CS 3100

Data Structures and Algorithms 2

Lecture 19: Longest Common Subsequence

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4t edition:
 Chapter 14

Announcements

* PS8 due tomorrow night

* Quizzes 3-4 next week
— If you have SDAC, please schedule ASAP

 Grading updates
— Quiz 2 scores released (mean and median: 70)
— PS grading caught up! (PS4, 5, and 6 released over the weekend)

e Office hours updates

— Prof Hott Office Hours:
 Today 4/2:2-3pm
* Back to normal starting Friday

Quiz Statistics

Median Maximum

73.0 100.0 70.56 -~

(]
20 30 40 50 60 70 80 90 100
1an

70.0 112.0 70.81 18.47

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the (optimal) solutions to smaller ones

* |dea:

1. ldentify the recursive structure of the problem
 What is the “last thing” done?

2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

Log Cutting

Given a log of length n
A list (of length n) of prices P (P|i] is the price of a cut of size i)
Find the best way to cut the log

Price: 1 5 8 9 1110|1717 | 20| 24| 30

Length: 1 2 3 4 5 6 7 8 9 10

Select a list of lengths 4, ..., € such that:
2.t =n
to maximize), P[?;] Brute Force: O(2")

1. ldentity Recursive Structure

Pli] = value of a cut of length i
Cut(n) = value of best way to cut a log of length n

 Cut(n — 1) + P[1]
Cut(n) = max — Cut(n—2)+ P[Z]

2. Save sub-
solutions to
memory!)

\.C.’.ut(O) + P[n]

Cut(n — €y)

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first
[Cut(3) + P[1]
Cut(2) + P[2
Cut(1) + P|3]
. Cut(0) + P[4

Cut(i): 0 |< \
1

Length: 0

Cut(4) = max

Matrix Chaining

* Given a sequence of Matrices (M4, ..., M,;), what is the most
efficient way to multiply them?

1

>

Cy
Co
1 (/ C3

1. ldentity the Recursive Structure of the Problem

* |n general:
Best(i,j) = cheapest way to multiply together M; through M;
j—-1
Best(i,j) = rEin(Best(i, k) + Best(k +1,j) + rirk+1cj)
=i

Best(i,i) =0

Best(2,n) + rryc,

Best(1,2) + Best(3,n) + rr3cy,

Best(1,3) + Best(4,n) + ryrucy,
Best(1,n) = min — Best(1,4) + Best(5,n) + rirscy,

Best(1,n — 1) + rr,c,

N~

2. Save Subsolutions in Memory

* |n general:

Best(i,j) = cheapest

way to multiply together M; through M;

Jj—1
Best(i,j) = rEin(Best(i, k) + Best(k +1,j) + TiTk+1Cj)

Best(i,i) =0

—

Save to M[n]

Best(1,n) = min —

Read from M[n]
if present

Best(2,n) + ryrycy

Best(1,2) + Best(3,n) + ryrscy
Best(1,3) + Best(4,n) + ryr.cy
Best(1,4) + Best(5,n) + ryrscp,

Best(1,n — 1) + rir,cq

~—

10

3. Select a good order for solving subproblems

3..@ E..
X 15 @l X 5 M,

Best(i,j) = m1n(Best(l k) + Best(k +1,j) + rlrkﬂc])
j=1 2 3 4 5 6 A\

Best(i,i) =0

To find Best(i, j): Need all preceding
terms of row i and column j

Conclusion: solve in order of diagonal

Coin Changing: Identify Recursive Structure

Change(n): minimum number of coins needed to give change for n cents

Possibilities for last coin Coins needed

Change(n — 25) + 1 ifn > 25

Change(n — 11) + 1 ifn>11

Change(n — 10) + 1 ifn>10

Change(n — 5) + 1 ifn=>>5

Change(n — 1) + 1 ifn=>1 =

| dentify Recursive Structure

Change(n): minimum number of coins needed to give change for n cents

Change(n — 25)+1 ifn>25 - ~
Change(n) = min Change(n —11) +1 ifn > 11 Correctngss: The optimal
Change(n — 10) + 1 ifn > 10 sc.)lutlc?n must be
, contained in one of these
Change(n—5)+1 ifn>5

configurations
\ Change(n—1)+1 ifn>1 < /

=

Base Case: Change(0) = 0

Input size is O (k log n)}
Running time: O(kn) Is this efficient?

