CS3100 DSA2 Spring 2024

Warm up:

Show that the sum of degrees of all nodes in any undirected graph is even

Show that for any graph $G=(V, E)$,
$\sum_{v \in V} \operatorname{deg}(v)$ is even

$\sum_{v \in V} \operatorname{deg}(v)$ is even

$$
2 E
$$

CS 3100

Data Structures and Algorithms 2 Lecture 4: Depth First Search

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS $4^{\text {th }}$ edition:

- Chapter 20: Sections 20-3, 20-4, and 20-5

Announcements

- PSA due tomorrow
- PA1 available, Gradescope submission coming later this week
- Office hours
- Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
- Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
- TA office hours posted on our website

Breadth First Search

Traversing Graphs

"Traversing" means processing each vertex edge in some organized fashion by following edges between vertices

- We speak of visiting a vertex. Might do something while there.

Recall traversal of binary trees:

- Several strategies: In-order, pre-order, post-order
- Traversal strategy implies an order of visits
- We used recursion to describe and implement these

Graphs can be used to model interesting, complex relationships

- Often traversal used just to process the set of vertices or edges
- Sometimes traversal can identify interesting properties of the graph
- Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about the problem-instance that the graph models

BFS: Specific Input/Output

Input:

- A graph $\underline{\mathbf{G}}$
- single start vertex \underline{s}

Output:

- Distance from \underline{s} to each node in $\underline{\boldsymbol{G}}$ (distance = number of edges)
- Breadth-First Tree of \underline{G} with root \underline{s}

Strategy:

Start with node \underline{s}, visit all neighbors of \underline{s}, then all neighbors of neighbors of \underline{s}, ...

Important: The paths in this BFS tree represent the shortest paths from s to each node in G

- But edge weight's (if any) not used, so "short" is in terms of number of edges in path

BES

toVisit.enqueue(s)
mark s as "seen"
While toVisit is not empty:

for v in neighbors(current):
if v not seen:
mark vas seen toVisit.enqueue(v)

BFS: Shortest Path
def shortest_path(graph, $\stackrel{1}{\mathrm{~s}, \mathrm{t}) \text { : }: ~}$ toVisit.enqueue(s) plarksas"seen" depth $[s]=0$ While toVisit is not empty:

Idea: when it's seen, remember its "layer" depth!

current = toVisit.dequeue()
layer = depth [current]
for v in neighbors(current):
ifvnot-seen: If $\operatorname{dep}(v)==-1$;
markvacconn

$$
\operatorname{det} t h[v]=\text { layer }+1
$$

toVisit.enqueue(v)
return depth $[t]$;

BFS: Shortest Path

def shortest_path(graph, s, t):
toVisit.enqueue(s) depth[s] $=0$
While toVisit is not empty:
current $=$ toVisit.dequeue() layer = depth [current]
for v in neighbors(current):
if v does not have a depth: depth[v]=layer+1 toVisit.enqueue(v)
return depth[$[\mathrm{t}]$

Idea: when it's seen, remember its "layer" depth!

$$
\begin{aligned}
& \operatorname{depth}[5]=2(\operatorname{dgth}) \\
& \text { parent }[5]=2(\text { nods })
\end{aligned}
$$

BFS: Shortest Path

```
def shortest_path(graph, s, t):
    layer = 0
    depth = [-1,-1,-1,...] # Length matches |V|
    toVisit.enqueue(s)
    mark a as "seen"
    depth[s] = 0
    While toVisit is not empty:
        current = toVisit.dequeue()
        layer = depth[current]
        if current == t:
        return layer
        for v in neighbors(current):
            if v not seen:
                mark v as seen
                toVisit.enqueue(v)
                depth[v] = layer + 1
```

Idea: when it's seen, remember its "layer" depth!

