
1

CS3100 DSA2
Spring 2024

Warm up:
Show that the sum of degrees of all

nodes in any undirected graph is even

Show that for any graph 𝐺 = 𝑉, 𝐸 ,
σ𝑣∈𝑉 deg(𝑣) is even

σ𝑣∈𝑉 deg(𝑣) is even

CS 3100
Data Structures and Algorithms 2

Lecture 4: Depth First Search

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Chapter 20: Sections 20-3, 20-4, and 20-5

Announcements

• PS2 due tomorrow

• PA1 available, Gradescope submission coming later this week

• Office hours
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p

• TA office hours posted on our website

4

Breadth First Search

5

Traversing Graphs

6

“Traversing” means processing each vertex edge in some organized fashion by
following edges between vertices

• We speak of visiting a vertex. Might do something while there.

Recall traversal of binary trees:
• Several strategies: In-order, pre-order, post-order

• Traversal strategy implies an order of visits

• We used recursion to describe and implement these

Graphs can be used to model interesting, complex relationships
• Often traversal used just to process the set of vertices or edges

• Sometimes traversal can identify interesting properties of the graph

• Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about
the problem-instance that the graph models

BFS: Specific Input/Output

7

Input:
• A graph G
• single start vertex s

Output:
• Distance from s to each node in G (distance = number of edges)
• Breadth-First Tree of G with root s

Strategy:
 Start with node s, visit all neighbors of s, then all neighbors of
 neighbors of s, …

Important: The paths in this BFS tree represent the shortest paths from s to
each node in G

• But edge weight’s (if any) not used, so “short” is in terms of number of edges in path

BFS

8

def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
 current = toVisit.dequeue()
 for v in neighbors(current):
 if v not seen:
 mark v as seen
 toVisit.enqueue(v)

1

2

3

4

5

6
7

9

8

BFS: Shortest Path

9

1

2

3

4

5

6
7

9

8

Idea: when it’s seen, remember
its “layer” depth!

def shortest_path(graph, s, t):
 toVisit.enqueue(s)
 mark s as “seen”

 While toVisit is not empty:
 current = toVisit.dequeue()

 for v in neighbors(current):
 if v not seen:
 mark v as seen

 toVisit.enqueue(v)

BFS: Shortest Path

10

1

2

3

4

5

6
7

9

8

Idea: when it’s seen, remember
its “layer” depth!

def shortest_path(graph, s, t):
 toVisit.enqueue(s)
 depth[s] = 0
 While toVisit is not empty:
 current = toVisit.dequeue()
 layer = depth [current]
 for v in neighbors(current):
 if v does not have a depth:
 depth[v]=layer+1
 toVisit.enqueue(v)
 return depth[t]

BFS: Shortest Path

11

def shortest_path(graph, s, t):
 layer = 0
 depth = [-1,-1,-1,…] # Length matches |𝑉|
 toVisit.enqueue(s)
 mark a as “seen”
 depth[s] = 0
 While toVisit is not empty:
 current = toVisit.dequeue()
 layer = depth[current]
 if current == t:
 return layer
 for v in neighbors(current):
 if v not seen:
 mark v as seen
 toVisit.enqueue(v)
 depth[v] = layer + 1

1

2

3

4

5

6
7

9

8

Idea: when it’s seen, remember
its “layer” depth!

Breadth-first search from CLRS 20.2

12

From CLRS

Vertices here have some properties:
• color = white/gray/black
• d = distance from start node
• pi = parent in tree, i.e. v.pi is vertex by

which v was connected to BFS tree

Color meanings here:
• White: haven’t seen this vertex yet
• Gray: vertex has been seen and

added to the queue for processing
later

• Black: vertex has been removed from
queue and its neighbors seen and
added to the queue

Tree View of BFS Search Results

13

A

B

C

D

E

F
G

I

H

Draw BFS tree starting at A

Tree View of BFS Search Results

14

A

B

C

D

E

F
G

I

H

A

B C

DE F

G

I

H

Tree edges in red
Non-tree edges in gray

Analysis for Breadth-first search

15

For a graph having V vertices and E edges
• Each edge is processed once in the while loop for a cost of
Θ(𝐸)

