
CS 3100
Data Structures and Algorithms 2
Lecture 5: Dijkstra’s Shortest Path Algorithm

Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Section 22.3



Announcements

• PS2 available soon, due Wednesday

• PA1 Gradescope submission coming soon

• Office hours
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p

• TA office hours posted on our website
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DFS: the Strategy in Words

Depth-first search strategy
• Go as deep as can visiting un-visited nodes

• Choose any un-visited vertex when you have a choice

• When stuck at a dead-end, backtrack as little as possible
• Back up to where you could go to another unvisited vertex

• Then continue to go on from that point

• Eventually you’ll return to where you started
• Reach all vertices?  Maybe, maybe not
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Depth-First Search

Input: a Graph G and a node 𝑠

Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

Output: 
• Does the graph have a cycle?

• A topological sort of the graph.
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DFS: Recursively
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def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
  if v not seen:
   dfs_rec(graph, v, seen, done)
 mark curr as done    
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Using DFS

Consider the “seen times” and “done times” 

Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unseen when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 seen but not done when we saw (𝑎, 𝑏)

• 𝑡𝑠𝑒𝑒𝑛 𝑏 < 𝑡𝑠𝑒𝑒𝑛 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was seen and done between when 𝑎 was seen and done

• 𝑡𝑠𝑒𝑒𝑛 𝑎 < 𝑡𝑠𝑒𝑒𝑛 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) connects “branches” of the tree
• 𝑏 was seen and done before 𝑎 was ever seen
• (𝑎, 𝑏) when 𝑡𝑑𝑜𝑛𝑒 𝑏 > 𝑡𝑠𝑒𝑒𝑛 𝑎  and 6
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DFS: Cycle Detection
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def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
  if v not seen:
   dfs_rec(graph, v, seen, done)
 mark curr as done    
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DFS: Cycle Detection
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def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def hasCycle_rec(graph, curr, seen, done)

 mark curr as seen
 for v in neighbors(current):

  if v not seen:
    dfs_rec(graph, v, seen, done)
 mark curr as done    
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DFS: Cycle Detection
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def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 return hasCycle_rec(graph, s, seen, done)

def hasCycle _rec(graph, curr, seen, done):
 cycle = False
 mark curr as seen
 for v in neighbors(current):
  if v seen and v not done:
   cycle = True
  elif v not seen:
   cycle = dfs_rec(graph, v, seen, done) or cycle
 mark curr as done
 return cycle    
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Back Edges in Undirected Graphs
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Finding back edges for an undirected graph is not quite this simple:
• The parent node of the current node is seen but not done

• Not a cycle, is it?  It’s the same edge you just traversed

Question: how would you modify our code to recognize this?



DFS “Sweep” to Process All Nodes
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def dfs_sweep(graph):  # no start node given
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 for s in graph :  # do DFS at every vertex
                   if s not seen:
                         dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done) # unchanged
 mark curr as seen
 for v in neighbors(current):
  if v not seen:
   dfs_rec(graph, v, seen, done)
 mark curr as done    
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CLRS’s DFS Algorithm (non-recursive part)

DFS_sweep(G)
1 for each vertex u in G.V
2     u.color = WHITE
3     u.π = NIL
4 time = 0
5 for each vertex u in G.V
6     if u.color == WHITE  // if unseen
7         DFS-VISIT(G, u)  // explore paths out of u

// CLRS calls this just dfs() 



CLRS’s DFS Algorithm (recursive part)

DFS-VISIT(G, u)
1   time = time + 1  // white vertex u has just been discovered
2   u.d = time  // discovery time of u
3   u.color = GRAY  // mark as seen
4   for each v in G.Adj[u]  // explore edge (u, v)
5       if v.color == WHITE   // if unseen
6           v.π = u
7           DFS-VISIT(G, v)  // explore paths out of v (i.e., go “deeper”)
8   u.color = BLACK  // u is finished
9   time = time + 1
10 u.f = time  // finish time of u

// sometimes called this dfs_recurse() 



Time Complexity of DFS
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For a digraph having V vertices and E edges
• Each edge is processed once in the while loop of dfs_rec() for a cost of Θ(𝐸)

• Think about adjacency list data structure.

• Traverse each list exactly once. (Never back up)

• There are a total of E nodes in all the lists

• The non-recursive dfs() algorithm will do Θ(𝑉) work even if there are no edges in the 
graph

• Thus over all time-complexity is Θ(𝑉 + 𝐸)
• Remember: this means the larger of the two values

• Reminder: This is considered “linear” for graphs since there are two size parameters for graphs.