k is number of possible coins No, this is pseudo-polynomial time 13

Seam Carving

* Removes “least energy seam” of pixels

Carved

=N

https://trekhleb.dev/js-image-carver/

| dentify Recursive Structure

Let S(i,j) = least energy seam from the bottom of the image up
to pixel pi,j

15

Computing S(n, k)

Assume we know the least energy seams for allof rown — 1
(i.e. we know S(n — 1, %) for all ¥)

S(n—1,k—1) + e(pny)
S(n — 1, k) + e(pn,k)

Sm—1k+1)+e(Pnk)
S(n,k) o
S(n-llk_l)

S(n, k) = min—

pn,k

16

Finding the Seam

Start from bottom of image (row 1), solve up to top
Initialize S(1, k) = e(py k) for each pixel py i
Sm—1,k—1) +e(Pnk)

Fori > 2find S(i,k) = min — ¢ — 1 k) + e(p 1)

S(Tl — 1,k ~+ 1) ~+ e(pn,k)

Pick smallest from top row, backtrack, removing those pixels

A

@ Energy of the seam

-------,--------- initialized to the

Y energy of that pixel

m 17

Longest Common Subseguence

Given two sequences X and Y,
find the length of their longest
common subsequence

Example:
X=TGCATA
Y=ATCTGAT
LCS=TCTA

Brute force: Compare every

subsequence of X withY
Q2™

18

1. ldentity Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y
Find LCS(1,)):
. . X =TGCAIAT
Case 1: X[i] = Y[/] Y = ATCTGCGT
LCS(i,j) =LCS(i—1,j—1)+1 |
Case 2: X|i] + Y[j]

X=TGCATAC) X=TGCATAT
Y=ATCTGCGT Y=ATCTGC
Moy Z LCS(i,j) = LCS(i,j—1) LCS(i,j) = LCS(i — 1,) >
0 ifi=0o0rj=0
LCS(i,j)) =~ LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise 19

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem is the (optimal) solutions to a smaller one plus
one “decision”

* |dea:

1. ldentify the substructure of the problem

 What are the options for the “last thing” done? What subproblem comes from each?
2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

20

1. ldentity Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y
Find LCS(1,)):
. . X =TGCAIAT
Case 1: X[i] = Y[/] Y = ATCTGCGT
LCS(i,j) =LCS(i—1,j—1)+1
Case 2: X|i] + Y[j]

X=TGCATAC X=TGCATAT
Y=ATCTGCGT Y=ATCTGCGA
LCS(i,j) = LCS(i,j — 1) LCS(i,j) = LCS(i —1,j)
fO Read from M[i,j] ifi =0 Orj =0
.. if
LC%‘(L]) =< LCS(i—1,] — 1)4 i if X[i] = Y[/]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise 21

Save to M[i,j]

Top-Down Solution with Memoization

We need two functions; one will be recursive.

