CS 3100

Data Structures and Algorithms 2 Lecture 5: Dijkstra's Shortest Path Algorithm

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS $4^{\text {th }}$ edition:

- Section 22.3

Announcements

- PS2 available soon, due Wednesday
- PA1 Gradescope submission coming soon
- Office hours
- Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
- Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
- TA office hours posted on our website

DFS: the Strategy in Words

Depth-first search strategy

- Go as deep as can visiting un-visited nodes
- Choose any un-visited vertex when you have a choice
- When stuck at a dead-end, backtrack as little as possible
- Back up to where you could go to another unvisited vertex
- Then continue to go on from that point
- Eventually you'll return to where you started
- Reach all vertices? Maybe, maybe not

Depth-First Search

Input: a Graph G and a node s
Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, \ldots
Output:

- Does the graph have a cycle?
- A topological sort of the graph.

DFS: Recursively

def dfs(graph, s):
seen = [False, False, False, ...] \# length matches $|V|$
done = [False, False, False, ...] \# length matches $|V|$
dfs_rec(graph, s, seen, done)
def dfs_rec(graph, curr, seen, done)
mark curr as seen for v in neighbors(current):
if v not seen: dfs_rec(graph, v, seen, done)

mark curr as done

Using DFS

Consider the "seen times" and "done times"
Edges can be categorized:

- Tree Edge

- (a, b) was followed when pushing
- (a, b) when b was unseen when we were at a
- Back Edge

- (a, b) goes to an "ancestor"
- a and b seen but not done when we saw (a, b)
- $t_{\text {seen }}(b)<t_{\text {seen }}(a)<t_{\text {done }}(a)<t_{\text {done }}(b)$
- Forward Edge $\quad=====\Rightarrow$
- (a, b) goes to a "descendent"
- b was seen and done between when a was seen and done

- $t_{\text {seen }}(a)<t_{\text {seen }}(b)<t_{\text {done }}(b)<t_{\text {done }}(a)$
- Cross Edge $-\cdots+\cdots$
- (a, b) connects "branches" of the tree
- b was seen and done before a was ever seen
- (a, b) when $t_{\text {done }}(b)>t_{\text {seen }}(a)$ and

DFS: Cycle Detection

def dfs(graph, s):
Idea: Look for a back edge!
seen = [False, False, False, ...] \# length matches $|V|$
done = [False, False, False, ...] \# length matches $|V|$
dfs_rec(graph, s, seen, done)
def dfs_rec(graph, curr, seen, done)
mark curr as seen
for v in neighbors(current):
if v not seen:
dfs_rec(graph, v, seen, done)
mark curr as done

DFS: Cycle Detection

def hasCycle(graph, s):
Idea: Look for a back edge!
seen = [False, False, False, ...] \# length matches $|V|$
done = [False, False, False, ...] \# length matches $|V|$
ret s \sim dfs_rec(graph, s, seen, done)
7
def hasCycle_rec(graph, sur, seen, done) Cycle $=$ False
mark cưrr as seen Seen [cur] = The for ${ }_{2}$ v in neighbors(current):

$$
\begin{aligned}
& \text { if seen [v] and not dore (u): } \\
& \text { cycle = True }
\end{aligned}
$$

if v not seen:
cyme =dfs_rec(graph, v, seen, done) or cycle
mark cor as done
retom cych

DFS: Cycle Detection

def hasCycle(graph, s):
Idea: Look for a back edge!
seen = [False, False, False, ...] \# length matches $|V|$
done $=[$ False, False, False, ...] \# length matches $|V|$
return hasCycle_rec(graph, s, seen, done)
def hasCycle _rec(graph, curr, seen, done):
cycle = False
mark curr as seen
for v in neighbors(current):
if v seen and v not done:
cycle = True
elif v not seen:
cycle = dfs_rec(graph, v, seen, done) or cycle
mark curr as done
return cycle

Back Edges in Undirected Graphs

Finding back edges for an undirected graph is not quite this simple:

- The parent node of the current node is seen but not done
- Not a cycle, is it? It's the same edge you just traversed

Question: how would you modify our code to recognize this?

