not seen:
  finish_time(graph, s, seen, finished)
 return reverse(finished)

def finish_time(graph, curr, seen, finished):
 seen[curr] = True
 for v in neighbors(current):
       if v not seen:
  finish_time(graph, v, seen, finished)
 finished.append(curr)    

Idea: List in reverse order 
by done/finish time

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5
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Seen: 16
Done: 17



Strongly Connected Components

Readings:  CLRS 20.5, but you can ignore the proof-y parts
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Strongly Connected Components (SCCs)

In a digraph, Strongly Connected Components (SCCs) are subgraphs 
where all vertices in each SCC are reachable from one another

• Thus vertices in an SCC are on a directed cycle

• Any vertex not on a directed cycle is an SCC all by itself

Common need: decompose a digraph into its SCCs
• Perhaps then operate on each, combine results based on connections 

between SCCs
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Real-world Example: Social Networks

Model a social network of users
• Directed edge u->v means u follows v

We want to identify a group of users
who follow each other

• Maybe not directly

• OK if it’s indirect, i.e. if there’s a path
connecting any pair in the group

In this example, the group of solid-colored users is an SCC

Note: if all pairs in the group follow each other, we call this a clique
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SCC Example

Example: digraph below has 3 SCCs
• Note here each SCC has a cycle.  (Possible to have a single-node SCC.)

• Note connections to other SCCs, but no path leaves a SCC and comes back

• Note there’s a unique set of SCCs for a given digraph
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Component Graph

Sometimes for a problem it’s useful to consider digraph G’s component 
graph, GSCC

• It’s like we ”collapse” each SCC into one node

• Might need a topological ordering between SCCs
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How to Decompose Digraph into SCCs

Several algorithms do this using DFS

We’ll use CLRS’s choice (by Kosaraju and Sharir)

Algorithm works as follows:
1. Call dfs_sweep(G) to find finishing times u.f for each vertex u in G.

2. Compute GT, the transpose of digraph G.
  (Reminder: transpose means same nodes, edges reversed.)

3. Call dfs_sweep(GT) but do the recursive calls on nodes in the order 
of decreasing u.f from Step 1.  (Start with the vertex with largest 
finish time in G’s DFS tree,…)

4. The DFS forest produced in Step 3 is the set of SCCs
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Why Do We Care about the Transpose?

If we call DFS on a node in an SCC, it will visit all nodes in that SCC
• But it could leave the SCC and find other nodes 
• Could we prevent that somehow?

Note that a digraph and its transpose have the same SCCs
• Maybe we can use the fact that edge-directions are reversed in GT to stop DFS from 

leaving an SCC?
• But this depends on the order you choose vertices to do dfs_sweep() in GT
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Why Do We Care About Finish Times?

Our algorithm first finds DFS finish times in G

Then calls recursive DFS on transpose GT from vertex with largest finish 
time (here, B)

• Reversed edges in GT stop it visiting nodes in other SCCs
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Why Do We Care About Finish Times?

After recursive DFS on transpose GT finds SCC containing B,
next DFS will start from C

• Nodes in previously found SCC(s) have been visited

• Reversed edges in GT stop it visiting nodes in SCCs yet to be found
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Ties to Topological Sorting

Formal proof of correctness in CLRS, but hopefully from previous slides you’re 
convinced it works!

Note how the use of finish times makes this seem like topological sort.  And it is, 
if you think of topological ordering for GSCC

• Cycles in G, but no cycles in GSCC so we could sort that
• Topological sort controls the order we do things, and DFS finds all the reachable nodes in 

an SCC
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Final Thoughts

There are many interesting problems involving digraphs and DAGs

They can model real-world situations
• Dependencies, network flows, …

DFS is often a valuable strategy to tackle such problems
• For DAGs, not interested in back-edges, since DAGs are acyclic

• Ordering, reachability from DFS can be useful
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