LCS-Length(X, Y) // Y is M’s cols. LCS-recur(X, Y, M, i, j)

1. n = length(X) 1.if (i==0|| j==0) return0

2. m =length(Y) // have we already calculated this subproblem?
3. Create table M[n,m] 2. if (M[i,j] !=-1) return M[i,j]

4. Assign -1 to all cells M[i,j] 3. if (X[i] == Y[j])

// get value for entire sequences | |4. MIi,j] = LCS-recur(X, Y, M, i-1, j-1) + 1

5. return LCS-recur(X, Y, M, n, m) | |3. else
6. MIi,j] = max(LCS-recur(X, Y, M, i-1, j),

LCS-recur(X, Y, M, i, j-1))

7. return M[i,j]

22

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem is the (optimal) solutions to a smaller one plus
one “decision”

* |dea:

1. ldentify the substructure of the problem

 What are the options for the “last thing” done? What subproblem comes from each?
2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

24

3. Solve in a Good Order

0 ifi=0o0rj=0
LCS(i,j) =~ LcS(i—1,j—1) +1 if X[i] = Y[j]
\max(ﬁLCS(i,j —1),LCS(i—1,j)) otherwise

Y= A T ¢ T G A T

¥ o 1 2 3 4 5 6 7

N

ol o 0 0 0 0 0 0o_|—p
T 1| 61—+ 1t+—T+T+—11 | —
G 2] 0 | o | dne +——2 | 2 =3
C 3| 06t (5 ——|
A4l 0 Y LA g2 28 =Ewd
TS| 0 |Gt s S 4
A el o | 7| || 3 875 | j g‘)
\ /

Tofillincell (i,j)weneedcells (i —1,j —1),(i —1,j),(i,j — 1)
Fill from Top->Bottom, Left->Right (with any preference) 25

LCS Length Algorithm

LCS-Length(X, Y) // Y for M’s rows, X for its columns
1. n =length(X) // get the # of symbols in X

= length(Y) // get the # of symbolsin Y
3.fori=0ton MI[i,0]=0 //special case: X,
4.forj=0tom MI[0,j]=0 //special case: Y,

5.fori=1ton // for all X.

6. forj=1tom // for all'y,
7. if (X[i] ==Y[j])

8 MI[i,j] = M[i-1,j-1] + 1

else M[i,j] = max(M[i-1,j], M[i,j-1])
10. return M[n,m] // return LCS length for Y and X 26

Run Time?

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

Y =

B |lR|lm|lolo|lo|lOo|
N[N R | R|[R|~=|lo|DNS
N[N|IN|[N|[R|[R|lo|RO
Blw|lw|N|N|R|O|lax
BB W[(IN|IN|FR|lO|[NS

N U1 A W DN =R O
O(l0O|lO0O|lO0O(O|OC (OO

W W ININ[FR|FR|O
W W INININ|IP-R|O

s B N R o B

Run Time: O(n - m) (for |X| =n, |Y| = m)

27

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

Y = A T C T G A T

+ 0 1 2 3) 5 6 7
b ol o 0 0 Ow| O 0 0 0
T|1] o 0 1 1 P 1 1 1 1
G|2| o 0 1 1 1 1\ 2 2 2

cC 3| o 0 1 2 2 2 | 2 2

Al 4| o 1 1 2 2 2 \ 3 W 3

T 5| o 1 2 2 3 3 3 | a4

A 6| o 1 2 2 3 3 a |'a

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 28

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(j) =~ LeS(i—1,j—1) + 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

Y = A T C T G A T

+ 0 1 2 3 4 5 6 7
Yo o 0 N 0 0 0 0 0 0
T| 1] o 0 A1 1 1 1 1 1

G 2| o 0o |'1 1 1 2 2 2
Cl3| o 0 1 \ 2 € 2€1T 2 | 2 2
Al 4| o 1 1 2 2 2 \ 3 W 3
‘T 5] o 1 2 2 3 3 3)4

A 6| o 1 2 2 3 3 4 |'a

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 2

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(j) =~ LeS(i—1,j—1) + 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

Y = A T C T G A T

+ 0 1 2 3) 5 6 7
Yo o 0 N 0 0 0 0 0 0
T|1] o0 0 |l 1 1 1 1 1

G 2| o 0o |'1 1 1 2 2 2
Cl3| o 0 1 ['A2 2 2 2 2

A 4| o 1 1 | 2 2 2 3 3
T|5| o 1 2 2 3¢ 3 3 4
Ale| o 1 2 2 3 3 4€— 4

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 20

Supreme Court Associate Justice Anthony Kennedy gave no sign that he has abandoned his view that
extreme partisan gerrymandering might violate the Constitution. | Eric Thayer/Getty Images

Supreme Court eyes partisan gerrymandering

Anthony Kennedy is seen as the swing vote that could blunt GOP's
map-drawing successes.

