
Data Structures and Algorithms 2
Lecture 2: Review, Reminders, Practice!

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• CLRS Chapter 2: insertion sort (if needed), book’s pseudocode conventions

• CLRS Chapter 3: info on order-class (more than we cover in lecture), math review

• Note: book goes into more depth than we do, and topics we don’t need. Use it to
reinforce what’s taught in lectures.

Announcements

• PS0 due tomorrow

• TA office hours coming soon

• Prof. Hott office hours
• This week: Thursday: 3-4pm, Friday 2-3pm

• Starting next week: Mondays 11a-12p, Fridays 10-11a and 2-3p

2

Measuring Work: Reminders!

From your earlier courses, remember…

We want a measure of an algorithm’s work that is
• Independent of hardware, language, programmer, etc.
• Doesn’t require us to implement the algorithm
• Described in terms of input size(s)

We count some operation in our algorithm
• Some “basic operation” that’s fundamental to the class of problems
• Or, something in the innermost nested loop
• Or sometimes, an expensive operation

Often “basic operation” defines a class of algorithms we’re comparing

 E.g. sorting of keys only using key-comparisons

3

Input Sizes: Reminders

The nature of an input affects how much work we do, so….

Worst-case W(n)
• Maximum number of basic operations for any input of size n
• We often need this upper-bound on performance
• We reason about one or more worst-case inputs

Average case A(n)
• Harder to calculate because you need

• The amount of work TI for every input I, and
• The probability it occurs, PI (Do we know? Can we assume?)

• A(n) =  TI PI

• We probably won’t do this kind of calculation in CS3100.
But sometimes we may talk about average or expected complexity

4

Analyzing Algorithms and Problems

Sometimes we talk about problems and their properties
• Feasible or tractable problems
• Intractable problems

• Problems that seem to need exponential time complexity,
Θ(kn) where k is a constant > 1.

• Examples: the classes of NP-hard problems, NP-Complete
problems

• Unsolvable problems (e.g. the Halting Problem)
Lower bound for the number of operations needed to solve a
problem
• In other words, can we prove that it’s impossible for any algorithm to

solve this problem in fewer than some number of operations?

Asymptotic Analysis and Order Classes

6

Remember the Big Picture?

We use order classes to categorize an algorithm’s complexity. Examples:

• Insertion sort is Θ(n2) in the worst-case, but it’s Θ(n) in the best-case

• Quicksort is Θ(n2) in the worst-case, but mergesort is Θ(n log n) in the
worst-case

• Searching a balanced search tree is Θ(log n) in the worst-case

An order-class like Θ(n2) is a set of functions that grow at the same rate

• Why is this a useful “label” to identify an algorithm’s complexity?

• An analogy: Alex is an “A” student, which is a better category than
someone who’s a “B” student. And we’re OK treating all “A” students as
if they’re equivalent in some way.

• In studying algorithms, being “equivalent” is about asymptotic growth

7

Asymptotic Bounds

The sets “big oh” O(g), “big theta” (g), “big omega” (g) – Remember
these meanings!

• O(g): set of all functions that grow no faster than g,
or g is an asymptotic upper bound

• (g): set of all functions that grow at least as fast as g,
or g is an asymptotic lower bound

• (g): set of all functions that grow at the same rate as g,
or g is an asymptotic tight bound

We’ll see two mathematical ways to show some f(n) belongs to one of
these sets

Asymptotic Notation*

Here’s our first way to mathematically define these order classes
𝑶(𝒈 𝒏)

• At most within constant of 𝑔 for large 𝑛
• {functions 𝑓|∃ constants 𝑐, 𝑛0 > 0 s.t. ∀𝑛 > 𝑛0, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)}
• Set of functions that grow “in the same way” as or more slowly than g(n)

*CLRS Chapter 3

𝑓(𝑛) = 𝑂(𝑔 𝑛)

𝑓(𝑛) = Θ(𝑔 𝑛)

𝑓(𝑛) = Ω(𝑔 𝑛)

Asymptotic Notation*

Here’s our first way to mathematically define these order classes
𝑶(𝒈 𝒏)

• At most within constant of 𝑔 for large 𝑛
• {functions 𝑓|∃ constants 𝑐, 𝑛0 > 0 s.t. ∀𝑛 > 𝑛0, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)}
• Set of functions that grow “in the same way” as or more slowly than g(n)

𝛀(𝒈 𝒏)
• At least within constant of 𝑔 for large 𝑛
• {functions 𝑓|∃ constants 𝑐, 𝑛0 > 0 s.t. ∀𝑛 > 𝑛0, 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔(𝑛)}
• Set of functions that grow “in the same way” as or more quickly than g(n)

𝚯 𝒈 𝒏
• “Tightly” within constant of 𝑔 for large 𝑛

• Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛)
• Set of functions that grow “in the same way” as g(n)

*CLRS Chapter 3

Asymptotic Notation Example

Show: 𝑛 log 𝑛 ∈ 𝑂 𝑛2

Asymptotic Notation Example

To Show: 𝑛 log 𝑛 ∈ 𝑂 𝑛2

• Technique: Find 𝑐, 𝑛0 > 0 s.t. ∀𝑛 > 𝑛0, 𝑛 log 𝑛 ≤ 𝑐 ⋅ 𝑛2

• Proof: Let 𝑐 = 1, 𝑛0 = 1. Then,
 𝑛0 log 𝑛0 = 1 log 1 = 0,
 𝑐 𝑛0

2 = 1 ⋅ 12 = 1,
 0 ≤ 1.