Breadth-first search from CLRS 20.2

$\operatorname{BFS}(G, s)$

```
for each vertex }u\inG.V-{s
    u.color = WHITE
    u.d=\infty
    u.\pi= NIL
s.color = GRAY
s.d=0
s.\pi = NIL
Q = \emptyset
EnQUEUE(Q,s)
while }Q\not=
    u= DEQUEUE(Q)
    for each v}\inG.Adj[u
        if v.color == WHITE
            v.color = GRAY
            v.d =u.d+1
            v.\pi =u
            EnQueue(Q,v)
    u.color = BLACK
```


From CLRS

Vertices here have some properties:

- color = white/gray/black
- d = distance from start node
- pi = parent in tree, i.e. v.pi is vertex by which v was connected to BFS tree

Color meanings here:

- White: haven't seen this vertex yet
- Gray: vertex has been seen and added to the queue for processing later
- Black: vertex has been removed from queue and its neighbors seen and added to the queue

Tree View of BFS Search Results

Draw BFS tree starting at A

Tree View of BFS Search Results

Analysis for Breadth-first search

For a graph having V vertices and E edges

- Each edge is processed once in the while loop for a cost of $\Theta(E)$
- Each vertex is put into the queue once and removed from the queue and processed once, for a cost $\Theta(V)$
- Also, cost of initializing colors or depth arrays is $\Theta(V)$

Total time-complexity: $\Theta(V+E)$

- For graph algorithms this is called "linear"

Space complexity: extra space is used for queue and also depth/color arrays, so $\Theta(V)$

Definition: Bipartite

A (undirected) graph is Bipartite provided every vertex can be assigned to one of two teams such that every edge "crosses" teams

- Alternative: Every vertex can be given one of two colors such that no edges connect same-color nodes

Odd Length Cycles

A graph is bipartite if and only if it has no odd length cycles

BFS: Bipartite Graph?

def bfs(graph, s):
toVisit.enqueue(s)
depth[s] = 0
Idea: Check for edges in the same layer!
depth $=[-1,-1,-1, . .$.$] \# Length matches |V|$ While toVisit is not empty:
current = toVisit. dequeue() layer = depth [current] for v in neighbors(current):
if v does not have a depth: depth[v]=layer+1 toVisit.enqueue(v)

BFS: Bipartite Graph?

```
def bfs(graph, s):
    toVisit.enqueue(s)
    depth[s] = 0
depth \(=[-1,-1,-1, . .\).\(] \# Length matches |V|\)
While toVisit is not empty:
current = toVisit. dequeue() layer = depth [current] for v in neighbors(current):
if \(v\) does not have a depth: depth[v]=layer+1 toVisit.enqueue(v) elif depth[v] == depth[current]: return False
```

Idea: Check for edges in the same layer!

BFS Tree for a Bipartite Graph

BFS Tree for a Non-Bipartite Graph

Depth-First Search

DFS: the Strategy in Words

Depth-first search strategy

- Go as deep as can visiting un-visited nodes
- Choose any un-visited vertex when you have a choice
- When stuck at a dead-end, backtrack as little as possible
- Back up to where you could go to another unvisited vertex
- Then continue to go on from that point
- Eventually you'll return to where you started
- Reach all vertices? Maybe, maybe not

Depth-First Search

Input: a node s, Orph G
Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, \ldots
Output:

- Does the graph have a cycle?
- A topological sort of the graph.

DFS: Non-recursively (less common)

def dfs(graph, s):
toVisit.push(s)
mark s as "seen"
While toVisit is not empty:
current = toVisit.pop() for v in neighbors(current): if v not seen:
mark vas seen toVisit.push(v)

Remember: BFS

def bfs(graph, s):
toVisit.enqueue(s)
mark s as "seen"
While toVisit is not empty:
current = toVisit.dequeue() for v in neighbors(current): if v not seen:
mark vas seen toVisit.enqueue(v)

DFS: Recursively

def dfs(graph, s):
seen = [False, False, False, ...] \# length matches $|V|$
done = [False, False, False, ...] \# length matches $|V|$
dfs_rec(graph, s, seen, done)
def dfs_rec(graph, curr, seen, done)
mark curr as seen for v in neighbors(current):
if v not seen: dfs_rec(graph, v, seen, done)

mark curr as done

View of DFS Results as a Tree

Depth-first search tree

As DFS traverses a digraph, edges classified as:

- tree edge, back edge, descendant edge, or cross edge
- If graph undirected, do we have all 4 types?

