
CS 3100
Data Structures and Algorithms 2
Lecture 5: Dijkstra’s Shortest Path Algorithm

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Section 22.3

Announcements

• PS2 available soon, due Wednesday

• PA1 Gradescope submission coming soon

• Office hours
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p

• TA office hours posted on our website

2

DFS: the Strategy in Words

Depth-first search strategy
• Go as deep as can visiting un-visited nodes

• Choose any un-visited vertex when you have a choice

• When stuck at a dead-end, backtrack as little as possible
• Back up to where you could go to another unvisited vertex

• Then continue to go on from that point

• Eventually you’ll return to where you started
• Reach all vertices? Maybe, maybe not

3

Depth-First Search

Input: a Graph G and a node 𝑠

Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

Output:
• Does the graph have a cycle?

• A topological sort of the graph.

4

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS: Recursively

5

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

1

2

3

4

5

6
7

9

8

Using DFS

Consider the “seen times” and “done times”

Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unseen when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 seen but not done when we saw (𝑎, 𝑏)

• 𝑡𝑠𝑒𝑒𝑛 𝑏 < 𝑡𝑠𝑒𝑒𝑛 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was seen and done between when 𝑎 was seen and done

• 𝑡𝑠𝑒𝑒𝑛 𝑎 < 𝑡𝑠𝑒𝑒𝑛 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) connects “branches” of the tree
• 𝑏 was seen and done before 𝑎 was ever seen
• (𝑎, 𝑏) when 𝑡𝑑𝑜𝑛𝑒 𝑏 > 𝑡𝑠𝑒𝑒𝑛 𝑎 and 6

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5

1

2

3

4

5

6
7

9

8

Seen: 9
Done: 14

Seen: 10
Done: 13

Seen: 11
Done: 12

DFS: Cycle Detection

7

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

DFS: Cycle Detection

8

def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def hasCycle_rec(graph, curr, seen, done)

 mark curr as seen
 for v in neighbors(current):

 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

DFS: Cycle Detection

9

def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 return hasCycle_rec(graph, s, seen, done)

def hasCycle _rec(graph, curr, seen, done):
 cycle = False
 mark curr as seen
 for v in neighbors(current):
 if v seen and v not done:
 cycle = True
 elif v not seen:
 cycle = dfs_rec(graph, v, seen, done) or cycle
 mark curr as done
 return cycle

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Back Edges in Undirected Graphs

10

Finding back edges for an undirected graph is not quite this simple:
• The parent node of the current node is seen but not done

• Not a cycle, is it? It’s the same edge you just traversed

Question: how would you modify our code to recognize this?

DFS “Sweep” to Process All Nodes

11

def dfs_sweep(graph): # no start node given
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 for s in graph : # do DFS at every vertex
 if s not seen:
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done) # unchanged
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5

1

2

3

4

5

6
7

9

8

Seen: 9
Done: 14

Seen: 10
Done: 13

Seen: 11
Done: 12

Seen: 16
Done: 17

CLRS’s DFS Algorithm (non-recursive part)

DFS_sweep(G)
1 for each vertex u in G.V
2 u.color = WHITE
3 u.π = NIL
4 time = 0
5 for each vertex u in G.V
6 if u.color == WHITE // if unseen
7 DFS-VISIT(G, u) // explore paths out of u

// CLRS calls this just dfs()

CLRS’s DFS Algorithm (recursive part)

DFS-VISIT(G, u)
1 time = time + 1 // white vertex u has just been discovered
2 u.d = time // discovery time of u
3 u.color = GRAY // mark as seen
4 for each v in G.Adj[u] // explore edge (u, v)
5 if v.color == WHITE // if unseen
6 v.π = u
7 DFS-VISIT(G, v) // explore paths out of v (i.e., go “deeper”)
8 u.color = BLACK // u is finished
9 time = time + 1
10 u.f = time // finish time of u

// sometimes called this dfs_recurse()

Time Complexity of DFS

14

For a digraph having V vertices and E edges
• Each edge is processed once in the while loop of dfs_rec() for a cost of Θ(𝐸)

• Think about adjacency list data structure.

• Traverse each list exactly once. (Never back up)

• There are a total of E nodes in all the lists

• The non-recursive dfs() algorithm will do Θ(𝑉) work even if there are no edges in the
graph

• Thus over all time-complexity is Θ(𝑉 + 𝐸)
• Remember: this means the larger of the two values

• Reminder: This is considered “linear” for graphs since there are two size parameters for graphs.