• Extra space is used for seen/done (or color) array.
• Space complexity is Θ(𝑉)



Shortest Path



Single-Source Shortest Path Problem
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Find the shortest path based on sum of edge-weights from UVA to each of these other places.
The problem: Given a graph 𝐺 = (𝑉, 𝐸) and a start node (i.e., source) 𝑠 ∈ 𝑉, 
 for each 𝑣 ∈ 𝑉 find the minimum-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))
Assumption (for this unit): all edge weights are positive
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Dijkstra’s Algorithm

Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

Behavior: Start with node 𝑠, repeatedly go to the incomplete node 
“nearest” to 𝑠, stop when 

Output: 
• Distance from start to end

• Distance from start to every node
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1. Start with an empty tree 𝑆 and add the source to 𝑆
2. Repeat 𝑉 − 1 times:

• At each step, add the node “nearest” to the source not yet in 𝑆 to 𝑆

Dijkstra’s Algorithm
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Data Structure to Store Nodes

The strategy: At every step, choose node not in S that’s closest to source

To do this efficiently, we need a data structure that:
• Stores a set of (node, distance) pairs

• Allows efficient removal of the pair with smallest distance

• Allows efficient additions and updates

This is the Priority Queue ADT (Abstract Data Type)!
Remember the binary heap data structure?
 We’ll need a min-heap (node with smallest priority at the root)



Review: Storing a Heap in an Array
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:-1 C:4 D:6 B:5 E:9 A:8 F:9Min-heap 
stored in array

Store the elements in a one-dimensional array in strict
     left-to-right, level order 

That is, we store all of the nodes on the tree’s level i from
     left to right before storing the nodes on level i + 1. 

• Usually we ignore index position 0

• Simple formulas to find children, siblings,…

• 2i: left child, 2i+1: right child
• floor(i/2): parent

Must store the key (priority) value, and maybe
     other info (e.g. node ID)

0 1 2 3 4 5 6



Review: Heap Operations

extractMin()      perhaps called poll() in CS 2100
• Returns and removes the item with the min key (e.g. the heap’s root)

• Move last item to root and “bubble it down” to correct location

• Complexity:  O(log n)

insert(item, key)       perhaps called push() in CS 2100
• Add new item at end of array and “bubble it up” to correct location

• Complexity:  O(log n)

decreaseKey(item, newKey)    not covered in CS 2100!
• Find item in min-heap, decrease its key, and “bubble it up” to correct location

• Complexity:  uh oh!  Can we find item quickly, i.e. in O(log n)?

• Could sequential search the array.  Then complexity is O(n)

• We can do this in O(log n) if we use indirect heaps (details later)  



Dijkstra’s Algorithm Implementation

22

1. Start with an empty tree 𝑆 and add the source to 𝑆
2. Repeat 𝑉 − 1 times:

• Add the node to 𝑆 that’s not yet in 𝑆 and that’s “nearest” to source

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢

   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: length of shortest path 
𝑠 → 𝑢 using nodes in PQ



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

Dijkstra’s Algorithm Implementation
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Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

28

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
∞

∞

∞

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

33

10

2

6
11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

28

26

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation
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Observe: shortest paths from a source forms a 
tree, shortest path to every reachable node

Every subpath of a shortest path is itself a shortest 
path. (This is called the optimal substructure property.)

Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣



Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

Dijkstra’s Algorithm Running Time
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𝑂 𝑉

Initialization:

𝑉  iterations

𝑂 log 𝑉

𝐸  iterations total

? ?  𝑂 log 𝑉  if we use 
indirect heaps

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉
       or, 𝑂 𝑚 log 𝑛

𝑉 = 𝑛 
𝐸 = 𝑚 



Python-like Code for Dijkstra’s Algorithm
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def Dijkstras(graph, start, end):
 distances = [∞, ∞, ∞,…]  # one index per node
 done = [False,False,False,…]  # one index per node
 PQ = priority queue  # e.g. a min heap
 PQ.insert((0, start))
 distances[start] = 0
 while 𝑃𝑄 is not empty:
  current = PQ.extractmin()
  if done[current]: continue
  done[current] = True
  for each neighbor of current:
   if not done[neighbor]:
    new_dist = distances[current]+weight(current,neighbor)
    if new_dist < distances[neighbor]:
     distances[neighbor] = new_dist
     PQ.insert((new_dist,neighbor))
 return distances[end]
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Dijkstra’s Algorithm
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Start: 0
End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path
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Start: 0
End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path
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Start: 0
End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path
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Start: 0
End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path
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Start: 0
End: 8
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm Implementation
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Implementation:
initialize 𝑑𝑣 = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑𝑣 as the key
set 𝑑𝑠 = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑑𝑣 + 𝑤 𝑣, 𝑢 < 𝑑𝑢:

   PQ. decreaseKey 𝑢, 𝑑𝑣 + 𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣
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Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the 
priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢) where 𝛿(𝑠, 𝑢) is the shortest distance

• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

43



Graph Cuts
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A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆

An edge 𝑣1 , 𝑣2 ∈ 𝐸 respects a cut 
if 𝑣1 , 𝑣2 ∈ 𝑆 or if 𝑣1 , 𝑣2 ∈ 𝑉 − 𝑆
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Notion extends naturally 
to a set of edges



Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes 𝑣1 = 𝑠, … , 𝑣𝑖  have been 
removed from PQ, and for each of them 𝑑𝑣𝑖

= 𝛿(𝑠, 𝑣𝑖), and there is a 
path from 𝑠 to 𝑣𝑖  with distance 𝑑𝑣𝑖

 (whenever 𝑑𝑣𝑖
< ∞)