DFS "Sweep" to Process All Nodes

def dfs_sweep(graph): \# no start node given
seen $=[$ False, False, False, ...] \# length matches $|V|$
done = [False, False, False, ...] \# length matches $|V|$
for s in graph : \# do DFS at every vertex
if s not seen: dfs_rec(graph, s, seen, done)
def dfs_rec(graph, curr, seen, done) \# unchanged mark curr as seen
for v in neighbors(current):
if v not seen:
dfs_rec(graph, v, seen, done)

mark curr as done

CLRS's DFS Algorithm (non-recursive part)

DFS_sweep(G) // CLRS calls this just dfs()
1 for each vertex u in G.V
2 u.color = WHITE
3 u. $\pi=\mathrm{NIL}$
4 time $=0$
5 for each vertex u in G.V
6 if u.color == WHITE // if unseen
7 DFS-VISIT(G, u) // explore paths out of u

CLRS's DFS Algorithm (recursive part)

DFS-VISIT(G, u) // sometimes called this dfs_recurse()
1 time = time + $1 / /$ white vertex u has just been discovered
2 u.d= time // discovery time of u
3 u.color= GRAY // mark as seen
4 for each vin G.Adj[u] // explore edge (u, v)
5 if v.color == WHITE // if unseen
$6 \quad$ v. $\pi=u$
$7 \operatorname{DFS}-\operatorname{VISIT}(G, v) / /$ explore paths out of v (i.e., go "deeper")
8 u.color = BLACK // u is finished
9 time = time +1
10 u.f = time // finish time of u

Time Complexity of DFS

For a digraph having V vertices and E edges

- Each edge is processed once in the while loop of dfs_rec() for a cost of $\Theta(E)$
- Think about adjacency list data structure.
- Traverse each list exactly once. (Never back up)
- There are a total of \mathbf{E} nodes in all the lists
- The non-recursive dfs() algorithm will do $\Theta(V)$ work even if there are no edges in the graph
- Thus over all time-complexity is $\Theta(V+E)$
- Remember: this means the larger of the two values
- Reminder: This is considered "linear" for graphs since there are two size parameters for graphs.
- Extra space is used for seen/done (or color) array.
- Space complexity is $\Theta(V)$

Shortest Path

Single-Source Shortest Path Problem

Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph $G=(V, E)$ and a start node (i.e., source) $s \in V$,
for each $v \in V$ find the minimum-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)
Assumption (for this unit): all edge weights are positive

Dijkstra's Algorithm

Input: graph with no negative edge weights, start node s, end node t Behavior: Start with node s, repeatedly go to the incomplete node "nearest" to s, stop when

Output:

- Distance from start to end
- Distance from start to every node

Dijkstra's Algorithm

1. Start with an empty tree S and add the source to S
2. Repeat $|V|-1$ times:

- At each step, add the node "nearest" to the source not yet in S to S

Initially:

At some point later:

Data Structure to Store Nodes

The strategy: At every step, choose node not in S that's closest to source To do this efficiently, we need a data structure that:

- Stores a set of (node, distance) pairs
- Allows efficient removal of the pair with smallest distance
- Allows efficient additions and updates

This is the Priority Queue ADT (Abstract Data Type)!
Remember the binary heap data structure?
We'll need a min-heap (node with smallest priority at the root)

Review: Storing a Heap in an Array

Min-heap
stored in array

Store the elements in a one-dimensional array in strict left-to-right, level order
That is, we store all of the nodes on the tree's level i from left to right before storing the nodes on level $i+1$.

- Usually we ignore index position 0
- Simple formulas to find children, siblings,...
- 2i: Left child, 2i+1: right child
- floor(i/2): parent

Review: Heap Operations

extractMin() perhaps called poll() in CS 2100

- Returns and removes the item with the min key (e.g. the heap's root)
- Move last item to root and "bubble it down" to correct location
- Complexity: O(log n)
insert(item, key) perhaps called push() in CS 2100
- Add new item at end of array and "bubble it up" to correct location
- Complexity: O(log n)
decreaseKey(item, newKey) not covered in CS 2100!
- Find item in min-heap, decrease its key, and "bubble it up" to correct location
- Complexity: uh oh! Can we find item quickly, i.e. in O($\log n)$?
- Could sequential search the array. Then complexity is $\mathrm{O}(\mathrm{n})$
- We can do this in $\mathrm{O}(\log \mathrm{n})$ if we use indirect heaps (details later)