 ∀𝑛 ≥ 1, log 𝑛 < 𝑛 ⇒ 𝑛 log 𝑛 ≤ 𝑛2 □

Direct Proof!

Asymptotic Notation Example

Show: 𝑛2 ∉ 𝑂 𝑛

Asymptotic Notation Example

To Show: 𝑛2 ∉ 𝑂 𝑛
• Technique: Contradiction

• Proof: Assume 𝑛2 ∈ 𝑂 𝑛 . Then ∃𝑐, 𝑛0 > 0 s. t. ∀𝑛 > 𝑛0, 𝑛2 ≤ 𝑐𝑛
 Let us derive constant 𝑐. For all 𝑛 > 𝑛0 > 0, we know:
 𝑐𝑛 ≥ 𝑛2,
 𝑐 ≥ 𝑛.

 Since 𝑐 is dependent on 𝑛, it is not a constant.
 Contradiction. Therefore 𝑛2 ∉ 𝑂 𝑛 . □

Proof by
Contradiction!

Proof Techniques

Direct Proof
• From the assumptions and definitions, directly derive the statement

Proof by Contradiction
• Assume the statement is true, then find a contradiction

Proof by Induction

Proof by Cases

More Asymptotic Notation

𝒐(𝒈 𝒏)
• Smaller than any constant factor of 𝑔 for sufficiently large 𝑛

• {functions 𝑓 ∶ ∀ constants 𝑐 > 0, ∃𝑛0 such that ∀𝑛 > 𝑛0, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}

• Set of functions that always grow more slowly than g(n)

Equivalently, ratio of
𝑓(𝑛)

𝑔(𝑛)
 is decreasing and tends towards 0:

𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇔ lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 0

Our 2nd way to mathematically define these classes, with a limit of a ratio

More Asymptotic Notation

𝒐(𝒈 𝒏)
• Smaller than any constant factor of 𝑔 for sufficiently large 𝑛

• {functions 𝑓 ∶ ∀ constants 𝑐 > 0, ∃𝑛0 such that ∀𝑛 > 𝑛0, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}

• Set of functions that always grow more slowly than g(n)
𝝎(𝒈 𝒏)

• Greater than any constant factor of 𝑔 for large 𝑛

• {functions 𝑓 ∶ ∀ constants 𝑐 > 0, ∃𝑛0 such that ∀𝑛 > 𝑛0, 𝑓 𝑛 > 𝑐 ⋅ 𝑔(𝑛)}

• Set of functions that always grow more quickly than g(n)

Equivalently, 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇔ lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
= 

A Way to Think about Order Classes

For “comparables”, we have 5 logical operators: = < ≤ > ≥

How are the order classes we’ve defined like these?

19

Another Asymptotic Notation Example

Show: 𝑛 log 𝑛 ∈ 𝑜 𝑛2

Proof Technique: Show the statement directly, using either
definition

• For every constant 𝑐 > 0, we can find an 𝑛0 such that
log 𝑛0

𝑛0
= 𝑐.

Then for all 𝑛 > 𝑛0 , 𝑛 log 𝑛 < 𝑐 𝑛2 since
log 𝑛

𝑛
 is a decreasing

function

Equivalently, lim
𝑛→∞

𝑛 log 𝑛

𝑛2
= lim

𝑛→∞

log 𝑛

𝑛
= 0 (why is this true?)

∀ constants 𝑐 > 0, ∃𝑛0 such that ∀𝑛 > 𝑛0, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)

Direct Proof

Summary: Using Limit Definition

Want to prove f(n) belongs to some order class of g(n)?

Calculate this:

If the result is….

< , including the case in which the limit is 0, then f  O(g)

> 0, including the case in which the limit is , then f  (g)

= c and 0 < c <  then f  (g)

= 0 then f  o(g)

=  then f  (g)

)(

)(
lim

ng

nf

n →

Math Reminders

22

Review Section 3.3 in CLRS (3.2 in 3rd edition) for some math we’ll use:

• Polynomials

• Exponentials
• 𝑛𝑏 ∈ 𝑜(𝛼𝑛) for any constant 𝛼 > 1

• Logarithms
• Changing base means multiplying by a constant, so logs of any base are in the

same order class 𝜃(log 𝑛)
• log 𝑛 ∈ 𝑜(𝑛𝛼) for any constant 𝛼 > 0

• Factorials
• Note: 𝑛! ∈ 𝑜(𝑛𝑛), 𝑛! ∈ 𝜔(2𝑛), and log 𝑛! ∈ 𝜃(𝑛 log 𝑛)

• Functional iteration: f(i)(n)

23

If You Ever See A Series Like These…

Arithmetic series
• The sum of consecutive

integers:

Geometric series:
• For real x ≠ 1

2

)1(

1

+
=

=

nn
i

n

i

36

32 323

1

2 nnnn
i

n

i


++

=
=

ik

i=1

n

å »
nk+1

k +1

122 1

0

−= +

=

 k
k

i

i

() 2212 1

1

+−= +

=

 k
k

i

i ki
xi

i=0

n

å =
xn+1 -1

x -1

Polynomial Series
• The sum of squares:

• The general case is:

• Powers of 2:

Arithmetic-
Geometric Series:

Algorithms You’ve Studied

25

Remember Searching?

