
CS 3100
Data Structures and Algorithms 2

Lecture 16: Dynamic Programming
Co-instructors:  Robbie Hott and Ray Pettit

Spring 2024
Readings in CLRS 4th edition:
• Chapter 14

CS 3100
Data Structures and Algorithms 2

Lecture 19: Longest Common Subsequence



Announcements

• PS8 due tomorrow night
• Quizzes 3-4 next week
– If you have SDAC, please schedule ASAP

• Grading updates
– Quiz 2 scores released (mean and median: 70)
– PS grading caught up! (PS4, 5, and 6 released over the weekend)

• Office hours updates
– Prof Hott Office Hours:

• Today 4/2: 2-3pm
• Back to normal starting Friday
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Quiz Statistics
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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Log Cutting

5

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃  (𝑃[𝑖] is the price of a cut of size 𝑖) 
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ!, … , ℓ"  such that:
 ∑ℓ# = 𝑛 
to maximize ∑𝑃[ℓ#] Brute Force: 𝑂(2$)



1. Identify Recursive Structure
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𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ!
𝐶𝑢𝑡(𝑛 − ℓ!)

𝐶𝑢𝑡 𝑛 = max  
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1  
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2  
… 
𝐶𝑢𝑡 0 + 𝑃[𝑛] 

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

2. Save sub-
solutions to 

memory!



3. Select a Good Order for Solving Subproblems
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10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max  

𝐶𝑢𝑡 3 + 𝑃[1]	
𝐶𝑢𝑡 2 + 𝑃 2  
𝐶𝑢𝑡 1 + 𝑃 3  
𝐶𝑢𝑡 0 + 𝑃[4] 
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Matrix Chaining
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𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

• Given a sequence of Matrices (𝑀!, … ,𝑀"), what is the most 
efficient way to multiply them?

𝑀" 𝑀$



1. Identify the Recursive Structure of the Problem

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀- through 𝑀.

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟/𝑟0𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟/𝑟2𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟/𝑟3𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟/𝑟4𝑐1
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟/𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0



2. Save Subsolutions in Memory

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀- through 𝑀.

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟/𝑟0𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟/𝑟2𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟/𝑟3𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟/𝑟4𝑐1
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟/𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n] 
if present
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30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding 
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖



Coin Changing: Identify Recursive Structure
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Possibilities for last coin

Change 𝑛 : minimum number of coins needed to give change for 𝑛 cents

Coins needed

Change 𝑛 − 25 + 1 if 𝑛 ≥ 25

Change 𝑛 − 11 + 1

Change 𝑛 − 10 + 1

Change 𝑛 − 5 + 1

Change 𝑛 − 1 + 1

if 𝑛 ≥ 11

if 𝑛 ≥ 10

if 𝑛 ≥ 5

if 𝑛 ≥ 1



Identify Recursive Structure

13

Change 𝑛 : minimum number of coins needed to give change for 𝑛 cents

Change 𝑛 − 25 + 1 if 𝑛 ≥ 25
Change 𝑛 − 11 + 1 if 𝑛 ≥ 11
Change 𝑛 − 10 + 1 if 𝑛 ≥ 10
Change 𝑛 − 5 + 1 if 𝑛 ≥ 5
Change 𝑛 − 1 + 1 if 𝑛 ≥ 1

Change 𝑛 = min

Base Case: Change 0 = 0

Correctness: The optimal 
solution must be 

contained in one of these 
configurations

Running time: 𝑂(𝑘𝑛)
𝑘 is number of possible coins

Is this efficient?
No, this is pseudo-polynomial time

Input size is 𝑂 𝑘 log 𝑛



Seam Carving

• Removes “least energy seam” of pixels
• https://trekhleb.dev/js-image-carver/ 
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Carved

https://trekhleb.dev/js-image-carver/


Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 =	least energy seam from the bottom of the image up 
to pixel 𝑝#,%

15

𝑝',)



Computing 𝑆(𝑛, 𝑘)
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S(n-1,k-1)

𝑝1,!

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,!)

Assume we know the least energy seams for all of row 𝑛 − 1 
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)



Finding the Seam

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝/,!) for each pixel 𝑝/,!