31

SUPREME COURT OF THE UNITED STATES

VIRGINIA HOUSE OF DELEGATES ET AL. v.

BETHUNE-HILL ET AL.

APPEAL FROM THE UNITED STATES DISTRICT COURT FOR THE

EA

TERN DISTRICT OF VIRGINTA

No. 18-281. Ar

After the 2010 cens
State’s Senate and
districts sued two s
ly, State Defendan|
cially gerrymande|
Equal Protection (
(collectively, the H
the bench trial, on
where a three-judg
unconstitutionally
tions for those dist
General Assembly
torney General ann|
to this Court. The

Held: The House lacH
ests or in its own ri

SUPREME COURT OF THE UNITED STATES

RUCHO ET AL. v. COMMON CAUSE ET AL.

APPEAL FROM THE UNITED STATES DISTRICT COURT FOR THE
MIDDLE DISTRICT OF NORTH CAROLINA

No. 18-422. Argued March 26, 2019—Decided June 27, 2019*
Voters and other plai

challenging theiy
tutional partisa
claimed that the
crats, while the
discriminated ag|
of the First Am({
teenth Amendmg
trict Courts in b
fendants appeald
Held: Partisan ger|
yond the reach o
(a) In these ca
tion of constituti
the question is f
Judiciary Naturq
342. While it is

Syllabus

Next Gerrymanderin
in North Carolina: C

A North Carolina court threw out
an illegal gerrymander. Now the s
state to redraw the state’s congres

NOTICE

@8

€he New Nork Eimes

How to Police Gerrymanders? Some
Judges Say the Courts Can’t.

A North Carolina court, following the lead of the U.S. Supreme
Court, ruled that courts don’t have the ability to determine if a
political map is legal, giving legislators a free pass.

% Share full article

~ [

Gerrymandering

SBURY. /
:57‘ X 6‘\7(r.

N AME

N
T NS
Yy \

 Manipulating electoral district
boundaries to favor one political
party over others

e Coinedin an 1812 Political cartoon

* Governor Elbridge Gerry sighed a £ L O\
bill that redistricted Massachusetts gy (| XAy
to benefit his Democratic-
Republican Party " The Gerrymander

33

According to the Supreme Court

 Gerrymandering cannot be used to:

— Disadvantage racial/ethnic/religious groups

e |t can be used to:

— Disadvantage political parties

SUPREME COURT OF THE UNITED STATES

Syllabus

VIRGINIA HOUSE OF DELEGATES ET AL. v.
BETHUNE-HILL ET AL.

APPEAL FROM THE UNITED STATES DISTRICT COURT FOR THE
EASTERN DISTRICT OF VIRGINIA

No. 18-281. Argued March 18, 2019—Decided June 17, 2019

After the 2010 census, Virginia redrew legislative districts for the
State’s Senate and House of Delegates. Voters in 12 impacted House
districts sued two state agencies and four election officials (collective-
ly, State Defendants), charging that the redrawn districts were ra-
cially gerrymandered in violation of the Fourteenth Amendment’s
Equal Protection Clause. The House of Delegates and its Speaker
(collectively, the House) intervened as defendants, participating in
the bench trial, on appeal to this Court, and at a second bench trial,
where a three-judge District Court held that 11 of the districts were
unconstitutionally drawn, enjoined Virginia from conducting elec-
tions for those districts before adoption of a new plan, and gave the
General Assembly several months to adopt that plan. Virginia's At-
torney General announced that the State would not pursue an appeal
to this Court. The House, however, did file an appeal.

