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CS3100 DSA2
Spring 2024

Warm up:
Show that the sum of degrees of all 

nodes in any undirected graph is even

Show that for any graph 𝐺 = 𝑉, 𝐸 , 
σ𝑣∈𝑉 deg(𝑣) is even



σ𝑣∈𝑉 deg(𝑣) is even



CS 3100
Data Structures and Algorithms 2

Lecture 4: Depth First Search

Co-instructors:  Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Chapter 20:  Sections 20-3, 20-4, and 20-5



Announcements

• PS2 due tomorrow

• PA1 available, Gradescope submission coming later this week

• Office hours
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p

• TA office hours posted on our website
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Breadth First Search
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Traversing Graphs
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“Traversing” means processing each vertex edge in some organized fashion by 
following edges between vertices

• We speak of visiting a vertex.  Might do something while there.

Recall traversal of binary trees:
• Several strategies: In-order, pre-order, post-order

• Traversal strategy implies an order of visits

• We used recursion to describe and implement these

Graphs can be used to model interesting, complex relationships
• Often traversal used just to process the set of vertices or edges

• Sometimes traversal can identify interesting properties of the graph

• Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about 
the problem-instance that the graph models



BFS: Specific Input/Output
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Input: 
• A graph G
• single start vertex s

Output:
• Distance from s to each node in G (distance = number of edges)
• Breadth-First Tree of G with root s

Strategy:
 Start with node s, visit all neighbors of s, then all neighbors of
 neighbors of s, …

Important: The paths in this BFS tree represent the shortest paths from s to 
each node in G

• But edge weight’s (if any) not used, so “short” is in terms of number of edges in path



BFS
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def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
  current = toVisit.dequeue()
  for v in neighbors(current):
   if v not seen:
    mark v as seen
    toVisit.enqueue(v)   
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BFS: Shortest Path
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Idea: when it’s seen, remember 
its “layer” depth!

def shortest_path(graph, s, t):
 toVisit.enqueue(s)
 mark s as “seen”

 While toVisit is not empty:
  current = toVisit.dequeue()

  for v in neighbors(current):
   if v not seen:
    mark v as seen

    toVisit.enqueue(v)   
 



BFS: Shortest Path
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Idea: when it’s seen, remember 
its “layer” depth!

def shortest_path(graph, s, t):
 toVisit.enqueue(s)
 depth[s] = 0
 While toVisit is not empty:
  current = toVisit.dequeue()
  layer = depth [current]
  for v in neighbors(current):
   if v does not have a depth:
    depth[v]=layer+1
    toVisit.enqueue(v)   
 return depth[t] 



BFS: Shortest Path
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def shortest_path(graph, s, t):
 layer = 0
 depth = [-1,-1,-1,…]  # Length matches |𝑉|
 toVisit.enqueue(s)
 mark a as “seen”
 depth[s] = 0
 While toVisit is not empty:
  current = toVisit.dequeue()
  layer = depth[current]
  if current == t:
   return layer
  for v in neighbors(current):
   if v not seen:
    mark v as seen
    toVisit.enqueue(v)
    depth[v] = layer + 1   
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Idea: when it’s seen, remember 
its “layer” depth!



Breadth-first search from CLRS 20.2
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From CLRS

Vertices here have some properties:
• color = white/gray/black
• d = distance from start node
• pi = parent in tree, i.e. v.pi is vertex by 

which v was connected to BFS tree

Color meanings here:
• White: haven’t seen this vertex yet
• Gray: vertex has been seen and 

added to the queue for processing 
later

• Black: vertex has been removed from 
queue and its neighbors seen and 
added to the queue 



Tree View of BFS Search Results
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Tree View of BFS Search Results
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Analysis for Breadth-first search
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For a graph having V vertices and E edges
• Each edge is processed once in the while loop for a cost of 
Θ(𝐸)

• Each vertex is put into the queue once and removed from the 
queue and processed once, for a cost Θ(𝑉)
• Also, cost of initializing colors or depth arrays is Θ(𝑉)

Total time-complexity: Θ(𝑉 + 𝐸)
• For graph algorithms this is called “linear”

Space complexity: extra space is used for queue and also 
depth/color arrays, so Θ(𝑉)



Definition: Bipartite

A (undirected) graph is Bipartite provided every vertex can be assigned 
to one of two teams such that every edge “crosses” teams

• Alternative: Every vertex can be given one of two colors such that no edges 
connect same-color nodes
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Odd Length Cycles

A graph is bipartite if and only if it has no odd length cycles
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BFS: Bipartite Graph?
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Idea: Check for edges in 
the same layer!
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def bfs(graph, s):
 toVisit.enqueue(s)
 depth[s] = 0
 depth = [-1,-1,-1,…]  # Length matches |𝑉|
 While toVisit is not empty:
  current = toVisit.dequeue()
  layer = depth [current]
  for v in neighbors(current):
   if v does not have a depth:
    depth[v]=layer+1
    toVisit.enqueue(v)   