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min

Pick smallest from top row, backtrack, removing those pixels
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𝑛

𝑚

Energy of the seam 
initialized to the 
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝!,#)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝!,#)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝!,#)



Longest Common Subsequence
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Given two sequences 𝑋 and 𝑌, 
find the length of their longest 
common subsequence 

Example:
X	=	𝑇𝐺𝐶𝐴𝑇𝐴	
Y	=	𝐴𝑇𝐶𝑇𝐺𝐴𝑇	
𝐿𝐶𝑆	=	𝑇𝐶𝑇𝐴	

Brute force: Compare every 
subsequence of 𝑋 with 𝑌
Ω(2$) 
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X = TGCATAT 
Y = ATCTGCGT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=TGCATAC 
Y=ATCTGCGT 

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1  

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=TGCATAT 
Y=ATCTGCGA

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗  

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1  if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

1. Identify Recursive Structure



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus 

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

20
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X = TGCATAT 
Y = ATCTGCGT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=TGCATAC 
Y=ATCTGCGT 

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1  

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=TGCATAT 
Y=ATCTGCGA

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗  

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1  if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

1. Identify Recursive Structure

Save to M[i,j]

Read from M[i,j] 
if present



Top-Down Solution with Memoization

22

LCS-Length(X, Y) // Y is M’s cols. 
1. n = length(X)
2. m  = length(Y)
3. Create table M[n,m]
4. Assign -1 to all cells M[i,j]
// get value for entire sequences
5. return LCS-recur(X, Y, M, n, m)

LCS-recur(X, Y, M, i, j)
1. if (i == 0 || j == 0) return 0
// have we already calculated this subproblem?
2. if (M[i,j] != -1) return M[i,j]
3. if ( X[i] == Y[j] )  
4. M[i,j] = LCS-recur(X, Y, M, i-1, j-1) + 1
5. else
6.    M[i,j] = max( LCS-recur(X, Y, M, i-1, j),
          LCS-recur(X, Y, M, i, j-1) )
7. return M[i,j]

We need two functions; one will be recursive.



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus 

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

24



3. Solve in a Good Order
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𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1  if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

Y = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60X =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)
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LCS Length Algorithm
LCS-Length(X, Y) // Y for M’s rows, X for its columns
1. n = length(X)  // get the # of symbols in X
2. m  = length(Y) // get the # of symbols in Y
3. for i = 0 to n M[i,0] = 0 // special case: X0

4. for j = 0 to m  M[0,j] = 0 // special case: Y0

5. for i = 1 to n   // for all Xi 
6. for j = 1 to m    // for all Yj

7.  if ( X[i] == Y[j] )  
8.   M[i,j] = M[i-1,j-1] + 1
9.  else M[i,j] = max( M[i-1,j], M[i,j-1] )
10. return M[n,m]   // return LCS length for Y and X



Run Time?
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𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1  if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑌 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑋 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1  if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent 

𝑌 =
𝑋 =



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1  if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent 

𝑌 =
𝑋 =



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1  if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent 

𝑌 =
𝑋 =
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Gerrymandering

• Manipulating electoral district 
boundaries to favor one political 
party over others

• Coined in an 1812 Political cartoon
• Governor Elbridge Gerry signed a 

bill that redistricted Massachusetts 
to benefit his Democratic-
Republican Party

33

The Gerrymander



According to the Supreme Court

• Gerrymandering cannot be used to:
– Disadvantage racial/ethnic/religious groups

• It can be used to:
– Disadvantage political parties

34



VA 5th District
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VA 5th District

36

2018 Election



VA 5th District (today)