Held: The House lacks standing, either to represent the State’s inter-
ests or in its own right. Pp. 3-12.

SUPREME COURT OF THE UNITED STATES

Syllabus

RUCHO ET AL. v. COMMON CAUSE ET AL.

APPEAL FROM THE UNITED STATES DISTRICT COURT FOR THE
MIDDLE DISTRICT OF NORTH CAROLINA

No. 18-422. Argued March 26, 2019—Decided June 27, 2019*

Voters and other plaintiffs in North Carolina and Maryland filed suits
challenging their States’ congressional districting maps as unconsti-
tutional partisan gerrymanders. The North Carolina plaintiffs
claimed that the State’s districting plan discriminated against Demo-
crats, while the Maryland plaintiffs claimed that their State’s plan
discriminated against Republicans. The plaintiffs alleged violations
of the First Amendment, the Equal Protection Clause of the Four-
teenth Amendment, the Elections Clause, and Article I, §2. The Dis-
trict Courts in both cases ruled in favor of the plaintiffs, and the de-
fendants appealed directly to this Court.

Held: Partisan gerrymandering claims present political questions be-
yond the reach of the federal courts. Pp. 6-34.

(a) In these cases, the Court is asked to decide an important ques-
tion of constitutional law. Before it does so, the Court “must find that
the question is presented in a ‘case’ or ‘controversy’ that is ... ‘of a
Judiciary Nature.'” DaimlerChrysler Corp. v. Cuno, 547 U. S. 332,
342. While it is “the province and duty of the judicial department to

34

VA 5t District

S MEW
- TN |

\ 6 NN 5, “Baltimore . Dover
WEST ¢ SVl

RGINIA Monongahala 2/ 17 ~Annapolis
), Natwnhal NS $ £ . -
Fomst) \'\ / [)r['\\\
. ¢ e 0\\)(’
' | £

£ / _
L7743 SHairk
2 . / 2 ¥ ;‘f A 4
J /1 Q\ F 2
Eorge /@ S
W ashn .T}i_{"}l L—;‘L‘I L

<

.'.1,;51..;:. | | ‘ﬁx\: e
,_,‘.__ '/' N

—N

N\ T ’
,_'. £ \~ . - v
IO S
Richimont / ‘f\wﬁk_.\g\ L & 3
~ Ak, o0 b LN I
T— '\’)\%g"ﬁpt ‘L"\}\,;&.:‘ {é
\,J o Vol \"‘—t'{"‘-"‘f\ '3‘ (:
I an |2\:w L);
a ; P g '~3h~-}.,‘..‘ Virginia
; ' e ’,v g -~ ﬁ\) f K-, f‘iv‘< ach
W - A AV !} ./c"‘g—f&" Ak S

¥

J

Kifia

s
port

35

VA 5t District

46.7 2018 Election

Alexandria

S

Richmond
o)

Norfolk

L
Virginia Beach

36

VA 5th District (today)

o
Baltimore

ati :
"\

b, 17 :
*Washington

on

OVirg

37

Gerrymandering Today

 Computers make it [

really effective

—

HB 251 (2012)
Congressional District 3

pppppp

zm s

e
> @E%?%%

S A

Gerrymandering Today

 Computers make it
really effective

Gerrymandering Today

THE EVOLUTION OF MARYLAND'S THIRD DISTRICT

83rd Congress 88th 98th

93rd
'« “ J THE EVOLUTION OF PENNSYLVANIA'S SEVENTH DISTRICT
83rd Congress 88th 93rd 98th

103rd 108th 113th ‘ ‘) ‘
? ﬁ ‘ ' g : 103rd 108th

40

How does it work?

e States are broken into precincts
* All precincts have the same size
 We know voting preferences of each precinct

* Group precincts into districts to maximize the number of districts
won by my party