• Each vertex is put into the queue once and removed from the
queue and processed once, for a cost Θ(𝑉)
• Also, cost of initializing colors or depth arrays is Θ(𝑉)

Total time-complexity: Θ(𝑉 + 𝐸)
• For graph algorithms this is called “linear”

Space complexity: extra space is used for queue and also
depth/color arrays, so Θ(𝑉)

Definition: Bipartite

A (undirected) graph is Bipartite provided every vertex can be assigned
to one of two teams such that every edge “crosses” teams

• Alternative: Every vertex can be given one of two colors such that no edges
connect same-color nodes

16

1

2

3

4

5

6
7

9

8
1

2

3

4

5

6
7

9

8

Bipartite!
Not Bipartite!

Odd Length Cycles

A graph is bipartite if and only if it has no odd length cycles

17

1

2

3

4

5

6
7

9

8
1

2

3

4

5

6
7

9

8

Bipartite!
Not Bipartite!

BFS: Bipartite Graph?

18

Idea: Check for edges in
the same layer!

1

2

3

4

5

6
7

9

8

def bfs(graph, s):
 toVisit.enqueue(s)
 depth[s] = 0
 depth = [-1,-1,-1,…] # Length matches |𝑉|
 While toVisit is not empty:
 current = toVisit.dequeue()
 layer = depth [current]
 for v in neighbors(current):
 if v does not have a depth:
 depth[v]=layer+1
 toVisit.enqueue(v)

BFS: Bipartite Graph?

19

Idea: Check for edges in
the same layer!

1

2

3

4

5

6
7

9

8

def bfs(graph, s):
 toVisit.enqueue(s)
 depth[s] = 0
 depth = [-1,-1,-1,…] # Length matches |𝑉|
 While toVisit is not empty:
 current = toVisit.dequeue()
 layer = depth [current]
 for v in neighbors(current):
 if v does not have a depth:
 depth[v]=layer+1
 toVisit.enqueue(v)
 elif depth[v] == depth[current]:
 return False
 return True

BFS Tree for a Bipartite Graph

20

A

B

C

D

E

F
G

I

H

A

B C

DE F

G

I

H

Tree edges in red
Non-tree edges in gray

BFS Tree for a Non-Bipartite Graph

21

A

B

C

D

E

F
G

I

H

A

B C

DE F

G

I

H

Tree edges in red
Non-tree edges in gray

Depth-First Search

22

DFS: the Strategy in Words

Depth-first search strategy
• Go as deep as can visiting un-visited nodes

• Choose any un-visited vertex when you have a choice

• When stuck at a dead-end, backtrack as little as possible
• Back up to where you could go to another unvisited vertex

• Then continue to go on from that point

• Eventually you’ll return to where you started
• Reach all vertices? Maybe, maybe not

23

Depth-First Search

Input: a node 𝑠

Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

Output:
• Does the graph have a cycle?

• A topological sort of the graph.

24

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS: Non-recursively (less common)

25

def dfs(graph, s):
 toVisit.push(s)
 mark s as “seen”
 While toVisit is not empty:
 current = toVisit.pop()
 for v in neighbors(current):
 if v not seen:
 mark v as seen
 toVisit.push(v)

1

2

3

4

5

6
7

9

8

Remember: BFS

26

def bfs(graph, s):
 toVisit.enqueue(s)
 mark s as “seen”
 While toVisit is not empty:
 current = toVisit.dequeue()
 for v in neighbors(current):
 if v not seen:
 mark v as seen
 toVisit.enqueue(v)

1

2

3

4

5

6
7

9

8

DFS: Recursively

27

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

1

2

3

4

5

6
7

9

8

View of DFS Results as a Tree

1

2

3

4

5

6
7

9

8

Depth-first search tree

29

As DFS traverses a digraph, edges classified as:
• tree edge, back edge, descendant edge, or cross edge

• If graph undirected, do we have all 4 types?

