CS 3100

Data Structures and Algorithms 2
Lecture 3: Graphs, Breadth First Search

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4t edition:
e Chapter 20, through Section 2

Announcements

* PSJ available, PA1 coming next week
 Discord server is coming today, please join!

* Prof Hott Office Hours
* This week: Thursday: 3-4pm, Friday 2-3pm
e Starting next week: Mondays 11a-12p, Fridays 10-11a and 2-3p

* Prof Pettit Office Hours
* Mondays and Wednesdays 2:30-4:00

* TA office hours posted, check our website

Computer History Trivia:

What is the ARPANET?

ARPANET ¢.1970

ARPANET

International

THE“

UNIVERSITY
OF UTAH

Vertices/Nodes
Definition: ¢ = (V/, E)

Edges

V = {1,2,3,4,5,6,7,8,9)
E=1{(12),(23),(13),..}

Directed Graphs

Vertices/Nodes
Definition: ¢ = (V/, E)
Edges
V ={1,2,3,4,5,6,7,8,9}
E =1{(1,2),(3,2),(1,3),...}
—

Weighted Graphs

o Vertices/Nodes
Definition: ¢ = (V/, E)
. Edges
w(e) = weight of edge e

8 V =1{1,2,3,4,5,6,7,8,9}
E=1{(1,2),(2,3),(1,3),..)

Some Graph Terms

Degree \v|=n
* Number of “neighbors” of a vertex]f} >~
* i.e., number of "incident" edges

Indegree
 Number of incoming edges

Outdegree
* Number of outgoing edges

Relative number of edges to nodes

 What’s the max number of edges for
an undirected graph? Directed graph?

KCompIete graph \A
e Sparse graph vs. dense graph VL[V!"\
n (n-1)
LA

2

ADT Graph Operations

To represent a Graph (i.e., build a data structure) we need:
 Add Edge
* Remove Edge
e Check if Edge Exists
e Get Neighbors (incoming)
* Get Neighbors (outgoing)

Data Structures for Undirected Graphs

Adjacency Matrix:
Alu][v]is 1 if edge (u,v)
exists.

Note symmetrical around
diagonal. Could just store
info in one half of matrix.

4

g N e g - Adjacency List:

=g Z Note each edge (u,v) has
o ——-|_2\A an edge-node on u’s list

and also V’s list.

GCal %~

-

Image of diagrams from

Figure 11.4 Using the graph representations for undirected graphs. (a) An undi- https://people.cs.vt.edu/~shaffer/Book/
rected graph. (b) The adjacency matrix for the graph of (a). (c) The adjacency list

for the graph of (a). 10

Data Structures for Digraphs

1 &) Adjacency Matrix:
1 Not symmetrical around

diagonal for digraph.

Aoom—~|o
e
—

o Jwl 7T 3ulz Adjacency List:

s Note each directed edge
(u,v) has an edge-node on

2| —=[4 - < i

. - just one vertex’s list.

41 ——| 1

(c)
Image of diagrams from

Figure 11.3 Two graph representations. (a) A directed graph. (b) The adjacency https://people.cs.vt.edu/~shaffer/Book/
matrix for the graph of (a). (c) The adjacency list for the graph of (a). 11

Data Structures for Weighted Graphs

0O 1 2 3 4
of -, u $
1|21 ™ 1 A
2 .1 1
3 11
4l ¥ A 1
(b)
Images are of
) o| —+=[AI=~[4
unweighted e T e I
graphs. 2| =31 F~[4
3| =11 | +*|2
How would we s =0 F=[T] F2
store weights? ©

Figure 11.4 Using the graph representations for undirected graphs. (a) An undi-
rected graph. (b) The adjacency matrix for the graph of (a). (c¢) The adjacency list
for the graph of (a).

Adjacency Matrix:

Store weight (u,v) in matrix
cell. Use O or negative value
if edge not in graph.