• Extra space is used for seen/done (or color) array.
• Space complexity is Θ(𝑉)

Shortest Path

Single-Source Shortest Path Problem

16

Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph 𝐺 = (𝑉, 𝐸) and a start node (i.e., source) 𝑠 ∈ 𝑉,
 for each 𝑣 ∈ 𝑉 find the minimum-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))
Assumption (for this unit): all edge weights are positive

10

2

3

9
5

8

3

7

3

1

8

12

9

6

Dijkstra’s Algorithm

Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

Behavior: Start with node 𝑠, repeatedly go to the incomplete node
“nearest” to 𝑠, stop when

Output:
• Distance from start to end

• Distance from start to every node

17

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

1. Start with an empty tree 𝑆 and add the source to 𝑆
2. Repeat 𝑉 − 1 times:

• At each step, add the node “nearest” to the source not yet in 𝑆 to 𝑆

Dijkstra’s Algorithm

18

10

2

6
11

9
5

8

3

7

3

1

8

12

9

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Initially: At some point later:

SS

Data Structure to Store Nodes

The strategy: At every step, choose node not in S that’s closest to source

To do this efficiently, we need a data structure that:
• Stores a set of (node, distance) pairs

• Allows efficient removal of the pair with smallest distance

• Allows efficient additions and updates

This is the Priority Queue ADT (Abstract Data Type)!
Remember the binary heap data structure?
 We’ll need a min-heap (node with smallest priority at the root)

Review: Storing a Heap in an Array

20

:-1 C:4 D:6 B:5 E:9 A:8 F:9Min-heap
stored in array

Store the elements in a one-dimensional array in strict
 left-to-right, level order

That is, we store all of the nodes on the tree’s level i from
 left to right before storing the nodes on level i + 1.

• Usually we ignore index position 0

• Simple formulas to find children, siblings,…

• 2i: left child, 2i+1: right child
• floor(i/2): parent

Must store the key (priority) value, and maybe
 other info (e.g. node ID)

0 1 2 3 4 5 6

Review: Heap Operations

extractMin() perhaps called poll() in CS 2100
• Returns and removes the item with the min key (e.g. the heap’s root)

• Move last item to root and “bubble it down” to correct location

• Complexity: O(log n)

insert(item, key) perhaps called push() in CS 2100
• Add new item at end of array and “bubble it up” to correct location

• Complexity: O(log n)

decreaseKey(item, newKey) not covered in CS 2100!
• Find item in min-heap, decrease its key, and “bubble it up” to correct location

• Complexity: uh oh! Can we find item quickly, i.e. in O(log n)?

• Could sequential search the array. Then complexity is O(n)

• We can do this in O(log n) if we use indirect heaps (details later)

Dijkstra’s Algorithm Implementation

22

1. Start with an empty tree 𝑆 and add the source to 𝑆
2. Repeat 𝑉 − 1 times:

• Add the node to 𝑆 that’s not yet in 𝑆 and that’s “nearest” to source

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢

 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: length of shortest path
𝑠 → 𝑢 using nodes in PQ

Dijkstra’s Algorithm Implementation

23

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

10

2

6
11

9
5

8

3

7

3

1

8

12

90

∞

∞

∞

∞

∞
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

24

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

∞

∞

∞

∞
∞

∞

∞

Dijkstra’s Algorithm Implementation

25

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

∞

∞

∞
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

26

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

∞

∞

∞
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

10

Dijkstra’s Algorithm Implementation

27

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

∞

18

∞
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

28

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

29

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

30

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

31

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

26

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

32

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

30

26

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

33

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

28

26

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation

34

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

28

26

Observe: shortest paths from a source forms a
tree, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest
path. (This is called the optimal substructure property.)

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Dijkstra’s Algorithm Running Time

35

𝑂 𝑉

Initialization:

𝑉 iterations

𝑂 log 𝑉

𝐸 iterations total

? ? 𝑂 log 𝑉 if we use
indirect heaps

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉
 or, 𝑂 𝑚 log 𝑛

𝑉 = 𝑛
𝐸 = 𝑚

Python-like Code for Dijkstra’s Algorithm

36

def Dijkstras(graph, start, end):
 distances = [∞, ∞, ∞,…] # one index per node
 done = [False,False,False,…] # one index per node
 PQ = priority queue # e.g. a min heap
 PQ.insert((0, start))
 distances[start] = 0
 while 𝑃𝑄 is not empty:
 current = PQ.extractmin()
 if done[current]: continue
 done[current] = True
 for each neighbor of current:
 if not done[neighbor]:
 new_dist = distances[current]+weight(current,neighbor)
 if new_dist < distances[neighbor]:
 distances[neighbor] = new_dist
 PQ.insert((new_dist,neighbor))
 return distances[end]

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm

37

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

∞

∞

∞

∞

∞ ∞

∞

∞

Node Done?