BFS: Bipartite Graph?
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Idea: Check for edges in 
the same layer!
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def bfs(graph, s):
 toVisit.enqueue(s)
 depth[s] = 0
 depth = [-1,-1,-1,…]  # Length matches |𝑉|
 While toVisit is not empty:
  current = toVisit.dequeue()
  layer = depth [current]
  for v in neighbors(current):
   if v does not have a depth:
    depth[v]=layer+1
    toVisit.enqueue(v) 
   elif depth[v] == depth[current]:
    return False
 return True
  



BFS Tree for a Bipartite Graph
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BFS Tree for a Non-Bipartite Graph
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Depth-First Search
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DFS: the Strategy in Words

Depth-first search strategy
• Go as deep as can visiting un-visited nodes

• Choose any un-visited vertex when you have a choice

• When stuck at a dead-end, backtrack as little as possible
• Back up to where you could go to another unvisited vertex

• Then continue to go on from that point

• Eventually you’ll return to where you started
• Reach all vertices?  Maybe, maybe not
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Depth-First Search

Input: a node 𝑠

Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

Output: 
• Does the graph have a cycle?

• A topological sort of the graph.
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DFS: Non-recursively (less common)
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def dfs(graph, s):
 toVisit.push(s)
 mark s as “seen”
 While toVisit is not empty:
  current = toVisit.pop()
  for v in neighbors(current):
   if v not seen:
    mark v as seen
    toVisit.push(v)   
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Remember: BFS
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def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
  current = toVisit.dequeue()
  for v in neighbors(current):
   if v not seen:
    mark v as seen
    toVisit.enqueue(v)   
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DFS: Recursively
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def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
  if v not seen:
   dfs_rec(graph, v, seen, done)
 mark curr as done    

1

2

3

4

5

6
7

9

8



View of DFS Results as a Tree
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Depth-first search tree
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As DFS traverses a digraph, edges classified as:
• tree edge, back edge, descendant edge, or cross edge

• If graph undirected, do we have all 4 types?



Using DFS

Consider the “seen times” and “done times” 

Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unseen when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 seen but not done when we saw (𝑎, 𝑏)

• 𝑡𝑠𝑒𝑒𝑛 𝑏 < 𝑡𝑠𝑒𝑒𝑛 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was seen and done between when 𝑎 was seen and done

• 𝑡𝑠𝑒𝑒𝑛 𝑎 < 𝑡𝑠𝑒𝑒𝑛 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) connects “branches” of the tree
• 𝑏 was seen and done before 𝑎 was ever seen
• (𝑎, 𝑏) when 𝑡𝑑𝑜𝑛𝑒 𝑏 > 𝑡𝑠𝑒𝑒𝑛 𝑎  and 30
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DFS: Cycle Detection
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def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
  if v not seen:
   dfs_rec(graph, v, seen, done)
 mark curr as done    
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Idea: Look for a back edge!



DFS: Cycle Detection
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def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def hasCycle_rec(graph, curr, seen, done)

 mark curr as seen
 for v in neighbors(current):

  if v not seen:
    dfs_rec(graph, v, seen, done)
 mark curr as done    
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Idea: Look for a back edge!



DFS: Cycle Detection
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def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 return hasCycle_rec(graph, s, seen, done)

def hasCycle _rec(graph, curr, seen, done):
 cycle = False
 mark curr as seen
 for v in neighbors(current):
  if v seen and v not done:
   cycle = True
  elif v not seen:
   cycle = dfs_rec(graph, v, seen, done) or cycle
 mark curr as done
 return cycle    
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Idea: Look for a back edge!



Back Edges in Undirected Graphs
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Finding back edges for an undirected graph is not quite this simple:
• The parent node of the current node is seen but not done

• Not a cycle, is it?  It’s the same edge you just traversed

Question: how would you modify our code to recognize this?



DFS “Sweep” to Process All Nodes
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def dfs_sweep(graph):  # no start node given
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 for s in graph :  # do DFS at every vertex
                   if s not seen:
                         dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done) # unchanged
 mark curr as seen
 for v in neighbors(current):
  if v not seen:
   dfs_rec(graph, v, seen, done)
 mark curr as done    
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Time Complexity of DFS
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For a digraph having V vertices and E edges
• Each edge is processed once in the while loop of dfs_rec() for a cost of Θ(𝐸)

• Think about adjacency list data structure.

• Traverse each list exactly once. (Never back up)

• There are a total of E nodes in all the lists

• The non-recursive dfs() algorithm will do Θ(𝑉) work even if there are no edges in the 
graph

• Thus over all time-complexity is Θ(𝑉 + 𝐸)
• Remember: this means the larger of the two values

• Reminder: This is considered “linear” for graphs since there are two size parameters for graphs.

• Extra space is used for seen/done (or color) array.
• Space complexity is Θ(𝑉)
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