37



Gerrymandering Today

• Computers make it 
really effective

38

")4

")1

")3

")7

")2

Ivor

Carsley

Courthouse

Berlin

Sebrell

Precinct 3-1

Newville

Yale

Pons

Surry

Eastern

Orbit

Brandon

Chesapeake

Salem

Zuni

Little Zion

Piankatank

Templeton

Westville

Old Mill

Harris Grove

4-B

Bryan

Achilles

Harrison

Stony Creek

Roanes

Henry

Rushmere

Wakefield

Raynor

Precinct 3-1

Harcum

Enon

Bacon's Castle

New Market

Precinct 1-1

Bethel

Eltham

Cumberland

Courthouse

Saluda

Dendron

Claremont

Asbury

Sweet Hall

Precinct 2-1

Reams

Lee Hall

Wilton

Waller Mill

Whitlocks

Magruder

Bartlett

Watkins

Blackwater

Shackleford's

Courthouse

Blackwater

Courthouse

Rives

Chuckatuck

Providence Forge

Windsor

Stonehouse A

White Marsh

Bland

Stonehouse C

Powhatan A

Elko

Old Church

Tunstall

Carrollton

Little Mill

New Hope

Wall's Bridge

Courthouse

Nash

Roberts B

Driver

Seaford

Botetourt

Matoaca

Town Hall

Mars Hill

Rohoic

Dorey

Southern Branch

Church View

Edgehill

Timberneck
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Ten

Western
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Donahoe
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402

101

Wells

910

Ocean View Center

810

Drewry's Bluff

Fifth

Five
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Southside

Dutch Gap

Sedley
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Fourth

Totopotomoy

706

Kiln Creek

203

Bayview School

Palmer

Nelson

Kraft
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Harwoods Mill

Atlee

Epes

Ward 4
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607
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Deer Park
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Twenty
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Shady Grove

302

Staples Mill
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Berkeley

Langley
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Wilson

Sarah's Creek

911

First Ward First Precinct

Seventh Ward First Precinct

Phoebus
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Ward 1
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Fourteen
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Bailey Creek
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114
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206
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Carver School
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Sunray I

Brambleton
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Northside

Twenty-Five

Dumbarton
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705
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Central Gardens

Pebble Creek

Crossroads
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Taylor Elementary School
Maury

Jones
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Fourth Ward First Precinct

113

Beaverdam Creek

Park Place
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Hanover Grove

Thirteen
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Little Creek

303
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Young Park

Jefferson

Thirty-Three
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Rollingwood

Sherwood Rec Center
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Summit Court
Hilliard

208

Greenwood

Larchmont Library

Fifth Ward First Precinct

Twenty-One

Third Presbyterian

Azalea Gardens

Twenty-Four

Shell

Twenty-Six

Twenty-Nine

South Morrison

Brookland

212
Nine Mile

Arrowhead

Marshall

College Park

South Norfolk

Union Chapel

Oakview

Lafayette-Winona
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Tucker
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Henrico

Mathews

New Kent
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Hampton
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Hanover

Newport News

King William
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King and Queen

Poquoson

Portsmouth

Greensville

Richmond city

Chesapeake

Petersburg

Hopewell
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HB 251 (2012)
Congressional District 3



Gerrymandering Today

• Computers make it 
really effective
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Gerrymandering Today
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How does it work?

• States are broken into precincts
• All precincts have the same size
• We know voting preferences of each precinct
• Group precincts into districts to maximize the number of districts 

won by my party

41

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

Overall: R:217 D:183
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R:45
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R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

R:125              R:92

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

R:112              R:105



Gerrymandering Problem Statement

• Given:
– A list of precincts: 𝑝!, 𝑝", … , 𝑝#
– Each containing 𝑚 voters

• Output:
– Districts 𝐷!, 𝐷" ⊂ {𝑝!, 𝑝", … , 𝑝#}
– Where 𝐷! = |𝐷"|
–  𝑅 𝐷! > $#

%
	 and	 𝑅 𝐷" > $#

%
• 𝑅(𝐷!) gives number of “Regular Party” voters in 𝐷!
• 𝑅 𝐷! > "#

$
 means 𝐷! is majority “Regular Party”

– “failure” if no such solution is possible

43

𝑚 ⋅
𝑛
2 ⋅
1
2

Valid Gerrymandering!



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

44
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World Two

World One

Consider the last precinct

46

𝐷/
𝑘 precincts
𝑥 voters for R

𝐷0
𝑛 − 𝑘 − 1 precincts
𝑦 voters for R

𝑝1

𝐷/
𝑘 + 1 precincts
𝑥 + 𝑅(𝑝1) voters for R

𝐷0
𝑛 − 𝑘 precincts
𝑦 + 𝑅(𝑝1) voters for R

If we assign 
𝑝1to 𝐷/

If we assign 
𝑝1to 𝐷0

After assigning the 
first 𝑛 − 1 precincts

𝑝$, 𝑝%, … , 𝑝!&$

Valid gerrymandering if: 
𝑘 + 1 = !