Adjacency List:
Add a field to the the edge

node object to store the
weight.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

12

Operation Costs: Adjacency Matrix

Adjacency Matrix: § E’A\\) \)D 1 2 3 T":\'
1. Space to represent: O(?) » 0 1 1
2. Add Edge (v,w): ©(?) &l 1 1 I\
3. Remove Edge (v,w): 0(?) - / 1
4. Check if Edge (v, w) Exists: ©(?) (3)

5. Get Neighbors (incoming) of v : ©(?)0~ 4. 1

6. Get Neighbors (outgoing) of v : ©(?) &)

IVl =n
|E| =m

13

Operation Costs: Adjacency Matrix

Adjacency Matrix:

Space to represent: O(n?) | V |

|l
=

Add Edge (v,w): 0(1)
Remove Edge (v, w): (1)

Check if Edge (v, w) Exists: ©(1) |E |
Get Neighbors (incoming) of v : ©(n)

]
=

A S o

Get Neighbors (outgoing) of v : ©(n)

V] =n
|E| =m

14

Operation Costs: Adjacency List

Adjacency List: ‘
3 —E-—I 1| =4
. Space to represent: O(?)@(VLM/\ L

0
1
2. Add Edge (v,w): ©(?) o(1) 1 - 1lA
3. Remove Edge (v,w): O(?) 0&@;(\/\3 9[\ o
4. Check if Edge (v, w) Exists: ©(?) Q(Af)(&f’o(f«\ : -2 L]
5.
6.

) 4)
Get Neighbors (incoming) of v: ©(?) Cr%?j%ﬁﬁ\
Get Neighbors (outgoing) of v: O(?) G (o)) 7O]E
V] =n
[E] =m

15

Operation Costs: Adjacency List

Adjacency List:

0 =1 =4
1. Space to represent: O(n + m) N
2. Add Edge (v,w): 0(1) o 1 ora
3. Remove Edge (v,w): O(deg(v)) ; -2 71
4. Check if Edge (v, w) Exists: O(deg(v)) s =TT
5. Get Neighbors (incoming) of v: O(n + m) —
6. Get Neighbors (outgoing) of v: O(deg(v))

V] =n

|El =m

16

Adjacency List:

A A o

Cost Comparison: Adjacency List vs Matrix

Space to represent: O(n + m) 1
Add Edge (v,w): ©(1) 2
Remove Edge (v, w): O(deg(v)) 3.
Check if Edge (v, w) Exists: O(deg(v)) 4.
Get Neighbors (incoming)of v:@(n +m) 5
Get Neighbors (outgoing) of v: @(deg(v)) 6

V] =n
|E| =m

Adjacency Matrix:

Space to represent: ©(n?)

Add Edge (v,w): ©(1)

Remove Edge (v, w): O(1)

Check if Edge (v, w) Exists: ©(1)
Get Neighbors (incoming) of v: O(n)
Get Neighbors (outgoing) of v: O(n)

17

Identifying Vertices as Strings

symbol table inverted index undirected graph
5T<5%tring, Integer> st String[] keys Graph G
Vertices may be identified 1kl o o e int v |10
with strings not integers. meo! 1 1 | MCO ~Z]-[7-[1
— ? |ORD
(1) Could use an adjacency 3 | DEN Bag[] adj ~[4 =7 =3
. d of " DEN| 3 4 | HOU 0
map instead of an adjacency ol 4 s | DEW . ~[7H-{0 {6 {5 {43
list, and also store strings in = 6 | PHX : /
W 35 7 [ATL G B 2
edge-nodes 8 | Lax — | |
L6 9 | LAS 3 15 7 2]
i " I L
(2) Programmers often have ATL| 7 | _
: " :
an index and/or lookup table LAX| 8 . | 4{2}s
to convert between int’s and ;Af' 4 . T ~ogl{sl3}+{2} 5
string IDs for vertices. key 8 \-“ ~[1}-{2 |4 }~{0 |
Understand this example? 9
~[9}-+6 |
There are other ways to do
. . T, s _—
this. Use your programming L6 ~{8~3 |

skills!

Image from
https://algs4.cs.princeton.edu/home/ 18

Definition: Path

A sequence of nodes (v, vy, ..., Vg)
st.Vi,1<i<k-1,(v,v,,,) EE

AT = 6 F, D
“’ Acyclic graph: has no cycles

Directed Acyclic Graph (DAG):

1 directed graph, no cycles
Simple Path: Cycle:
A path in which each node A path of > 2 nodes in
appears at most once which v; = v,

Flgero o S

19

Definition: Connected Graph

For a directed graph,

A Graph G = (V,E) s.t. for any pair of nodes SIENEMEORENIS

. property is
v4,V, € V there is a path from v, to v, strongly connected.