Using DFS

Consider the “seen times” and “done times”

Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unseen when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 seen but not done when we saw (𝑎, 𝑏)

• 𝑡𝑠𝑒𝑒𝑛 𝑏 < 𝑡𝑠𝑒𝑒𝑛 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was seen and done between when 𝑎 was seen and done

• 𝑡𝑠𝑒𝑒𝑛 𝑎 < 𝑡𝑠𝑒𝑒𝑛 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) connects “branches” of the tree
• 𝑏 was seen and done before 𝑎 was ever seen
• (𝑎, 𝑏) when 𝑡𝑑𝑜𝑛𝑒 𝑏 > 𝑡𝑠𝑒𝑒𝑛 𝑎 and 30

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5

1

2

3

4

5

6
7

9

8

Seen: 9
Done: 14

Seen: 10
Done: 13

Seen: 11
Done: 12

DFS: Cycle Detection

31

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done)
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

DFS: Cycle Detection

32

def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def hasCycle_rec(graph, curr, seen, done)

 mark curr as seen
 for v in neighbors(current):

 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

DFS: Cycle Detection

33

def hasCycle(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 return hasCycle_rec(graph, s, seen, done)

def hasCycle _rec(graph, curr, seen, done):
 cycle = False
 mark curr as seen
 for v in neighbors(current):
 if v seen and v not done:
 cycle = True
 elif v not seen:
 cycle = dfs_rec(graph, v, seen, done) or cycle
 mark curr as done
 return cycle

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Back Edges in Undirected Graphs

34

Finding back edges for an undirected graph is not quite this simple:
• The parent node of the current node is seen but not done

• Not a cycle, is it? It’s the same edge you just traversed

Question: how would you modify our code to recognize this?

DFS “Sweep” to Process All Nodes

35

def dfs_sweep(graph): # no start node given
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 for s in graph : # do DFS at every vertex
 if s not seen:
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done) # unchanged
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

Seen: 0
Done: 15

Seen: 1
Done: 8

Seen: 2
Done: 7

Seen: 3
Done: 6

Seen: 4
Done: 5

1

2

3

4

5

6
7

9

8

Seen: 9
Done: 14

Seen: 10
Done: 13

Seen: 11
Done: 12

Seen: 16
Done: 17

Time Complexity of DFS

36

For a digraph having V vertices and E edges
• Each edge is processed once in the while loop of dfs_rec() for a cost of Θ(𝐸)

• Think about adjacency list data structure.

• Traverse each list exactly once. (Never back up)

• There are a total of E nodes in all the lists

• The non-recursive dfs() algorithm will do Θ(𝑉) work even if there are no edges in the
graph

• Thus over all time-complexity is Θ(𝑉 + 𝐸)
• Remember: this means the larger of the two values

• Reminder: This is considered “linear” for graphs since there are two size parameters for graphs.

• Extra space is used for seen/done (or color) array.
• Space complexity is Θ(𝑉)

	Slide 1
	Slide 2: v V deg v is even
	Slide 3: CS 3100 Data Structures and Algorithms 2 Lecture 4: Depth First Search
	Slide 4: Announcements
	Slide 5: Breadth First Search
	Slide 6: Traversing Graphs
	Slide 7: BFS: Specific Input/Output
	Slide 8: BFS
	Slide 9: BFS: Shortest Path
	Slide 10: BFS: Shortest Path
	Slide 11: BFS: Shortest Path
	Slide 12: Breadth-first search from CLRS 20.2
	Slide 13: Tree View of BFS Search Results
	Slide 14: Tree View of BFS Search Results
	Slide 15: Analysis for Breadth-first search
	Slide 16: Definition: Bipartite
	Slide 17: Odd Length Cycles
	Slide 18: BFS: Bipartite Graph?
	Slide 19: BFS: Bipartite Graph?
	Slide 20: BFS Tree for a Bipartite Graph
	Slide 21: BFS Tree for a Non-Bipartite Graph
	Slide 22: Depth-First Search
	Slide 23: DFS: the Strategy in Words
	Slide 24: Depth-First Search
	Slide 25: DFS: Non-recursively (less common)
	Slide 26: Remember: BFS
	Slide 27: DFS: Recursively
	Slide 28: View of DFS Results as a Tree
	Slide 29: Depth-first search tree
	Slide 30: Using DFS
	Slide 31: DFS: Cycle Detection
	Slide 32: DFS: Cycle Detection
	Slide 33: DFS: Cycle Detection
	Slide 34: Back Edges in Undirected Graphs
	Slide 35: DFS “Sweep” to Process All Nodes
	Slide 36: Time Complexity of DFS