Problem: Given a list and a target, return the location of the target in
the list, or a sentinel value if not found

Sequential or Linear Search

• No assumptions on the order of values in the list

• Compares the target to keys of the list-items

• Always Θ(n). In the worst-case, n comparisons. On average, n/2

Binary Search

• List must be sorted

• Θ(log n) in the worst-case

Reminder: balanced search trees are also Θ(log n) in the worst-case

26

Remember Quadratic Sorts?

There are a number of comparison sorts that are Θ(n2) in the worst-
case:

 Insertion sort, Selection sort, Bubble sort,…

Insertion sort

• Θ(n2) in the worst-case, but it’s Θ(n) in the best-case
• If list is almost sorted, performance is close to linear

• It’s in-place (extra storage is constant in size)

• For more info, CLRS Section 2.1 or other sources

27

Remember Mergesort?

A divide and conquer algorithm, usually implemented recursively on smaller
sublists:

1. If a sublist is size 0 or 1, do nothing (it’s already sorted)
Otherwise:

2. Divide the (sub)list into two equal smaller sublists

3. Sort each of those recursively

4. Use a merge algorithm to combine the two sorted sublists

Note:

• Mergesort is Θ(n log n) in the worst-case

• It’s not in-place (we need Θ(n) extra storage for the merge)

• CLRS Section 2.3.1 is about mergesort, and there are other good sources

28

Remember Quicksort?

Also a divide and conquer algorithm, usually implemented recursively on smaller
sublists:

1. If a sublist is size 0 or 1, do nothing (it’s already sorted)
Otherwise:

2. Use a partition algorithm to place some “pivot” value into it’s correct position,
that also makes sure items found before the pivot are smaller, and those after
the pivot are larger

3. Sort the sublists on either side of the pivot recursively

Note:

• Quicksort is Θ(n log n) in the best- and average-cases
• Could be Θ(n2) in the worst-case but this can be avoided
• It’s in-place (except for the stack needed for recursive calls)

• CLRS Chapter 7 is about quicksort, and there are other good sources

29

Remember Lower Bounds Proof for Sorting?

In CS2100, you saw a lower bounds proof that showed:
 Any comparison sort has time-complexity of Ω(n log n)

Recall for a lower-bound proof, we make a logical argument about the problem
itself, one that holds for any algorithm that solves the problem

Proof used a decision tree (next slide), which models how any sort must work:
• Internal nodes represented a comparison between two keys
• Leaf nodes were permutations of list items (n! leaves)

• A correct sorting algorithm must trace a path through the tree to each of the
leaves

• What’s the longest path? The height of the tree.
• So how short can a tree be with n! leaves?

30

Decision Tree Argument

Worst case run time is the longest execution path

i.e., “height” of the decision tree

31

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

CLRS Section 8.1 describes
this in more detail

Let's Practice

32

Let's Practice

33

What’s Next?

On to Graphs next lecture!

34

	Slide 1: Data Structures and Algorithms 2 Lecture 2: Review, Reminders, Practice!
	Slide 2: Announcements
	Slide 3: Measuring Work: Reminders!
	Slide 4: Input Sizes: Reminders
	Slide 5: Analyzing Algorithms and Problems
	Slide 6: Asymptotic Analysis and Order Classes
	Slide 7: Remember the Big Picture?
	Slide 8: Asymptotic Bounds
	Slide 9: Asymptotic Notation*
	Slide 10
	Slide 11: Asymptotic Notation*
	Slide 12: Asymptotic Notation Example
	Slide 13: Asymptotic Notation Example
	Slide 14: Asymptotic Notation Example
	Slide 15: Asymptotic Notation Example
	Slide 16: Proof Techniques
	Slide 17: More Asymptotic Notation
	Slide 18: More Asymptotic Notation
	Slide 19: A Way to Think about Order Classes
	Slide 20: Another Asymptotic Notation Example
	Slide 21: Summary: Using Limit Definition
	Slide 22: Math Reminders
	Slide 23
	Slide 24: If You Ever See A Series Like These…
	Slide 25: Algorithms You’ve Studied
	Slide 26: Remember Searching?
	Slide 27: Remember Quadratic Sorts?
	Slide 28: Remember Mergesort?
	Slide 29: Remember Quicksort?
	Slide 30: Remember Lower Bounds Proof for Sorting?
	Slide 31: Decision Tree Argument
	Slide 32: Let's Practice
	Slide 33: Let's Practice
	Slide 34: What’s Next?