%
,

 𝑥 + 𝑅 𝑝! , 𝑦 >
'!
(

Valid gerrymandering if:
 n − 𝑘 = !

%
,

 𝑥, 𝑦 + 𝑅 𝑝! > '!
(

𝐷!
𝑘 + 1 precincts
𝑥 + 𝑅(𝑝*) voters for R

𝐷!
𝑘 precincts
𝑥	voters for R

𝐷"
𝑛 − 𝑘 − 1 precincts
𝑦	voters for R

𝐷"
𝑛 − 𝑘	precincts
𝑦 + 𝑅(𝑝*)	voters for R



Define Recursive Structure

𝑆 𝑗, 𝑘, 𝑥, 𝑦 =

47

True if from among the first 𝒋 precincts:
 𝒌 are assigned to 𝐷&
 exactly 𝒙 vote for R in 𝐷&
 exactly 𝒚 vote for R in 𝐷'
 

4D Dynamic Programming!!!

𝑛	×	𝑛	×	𝑚𝑛	×	𝑚𝑛

True here means that 
this is a valid state of 
the world; not a valid 

Gerrymander!
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Two ways to satisfy 𝑆 𝑗, 𝑘, 𝑥, 𝑦 :
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if:
 from among the first 𝑗 precincts
 𝑘 are assigned to 𝐷$
 exactly 𝑥 vote for R in 𝐷$
 exactly 𝑦 vote for R in 𝐷%
 
𝐷/
𝑘 precincts
𝑥 voters for R

𝐷0
𝑗 − 𝑘 precincts
𝑦 voters for R

𝐷/
𝑘 − 1 precincts
𝑥 − 𝑅(𝑝.) voters for R

𝐷0
𝑗 − 𝑘 precincts
𝑦 voters for R

𝐷/
𝑘 precincts
𝑥 voters for R

𝐷0
𝑗 − 1 − 𝑘 precincts
𝑦 − 𝑅(𝑝.) voters for R

𝑝.

Then assign 
𝑝.to 𝐷/

Then assign 
𝑝.to 𝐷0

𝑝.

OR

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝% , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝%



Final Algorithm

Initialize 𝑆(0,0,0,0) = True
for 𝑗 = 1,… , 𝑛:
    for 𝑘 = 1,… ,min(𝑗, 3

'
):

        for 𝑥 = 0,… , 𝑗𝑚:
            for 𝑦 = 0,… , 𝑗𝑚:
                𝑆 𝑗, 𝑘, 𝑥, 𝑦 =

𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝4 , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝4
Search for True entry at 𝑆(𝑛, 3

'
, > 53

6
, > 53

6
) 
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𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝% , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝%

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if:
 from among the first 𝑗 precincts
 𝑘 are assigned to 𝐷$
 exactly 𝑥 vote for R in 𝐷$
 exactly 𝑦 vote for R in 𝐷%
 



Where is Solution?
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Initialize 𝑆(0,0,0,0) = True
for 𝑗 = 1,… , 𝑛:
    for 𝑘 = 1,… ,min(𝑗, 3

'
):

        for 𝑥 = 0,… , 𝑗𝑚:
            for 𝑦 = 0,… , 𝑗𝑚:
                𝑆 𝑗, 𝑘, 𝑥, 𝑦 =

𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝4 , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝4
Search for True entry at 𝑆(𝑛, 3

'
, > 53

6
, > 53

6
) 

Run Time
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𝑛
𝑛
2
𝑛𝑚
𝑛𝑚

Θ(𝑛&𝑚')

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝% , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝%



Θ(𝑛=𝑚>)

• Input: list of precincts (size 𝑛), number of voters (integer 𝑚)
• Runtime depends on the value of 𝑚, not size of 𝑚
– Run time is exponential in size of input
– Input size is 𝑛 + 𝑚 = 𝑛 + log𝑚 

• Note: Gerrymandering is NP-Complete
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