Breadth First Search

Traversing Graphs

“Traversing” means processing each vertex edge in some organized fashion by
following edges between vertices

* We speak of visiting a vertex. Might do something while there.

Recall traversal of binary trees:
* Several strategies: In-order, pre-order, post-order
* Traversal strategy implies an order of visits
* We used recursion to describe and implement these

Graphs can be used to model interesting, complex relationships
* Often traversal used just to process the set of vertices or edges
* Sometimes traversal can identify interesting properties of the graph

* Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about
the problem-instance that the graph models

22

BFS: Specific Input/Output

Input:
* Agraph G
* single start vertex s

Output:

* Distance from s to each node in G
(distance = number of edges)

* Breadth-First Tree of G with root s
\

Strategy:

Start with node s, visit all neighbors of s, then all neighbors of
neighbors of s, ...

Important: The paths in this BFS tree represent the shortest paths from s to
each node in G

* But edge weight’s (if any) not used, so “short” is in terms of number of edges in path23

Y]] Z |
def bfs(graph, s): PVt [XK 2] 65)

toVisit.enqueue(s |
(l ,(’) Sern CREILINYE ‘\m
mark s as “seen N e

While toVisit is not empty:

current = toVisit.dequeue() -7
for vin neighbors(current):
if v not seen: 1 O (5)
mark v as seen 4 O
toVisit.enqueue(v) (4)

BFS: Shortest Path

def bfs(graph, s):
toVisit.enqueue(s)
mark s as “seen”

While toVisit is not empty:
current = toVisit.dequeue()

for v in neighbors(current):
if v not seen:

mark v as seen

toVisit.enqueue(v)

ldea: when it’s seen, remember
its “layer” depth!

25

BFS: Shortest Path

def bfs(graph, s, t):
toVisit.enqueue(s)
depth[s] =0
While toVisit is not empty:
current = toVisit.dequeue()
layer = depth [current]
for vin neighbors(current):

if v.does not have a depth:

depth[v]=layer+1
toVisit.enqueue(v)
return depth[t]

ldea: when it’s seen, remember
its “layer” depth!

26

BFS: Shortest Path

def shortest_path(graph, s, t):
depth = [-1,-1,-1,...] # Length matches |V|
toVisit.enqueue(s)
mark a as “seen”
depth[s] =0
While toVisit is not empty:
current = toVisit.dequeue()
layer = depth[current]
if current == t:
return layer
for v in neighbors(current):
if v not seen:
mark v as seen
toVisit.enqueue(v)
depth[v] = layer + 1

ldea: when it’s seen, remember
its “layer” depth!

27

Breadth-first search from CLRS 20.2

BFS(G,s)

for each vertex u € G.V — {s}
u.color = WHITE
u.d = oo
u.m = NIL
s.color = GRAY
s.d =0
S.7T = NIL
0O=20
ENQUEUE(Q, s)
while Q # 0
u = DEQUEUE(Q)
for cach v € G.Adj[u]
if v. color == WHITE
v.color = GRAY
v.d =u.d+1
VT = U
ENQUEUE(Q, v)
u.color = BLACK

From CLRS

Vertices here have some properties:
 color = white/gray/black
* d =distance from start node
* pi=parentin tree, i.e. v.pi is vertex by
which v was connected to BFS tree
Color meanings here:
 White: haven’t seen this vertex yet

* Gray: vertex has been seen and added to
the queue for processing later

* Black: vertex has been removed from
gueue and its neighbors seen and added
to the queue

28

Tree View of BFS Search Results

Draw BFS tree starting at A

Tree View of BFS Search Results

Tree edgesin red
Non-tree edges in

Analysis for Breadth-first search

For a graph having V vertices and E edges
e Each edge is processed once in the while loop for a cost of
O(E)
e Each vertex is put into the queue once and removed from the
queue and processed once, for a cost O(V)
* Also, cost of initializing colors or depth arrays is O(V)