Base case:
• 𝑖 = 0: 𝑣1 = 𝑠

• Claim holds trivially
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Correctness of Dijkstra’s Algorithm: Claim 1

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

Proof:
• Suppose 𝑑𝑢 < ∞

• This means that PQ. decreaseKey was invoked on node 𝑢 on an earlier 
iteration

• Consider the last time PQ. decreaseKey is invoked on node 𝑢

• PQ. decreaseKey is only invoked when there exists an edge 𝑣, 𝑢 ∈ 𝐸 and 
node 𝑣 was extracted from PQ in a previous iteration

• In this case, 𝑑𝑢 = 𝑑𝑣 + 𝑤 𝑣, 𝑢

• By the inductive hypothesis, there is a path 𝑠 → 𝑣 of length 𝑑𝑣 in 𝐺 and since 
there is an edge 𝑣, 𝑢 ∈ 𝐸, there is a path 𝑠 → 𝑢 of length 𝑑𝑢 in 𝐺
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  

47

extracted nodes

𝑠
𝑢

Extracted nodes “cuts” G into 
two subsets,(𝑆, 𝑉 − 𝑆)

𝑆



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑢 = 𝑤 𝑠, … , 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑥 ≥ 𝛿(𝑠, 𝑥) since 𝛿(𝑠, 𝑥) is weight of 
shortest path from 𝑠 to 𝑥

𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Inductive hypothesis: since 𝑥 was extracted 
before, 𝑑𝑥 = 𝛿(𝑠, 𝑥)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

By construction of Dijkstra’s algorithm, when 𝑥 is 
extracted, 𝑑𝑦 is updated to satisfy

𝑑𝑦 ≤ 𝑑𝑥 + 𝑤(𝑥, 𝑦)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢 + 𝑤(𝑦, … , 𝑢)

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Greedy choice property: we always extract the 
node of minimal distance so 𝑑𝑢 ≤ 𝑑𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 st node extracted

Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢  
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extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑𝑢

= 𝑑𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

All edge weights assumed to be positive

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢  crosses the cut somewhere
• Let 𝑥, 𝑦  be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢  

Extracted nodes “cuts” G into (𝑆, 𝑉 − 𝑆)



Correctness of Dijkstra’s Algorithm

Conclusion:  We used proof by induction to show:

When node 𝑢 is removed from the priority queue, 𝑑𝑢 = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑𝑢 (as long as 𝑑𝑢 < ∞) from 𝑠 to 𝑢 in 𝐺

• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠, … , 𝑢 ≥ 𝑑𝑢

In other words, all paths 𝑠, … , 𝑢  are no shorter than 𝑑𝑢

which makes it the shortest path (or one of equally shortest paths).
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Indirect Heaps



The Concern: Make decreaseKey O(log n)

Indirect heaps are an example of the common computing principle of indirection:

• Simple example: an implementation of FindMax(anArray) that returns the 
array index of the max value instead of the value itself

• Pointers in languages like C and C++

• Object references in Java and Python

• A short read: https://en.wikipedia.org/wiki/Indirection

Indirect heaps:
• The idea: have some kind of “index” that, given a node’s “ID”,  you can quickly 

find where that node is in the heap’s tree

• Several ways to implement these
• What’s shown in the next slides works well if you identify nodes with strings 

and you can easily use a good hashtable (dictionary)

https://en.wikipedia.org/wiki/Indirection


Indirect Heap Uses >1 Data Structure 

56

:-1 C:4 D:6 B:5 E:9 A:8 F:9

Example usage:
• What’s the item at the root? item_at_posn[1] → ‘C’
• Where in the tree is E?  posn_of_item[‘E’] → 4
• What item is E’s parent?

   item_at_posn[ posn_of_item[‘E’]/2 ] = item_at_posn[2] → ‘D’ 
There will be some way of getting the PQ key value from the item, which 
we’ll show as item.key. E.g. the min key is  item_at_posn[1].key → 4

0 1 2 3 4 5 6item_at_posn[i] – an array that 
tells us what item is stored at 
the position i in the tree

5 3 1 2 4 6

A B C D E Fposn_of_item[item] – a hashtable 
that gives the position in the tree 
where a given item ID is stored



Is decreaseKey more efficient now?

This code shows the idea: decrease B’s key and bubble it up one level:
item = ‘B’

item.key = 3 # it was 5

itemPosn = posn_of_item[item]   # 3

parentPosn = itemPosn / 2    # 1

parent = item_at_posn[parentPosn] # 'C'

if item.key < parent.key:  # need to swap?

   item_at_posn[parentPosn] = item    # item_at_posn[1] = 'B'

   item_at_posn[itemPosn] = parent    # item_at_posn[3] = 'C'

   posn_of_item[parent] = itemPosn    # posn_of_item['C'] = 3

   posn_of_item[item] = parentPosn    # posn_of_item['B'] = 1

Assuming hashtable lookup
   is O(1), everything here is O(1).
decreaseKey() might have to do
   this for the height of the tree,
   so O(log n) overall.
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