Overall: R:217 D:183

41

How does it work?

e States are broken into precincts
* All precincts have the same size
 We know voting preferences of each precinct

* Group precincts into districts to maximize the number of districts
won by my party

Overall: R:217 D:183 R:125 R:92 R:112 R:105

42

Gerrymandering Problem Statement

* Given:
— A list of precincts: p1, 05, ..., Py
— Each containing m voters

* Qutput:
— Districts D, D, € {py, D2, ..., Py}
— Where |D,| = |D,| Valid Gerrymandering!
mn mn
— R(Dl) > e and R(DZ) > e

* R(D;) gives number of “Regular Party” voters in D; | L v
* R(D;) > == means D; is majority “Regular Party” \[/n 1
. . 4 . . . m ‘A A
— “failure” if no such solution is possible 2 2

43

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?

2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

44

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones
* |dea:
1. Identify the recursive structure of the problem
 What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

45

Consider the last precinct

After assigning the D,
first n — 1 precincts -
et 1) D1 k + 1 precincts
P1, D2, -+ Pn-1 x + R(p,,) voters for R

k + 1 precincts

If we assign x + R(p,,) voters for R

ppto D

D,

n — k — 1 precincts
y voters for R

Valid gerrymandering if:

n
k+1=-,

n — k — 1 precincts

y voters for R k precincts

x voters for R

If we assign
pnto Dy

n — k precincts
y + R(p;,) voters for R

Valid gerrymandering if: n — k precincts
n—k= n y + R(p,,) voters for R

2’
x,y + R(pp) > %

Define Recursive Structure

S(j,k,x,y) = True if from among the first j precincts:
k are assigned to D,
f .
nXxXnxmnXmn exactly x vote for Rin D4

exactly y vote for Rin D,

True here means that

4D Dynamic Programming!!! this is a valid state of

the world; not a valid

Gerrymander!

Two ways to satisfy S(j, k, x, y):

S(,k,x,y) = Trueif:
from among the first j precincts

k — 1 precincts
x — R(p;) voters for R

k are assigned to D4
exactly x vote for R in D4

) :
Z Then assign exactly y vote for Rin D,

J — k precincts

y voters for R D,

k precincts
x voters for R

D;
J — k precincts
y voters for R

k precincts
x voters for R

J — 1 — k precincts Then assign
y — R(pj) voters for R pjto D;

SG.k,%,9) = S(= Lk — 1= R(p)),) VS (= Lhxy = R(p))) .

Final Algorithm

SG.kxy) =S(—1k—1,x—R(p;),y)vS(j - Lk xy — R(p;))

Initialize $(0,0,0,0) = True G,k x,y) = True if
forj = 1, e, NG from among the first j precincts
for k = 1’ . mln(],—): ‘ k are assigned to D4
. 2 exactly x vote for Rin D,
forx = 0, ey J1L ‘ exactly y vote for Rin D,
fory=20,...,jm: ,
. J
SU,k,x,y) =

SG—-1Lk—1,x—R(p;),y)VS (j —Lkxy- R(Pj))
Search for True entry at S(n,%, > %, > %)

49

Where is Solution?

SG.kxy) =S(—1k—1,x—R(p;),y)vS(j - Lk xy — R(p;))

Initialize S(0,0,0,0) = True
n forj=1,..

E for k = 1 .., min(J, —)
nm forx =0, ..., jm:
nm fory = O, ., Jm

SG, k,x,y) =
S(j —1,k—1,x — R(pj) y) VS(j — 1, k,x,y — R(pj))
Search for True entry at S(n > > —)

O(n*m?)

51

O(n*m*)

* |nput: list of precincts (size n), number of voters (integer m)
* Runtime depends on the value of m, not size of m

— Run time is exponential in size of input
— Input sizeisn + |m| = n + logm

* Note: Gerrymandering is NP-Complete

52