Dijkstra's Algorithm Implementation

1. Start with an empty tree S and add the source to S
2. Repeat $|V|-1$ times:

- Add the node to S that's not yet in S and that's "nearest" to source

Implementation:

 distanuinitialize $d_{v}=\infty$ for each node v
Tadd all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
each node also maintains a
parent, initially NULL set $d_{s}=0$ while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:

$$
\begin{aligned}
& \text { if } u \in \mathrm{PQ} \text { and } d_{v}+w(v, u)<d_{u}: \\
& \quad \mathrm{PQ} . \operatorname{decrease} \operatorname{Key}\left(u, d_{v}+w(v, u)\right)
\end{aligned}
$$

key: length of shortest path
$s \rightarrow u$ using nodes in PQ

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$: PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extract} \operatorname{Min}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $P Q . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$:
$P Q . \operatorname{decrease} \operatorname{Key}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$: $P Q . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$: $\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Observe: shortest paths from a source forms a tree, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest path. (This is called the optimal substructure property.)

Dijkstra's Algorithm Running Time

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Initialization:

$|V|$ iterations $O(\log |V|)$
$|E|$ iterations total
?? $O(\log |V|)$ if we use indirect heaps

Overall running time: $O(|V| \log |V|+|E| \log |V|)=O(|E| \log |V|)$

$$
\begin{aligned}
& |V|=n \\
& |E|=m
\end{aligned}
$$

Python-like Code for Dijkstra's Algorithm

def Dijkstras(graph, start, end):
distances $=[\infty, \infty, \infty, \ldots]$ \# one index per node done = [False,False,False,...] \# one index per node $P Q=$ priority queue \# e.g. a min heap PQ.insert((0, start))
distances[start] = 0
while $P Q$ is not empty:
current = PQ.extractmin()
if done[current]: continue done[current] = True
 for each neighbor of current:
if not done[neighbor]:
new_dist = distances[current]+weight(current,neighbor)
if new_dist < distances[neighbor]:
distances[neighbor] = new_dist PQ.insert((new_dist,neighbor))
return distances[end]

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	T
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	T
1	T
2	F
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	∞
4	18
5	∞
6	∞
7	∞
8	∞

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	T
1	T
2	T
3	F
4	F
5	F
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	15
4	18
5	13
6	∞
7	∞
8	∞

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?
0	T
1	T
2	T
3	F
4	F
5	T
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	14
4	18
5	13
6	∞
7	20
8	∞

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$ u. parent $=v$

Dijkstra's Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_{u}=\delta(s, u)$ where $\delta(s, u)$ is the shortest distance

- Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G
- Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Graph Cuts

A cut of a graph $G=(V, E)$ is a partition of the nodes into two sets, S and $V-S$

Notion extends naturally to a set of edges

An edge $\left(v_{1}, v_{2}\right) \in E$ crosses a cut if $v_{1} \in S$ and $v_{2} \in V-S$

An edge $\left(v_{1}, v_{2}\right) \in E$ respects a cut if $v_{1}, v_{2} \in S$ or if $v_{1}, v_{2} \in V-S$

Correctness of Dijkstra's Algorithm

Inductive hypothesis: Suppose that nodes $v_{1}=s, \ldots, v_{i}$ have been removed from PQ , and for each of them $d_{v_{i}}=\delta\left(s, v_{i}\right)$, and there is a path from s to v_{i} with distance $d_{v_{i}}$ (whenever $d_{v_{i}}<\infty$)

Base case:

- $i=0: v_{1}=s$
- Claim holds trivially

Correctness of Dijkstra's Algorithm: Claim 1

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G

Proof:

- \quad Suppose $d_{u}<\infty$
- This means that PQ. decreaseKey was invoked on node u on an earlier iteration
- Consider the last time PQ. decreaseKey is invoked on node u
- PQ. decreaseKey is only invoked when there exists an edge $(v, u) \in E$ and node v was extracted from PQ in a previous iteration
- In this case, $d_{u}=d_{v}+w(v, u)$
- By the inductive hypothesis, there is a path $s \rightarrow v$ of length d_{v} in G and since there is an edge $(v, u) \in E$, there is a path $s \rightarrow u$ of length d_{u} in G