Graph G

back edge
cross edge
descendent edge

DFS tree from X

Using DFS

Consider the "seen times" and "done times"
Edges can be categorized:

- Tree Edge
- (a, b) was followed when pushing
- (a, b) when b was unseen when we were at a
- Back Edge

- (a, b) goes to an "ancestor"
- a and b seen but not done when we saw (a, b)
- $t_{\text {seen }}(b)<t_{\text {seen }}(a)<t_{\text {done }}(a)<t_{\text {done }}(b)$
- Forward Edge $\quad====\Rightarrow$
- (a, b) goes to a "descendent"
- b was seen and done between when a was seen and done
- $t_{\text {seen }}(a)<t_{\text {seen }}(b)<t_{\text {done }}(b)<t_{\text {done }}(a)$
- Cross Edge \quad "n-n"
- (a, b) connects "branches" of the tree
- b was seen and done before a was ever seen
- (a, b) when $t_{\text {done }}(b)>t_{\text {seen }}(a)$ and

DFS: Cycle Detection

def dfs(graph, s):
Idea: Look for a back edge!
seen = [False, False, False, ...] \# length matches $|V|$
done = [False, False, False, ...] \# length matches $|V|$
dfs_rec(graph, s, seen, done)
def dfs_rec(graph, curr, seen, done)
mark curr as seen
for v in neighbors(current):
if v not seen:
dfs_rec(graph, v, seen, done)
mark curr as done

DFS: Cycle Detection

def hasCycle(graph, s):
Idea: Look for a back edge!
seen = [False, False, False, ...] \# length matches $|V|$
done = [False, False, False, ...] \# length matches $|V|$
dfs_rec(graph, s, seen, done)
def hasCycle_rec(graph, curr, seen, done)
mark curr as seen for v in neighbors(current):
if v not seen:
dfs_rec(graph, v, seen, done)
mark curr as done

DFS: Cycle Detection

def hasCycle(graph, s):
Idea: Look for a back edge!
seen = [False, False, False, ...] \# length matches $|V|$
done $=[$ False, False, False, ...] \# length matches $|V|$
return hasCycle_rec(graph, s, seen, done)
def hasCycle _rec(graph, curr, seen, done):
cycle = False
mark curr as seen
for v in neighbors(current):
if v seen and v not done:
cycle = True
elif v not seen:
cycle = dfs_rec(graph, v, seen, done) or cycle
mark curr as done
return cycle

Back Edges in Undirected Graphs

Finding back edges for an undirected graph is not quite this simple:

- The parent node of the current node is seen but not done
- Not a cycle, is it? It's the same edge you just traversed

Question: how would you modify our code to recognize this?

DFS "Sweep" to Process All Nodes

def dfs_sweep(graph): \# no start node given
seen $=[$ False, False, False, ...] \# length matches $|V|$
done = [False, False, False, ...] \# length matches $|V|$
for s in graph : \# do DFS at every vertex
if s not seen: dfs_rec(graph, s, seen, done)
def dfs_rec(graph, curr, seen, done) \# unchanged mark curr as seen
for v in neighbors(current):
if v not seen:
dfs_rec(graph, v, seen, done)

mark curr as done

Time Complexity of DFS

For a digraph having V vertices and E edges

- Each edge is processed once in the while loop of dfs_rec() for a cost of $\Theta(E)$
- Think about adjacency list data structure.
- Traverse each list exactly once. (Never back up)
- There are a total of \mathbf{E} nodes in all the lists
- The non-recursive dfs() algorithm will do $\Theta(V)$ work even if there are no edges in the graph
- Thus over all time-complexity is $\Theta(V+E)$
- Remember: this means the larger of the two values
- Reminder: This is considered "linear" for graphs since there are two size parameters for graphs.
- Extra space is used for seen/done (or color) array.
- Space complexity is $\Theta(V)$