0 F

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 ∞

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

38

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

∞

∞ ∞

∞

∞

Node Done?

0 T

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

39

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

18

∞ ∞

∞

∞

Node Done?

0 T

1 T

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 18

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

40

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 15

4 18

5 13

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

41

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

18

13 20

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 T

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 14

4 18

5 13

6 ∞

7 20

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm Implementation

42

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

 PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

10

2

6
11

9
5

8

3

7

3

1

8

12

90

∞

∞

∞

∞

∞
∞

∞

∞

Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the
priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢) where 𝛿(𝑠, 𝑢) is the shortest distance

• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

43

Graph Cuts

44

A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 crosses a
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 respects a cut
if 𝑣1 , 𝑣2 ∈ 𝑆 or if 𝑣1 , 𝑣2 ∈ 𝑉 − 𝑆

10

2

6
11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Notion extends naturally
to a set of edges

Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes 𝑣1 = 𝑠, … , 𝑣𝑖 have been
removed from PQ, and for each of them 𝑑𝑣𝑖

= 𝛿(𝑠, 𝑣𝑖), and there is a
path from 𝑠 to 𝑣𝑖 with distance 𝑑𝑣𝑖

 (whenever 𝑑𝑣𝑖
< ∞)

Base case:
• 𝑖 = 0: 𝑣1 = 𝑠

• Claim holds trivially

45

Correctness of Dijkstra’s Algorithm: Claim 1

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

Proof:
• Suppose 𝑑𝑢 < ∞

• This means that PQ. decreaseKey was invoked on node 𝑢 on an earlier
iteration

• Consider the last time PQ. decreaseKey is invoked on node 𝑢

• PQ. decreaseKey is only invoked when there exists an edge 𝑣, 𝑢 ∈ 𝐸 and
node 𝑣 was extracted from PQ in a previous iteration

• In this case, 𝑑𝑢 = 𝑑𝑣 + 𝑤 𝑣, 𝑢

• By the inductive hypothesis, there is a path 𝑠 → 𝑣 of length 𝑑𝑣 in 𝐺 and since
there is an edge 𝑣, 𝑢 ∈ 𝐸, there is a path 𝑠 → 𝑢 of length 𝑑𝑢 in 𝐺

46

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

47

extracted nodes

𝑠
𝑢

Extracted nodes “cuts” G into
two subsets,(𝑆, 𝑉 − 𝑆)

𝑆

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

48

extracted nodes

𝑠
𝑢

𝑥
𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑢 = 𝑤 𝑠, … , 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑥 ≥ 𝛿(𝑠, 𝑥) since 𝛿(𝑠, 𝑥) is weight of
shortest path from 𝑠 to 𝑥

𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

49

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Inductive hypothesis: since 𝑥 was extracted
before, 𝑑𝑥 = 𝛿(𝑠, 𝑥)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

50

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

By construction of Dijkstra’s algorithm, when 𝑥 is
extracted, 𝑑𝑦 is updated to satisfy

𝑑𝑦 ≤ 𝑑𝑥 + 𝑤(𝑥, 𝑦)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

51

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Greedy choice property: we always extract the
node of minimal distance so 𝑑𝑢 ≤ 𝑑𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

52

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

All edge weights assumed to be positive

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses

the cut
𝑆

Take any path 𝑠, … , 𝑢

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)

Correctness of Dijkstra’s Algorithm

Conclusion: We used proof by induction to show:

When node 𝑢 is removed from the priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

In other words, all paths 𝑠, … , 𝑢 are no shorter than 𝑑𝑢

which makes it the shortest path (or one of equally shortest paths).

53

Indirect Heaps

The Concern: Make decreaseKey O(log n)

Indirect heaps are an example of the common computing principle of indirection:

• Simple example: an implementation of FindMax(anArray) that returns the
array index of the max value instead of the value itself

• Pointers in languages like C and C++

• Object references in Java and Python

• A short read: https://en.wikipedia.org/wiki/Indirection

Indirect heaps:
• The idea: have some kind of “index” that, given a node’s “ID”, you can quickly

find where that node is in the heap’s tree

• Several ways to implement these
• What’s shown in the next slides works well if you identify nodes with strings

and you can easily use a good hashtable (dictionary)

https://en.wikipedia.org/wiki/Indirection

Indirect Heap Uses >1 Data Structure

56

:-1 C:4 D:6 B:5 E:9 A:8 F:9

Example usage:
• What’s the item at the root? item_at_posn[1] → ‘C’
• Where in the tree is E? posn_of_item[‘E’] → 4
• What item is E’s parent?