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

> Extracted nodes "cuts" G into two subsets, $(S, V-S)$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into $(S, V-S)$
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
& w(s, \ldots, u) \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& w(s, \ldots, u)=w(s, \ldots, x)+w(x, y)+w(y, \ldots, u) \\
& w(s, \ldots, x) \geq \delta(s, x) \text { since } \delta(s, x) \text { is weight of } \\
& \text { shortest path from } s \text { to } x
\end{aligned}
$$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into $(S, V-S)$
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u)
\end{aligned}
$$

Inductive hypothesis: since x was extracted before, $d_{x}=\delta(s, x)$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into ($S, V-S$)
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u)
\end{aligned}
$$

By construction of Dijkstra's algorithm, when x is extracted, d_{y} is updated to satisfy

$$
d_{y} \leq d_{x}+w(x, y)
$$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into $(S, V-S)$
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u) \\
& \geq d_{u}+w(y, \ldots, u)
\end{aligned}
$$

Greedy choice property: we always extract the node of minimal distance so $d_{u} \leq d_{y}$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes "cuts" G into $(S, V-S)$
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u) \\
& \geq d_{u}+w(y, \ldots, u) \\
& \geq d_{u}
\end{aligned}
$$

Correctness of Dijkstra's Algorithm

Conclusion: We used proof by induction to show:

When node u is removed from the priority queue, $d_{u}=\delta(s, u)$

- Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G
- Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

In other words, all paths (s, \ldots, u) are no shorter than d_{u} which makes it the shortest path (or one of equally shortest paths).

Indirect Heaps

The Concern: Make decreaseKey O(log n)

Indirect heaps are an example of the common computing principle of indirection:

- Simple example: an implementation of FindMax(anArray) that returns the array index of the max value instead of the value itself
- Pointers in languages like C and $\mathrm{C}++$
- Object references in Java and Python
- A short read: https://en.wikipedia.org/wiki/Indirection

Indirect heaps:

- The idea: have some kind of "index" that, given a node's "ID", you can quickly find where that node is in the heap's tree
- Several ways to implement these
- What's shown in the next slides works well if you identify nodes with strings and you can easily use a good hashtable (dictionary)

Indirect Heap Uses >1 Data Structure

item_at_posn[i] - an array that tells us what item is stored at the position in the tree posn_of_item[item] - a hashtable that gives the position in the tree where a given item ID is stored

0	1	2	3	4	5	6
$:-1$	$C: 4$	$D: 6$	$B: 5$	$E: 9$	$A: 8$	$F: 9$

A	B	C	D	E	F
5	3	1	2	4	6

Example usage:

- What's the item at the root? item_at_posn[1] \rightarrow ' C^{\prime}
- Where in the tree is E ? posn_of_item[' ${ }^{\prime}$ '] $\rightarrow 4$
- What item is E's parent?

$$
\text { item_at_posn[posn_of_item['E']/2] = item_at_posn[2] } \rightarrow \text { ' } D^{\prime}
$$

There will be some way of getting the PQ key value from the item, which we'll show as item.key. E.g. the min key is item_at_posn[1].key $\rightarrow 4$

Is decreaseKey more efficient now?

This code shows the idea: decrease B's key and bubble it up one level:

```
item = 'B'
item.key = 3 # it was 5
itemPosn = posn_of_item[item] # 3
parentPosn = itemPosn / 2 # 1
parent = item_at_posn[parentPosn] # 'C'
```

> Assuming hashtable lookup is $O(1)$, everything here is $O(1)$. decreaseKey() might have to do this for the height of the tree, so O(log n) overall.

```
if item.key < parent.key: # need to swap?
    item_at_posn[parentPosn] = item # item_at_posn[1] = 'B'
    item_at_posn[itemPosn] = parent # item_at_posn[3] = 'C'
    posn_of_item[parent] = itemPosn # posn_of_item['C'] = 3
    posn_of_item[item] = parentPosn # posn_of_item['B'] = 1
```