Total time-complexity: (I + E)
* For graph algorithms this is called “linear”

Space complexity: extra space is used for queue and also
depth/color arrays, so O(V)

31

def bfs(graph, s):
toVisit.enqueue(s)
mark s as “seen”
While toVisit is not empty:
current = toVisit.dequeue()
for vin neighbors(current):
if v not seen:
mark v as seen
toVisit.enqueue(v)

32

Definition: Bipartite

A (undirected) graph is Bipartite provided every vertex can be assigned
to one of two teams such that every edge “crosses” teams

* Alternative: Every vertex can be given one of two colors such that no edges
connect same-color nodes

Not Bipartite! O @ Q e Bipartite!
o O o o
(2) () o
O O

& O o—@

Odd Length Cycles

A graph is bipartite if and only if it has no odd length cycles

Bipartite!
Not Bipartite! O (5) O 5) ipartite

O o 0
° @ o o

©——9 o—@

BFS: Bipartite Graph?

def bfs(graph, s):
toVisit.enqueue(s)
mark s as “seen”
While toVisit is not empty:
current = toVisit.dequeue()
for vin neighbors(current):
if v not seen:
mark v as seen
toVisit.enqueue(v)

ldea: Check for edges in
the same layer!

35

BFS: Bipartite Graph?

def isBipartite(graph, s):
toVisit.enqueue(s)
mark s as “seen”
While toVisit is not empty:

current = toVisit.dequeue()

for v in neighbors(current):
if v not seen:

mark v as seen
toVisit.enqueue(v)

ldea: Check for edges in
the same layer!

36

BFS: Bipartite Graph?

def isBipartite(graph, s):
depth =[-1,-1,-1,...] # Length matches |V|
toVisit.enqueue(s)
depth[s] =0
While toVisit is not empty:
current = toVisit.dequeue()
layer = depth[current]
for v in neighbors(current):
if v not seen:
depth[v] = layer+1
toVisit.enqueue(v)

elif depth[v] == depth[current]:

return False
return True

ldea: Check for edges in
the same layer!

37

BFS Tree for a Bipartite Graph

Tree edgesin red
Non-tree edges in

BFS Tree for a Non-Bipartite Graph

Tree edgesin red
Non-tree edges in

What’s Next?

Depth-first Search, another traversal strategy
And problems DFS can solve for us

40

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 3: Graphs, Breadth First Search
	Slide 2: Announcements
	Slide 3: Computer History Trivia: What is the ARPANET?
	Slide 4: ARPANET
	Slide 5: Graphs
	Slide 6: Directed Graphs
	Slide 7: Weighted Graphs
	Slide 8: Some Graph Terms
	Slide 9: ADT Graph Operations
	Slide 10: Data Structures for Undirected Graphs
	Slide 11: Data Structures for Digraphs
	Slide 12: Data Structures for Weighted Graphs
	Slide 13: Operation Costs: Adjacency Matrix
	Slide 14: Operation Costs: Adjacency Matrix
	Slide 15: Operation Costs: Adjacency List
	Slide 16: Operation Costs: Adjacency List
	Slide 17: Cost Comparison: Adjacency List vs Matrix
	Slide 18: Identifying Vertices as Strings
	Slide 19: Definition: Path
	Slide 20: Definition: Connected Graph
	Slide 21: Breadth First Search
	Slide 22: Traversing Graphs
	Slide 23: BFS: Specific Input/Output
	Slide 24: BFS
	Slide 25: BFS: Shortest Path
	Slide 26: BFS: Shortest Path
	Slide 27: BFS: Shortest Path
	Slide 28: Breadth-first search from CLRS 20.2
	Slide 29: Tree View of BFS Search Results
	Slide 30: Tree View of BFS Search Results
	Slide 31: Analysis for Breadth-first search
	Slide 32: BFS
	Slide 33: Definition: Bipartite
	Slide 34: Odd Length Cycles
	Slide 35: BFS: Bipartite Graph?
	Slide 36: BFS: Bipartite Graph?
	Slide 37: BFS: Bipartite Graph?
	Slide 38: BFS Tree for a Bipartite Graph
	Slide 39: BFS Tree for a Non-Bipartite Graph
	Slide 40: What’s Next?