 item_at_posn[posn_of_item[‘E’]/2] = item_at_posn[2] → ‘D’
There will be some way of getting the PQ key value from the item, which
we’ll show as item.key. E.g. the min key is item_at_posn[1].key → 4

0 1 2 3 4 5 6item_at_posn[i] – an array that
tells us what item is stored at
the position i in the tree

5 3 1 2 4 6

A B C D E Fposn_of_item[item] – a hashtable
that gives the position in the tree
where a given item ID is stored

Is decreaseKey more efficient now?

This code shows the idea: decrease B’s key and bubble it up one level:
item = ‘B’

item.key = 3 # it was 5

itemPosn = posn_of_item[item] # 3

parentPosn = itemPosn / 2 # 1

parent = item_at_posn[parentPosn] # 'C'

if item.key < parent.key: # need to swap?

 item_at_posn[parentPosn] = item # item_at_posn[1] = 'B'

 item_at_posn[itemPosn] = parent # item_at_posn[3] = 'C'

 posn_of_item[parent] = itemPosn # posn_of_item['C'] = 3

 posn_of_item[item] = parentPosn # posn_of_item['B'] = 1

Assuming hashtable lookup
 is O(1), everything here is O(1).
decreaseKey() might have to do
 this for the height of the tree,
 so O(log n) overall.

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 5: Dijkstra’s Shortest Path Algorithm
	Slide 2: Announcements
	Slide 3: DFS: the Strategy in Words
	Slide 4: Depth-First Search
	Slide 5: DFS: Recursively
	Slide 6: Using DFS
	Slide 7: DFS: Cycle Detection
	Slide 8: DFS: Cycle Detection
	Slide 9: DFS: Cycle Detection
	Slide 10: Back Edges in Undirected Graphs
	Slide 11: DFS “Sweep” to Process All Nodes
	Slide 12: CLRS’s DFS Algorithm (non-recursive part)
	Slide 13: CLRS’s DFS Algorithm (recursive part)
	Slide 14: Time Complexity of DFS
	Slide 15: Shortest Path
	Slide 16: Single-Source Shortest Path Problem
	Slide 17: Dijkstra’s Algorithm
	Slide 18: Dijkstra’s Algorithm
	Slide 19: Data Structure to Store Nodes
	Slide 20: Review: Storing a Heap in an Array
	Slide 21: Review: Heap Operations
	Slide 22: Dijkstra’s Algorithm Implementation
	Slide 23: Dijkstra’s Algorithm Implementation
	Slide 24: Dijkstra’s Algorithm Implementation
	Slide 25: Dijkstra’s Algorithm Implementation
	Slide 26: Dijkstra’s Algorithm Implementation
	Slide 27: Dijkstra’s Algorithm Implementation
	Slide 28: Dijkstra’s Algorithm Implementation
	Slide 29: Dijkstra’s Algorithm Implementation
	Slide 30: Dijkstra’s Algorithm Implementation
	Slide 31: Dijkstra’s Algorithm Implementation
	Slide 32: Dijkstra’s Algorithm Implementation
	Slide 33: Dijkstra’s Algorithm Implementation
	Slide 34: Dijkstra’s Algorithm Implementation
	Slide 35: Dijkstra’s Algorithm Running Time
	Slide 36: Python-like Code for Dijkstra’s Algorithm
	Slide 37: Dijkstra’s Algorithm
	Slide 38: Dijkstra’s Algorithm
	Slide 39: Dijkstra’s Algorithm
	Slide 40: Dijkstra’s Algorithm
	Slide 41: Dijkstra’s Algorithm
	Slide 42: Dijkstra’s Algorithm Implementation
	Slide 43: Dijkstra’s Algorithm Proof Strategy
	Slide 44: Graph Cuts
	Slide 45: Correctness of Dijkstra’s Algorithm
	Slide 46: Correctness of Dijkstra’s Algorithm: Claim 1
	Slide 47: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 48: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 49: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 50: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 51: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 52: Correctness of Dijkstra’s Algorithm: Claim 2
	Slide 53: Correctness of Dijkstra’s Algorithm
	Slide 54: Indirect Heaps
	Slide 55: The Concern: Make decreaseKey O(log n)
	Slide 56: Indirect Heap Uses >1 Data Structure
	Slide 57: Is decreaseKey more efficient now?

