
CS 3100
Data Structures and Algorithms 2

Lecture 16: Dynamic Programming
Co-instructors: Robbie Hott and Ray Pettit

Spring 2024
Readings in CLRS 4th edition:
• Chapter 14

CS 3100
Data Structures and Algorithms 2

Lecture 19: Longest Common Subsequence

Announcements

• PS8 due tomorrow night
• Quizzes 3-4 next week
– If you have SDAC, please schedule ASAP

• Grading updates
– Quiz 2 scores released (mean and median: 70)
– PS grading caught up! (PS4, 5, and 6 released over the weekend)

• Office hours updates
– Prof Hott Office Hours:

• Today 4/2: 2-3pm
• Back to normal starting Friday

2

Quiz Statistics

3

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

4

Log Cutting

5

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖)
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ!, … , ℓ" such that:
 ∑ℓ# = 𝑛
to maximize ∑𝑃[ℓ#] Brute Force: 𝑂(2$)

1. Identify Recursive Structure

6

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ!
𝐶𝑢𝑡(𝑛 − ℓ!)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

2. Save sub-
solutions to

memory!

3. Select a Good Order for Solving Subproblems

7

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max

𝐶𝑢𝑡 3 + 𝑃[1]	
𝐶𝑢𝑡 2 + 𝑃 2
𝐶𝑢𝑡 1 + 𝑃 3
𝐶𝑢𝑡 0 + 𝑃[4]

4

Matrix Chaining

8

𝑀!𝑟!

𝑐!

𝑟"×

𝑐"

𝑀#𝑟#

𝑐#

× ×𝑟$

𝑐$

• Given a sequence of Matrices (𝑀!, … ,𝑀"), what is the most
efficient way to multiply them?

𝑀" 𝑀$

1. Identify the Recursive Structure of the Problem

• In general:

9

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀- through 𝑀.

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟/𝑟0𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟/𝑟2𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟/𝑟3𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟/𝑟4𝑐1
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟/𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. Save Subsolutions in Memory

• In general:

10

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀- through 𝑀.

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟/𝑟0𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟/𝑟2𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟/𝑟3𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟/𝑟4𝑐1
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟/𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n]
if present

11

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
.5/

!6-
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟-𝑟!7/𝑐.

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖

Coin Changing: Identify Recursive Structure

12

Possibilities for last coin

Change 𝑛 : minimum number of coins needed to give change for 𝑛 cents

Coins needed

Change 𝑛 − 25 + 1 if 𝑛 ≥ 25

Change 𝑛 − 11 + 1

Change 𝑛 − 10 + 1

Change 𝑛 − 5 + 1

Change 𝑛 − 1 + 1

if 𝑛 ≥ 11

if 𝑛 ≥ 10

if 𝑛 ≥ 5

if 𝑛 ≥ 1

Identify Recursive Structure

13

Change 𝑛 : minimum number of coins needed to give change for 𝑛 cents

Change 𝑛 − 25 + 1 if 𝑛 ≥ 25
Change 𝑛 − 11 + 1 if 𝑛 ≥ 11
Change 𝑛 − 10 + 1 if 𝑛 ≥ 10
Change 𝑛 − 5 + 1 if 𝑛 ≥ 5
Change 𝑛 − 1 + 1 if 𝑛 ≥ 1

Change 𝑛 = min

Base Case: Change 0 = 0

Correctness: The optimal
solution must be

contained in one of these
configurations

Running time: 𝑂(𝑘𝑛)
𝑘 is number of possible coins

Is this efficient?
No, this is pseudo-polynomial time

Input size is 𝑂 𝑘 log 𝑛

Seam Carving

• Removes “least energy seam” of pixels
• https://trekhleb.dev/js-image-carver/

14

Carved

https://trekhleb.dev/js-image-carver/

Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 =	least energy seam from the bottom of the image up
to pixel 𝑝#,%

15

𝑝',)

Computing 𝑆(𝑛, 𝑘)

16

S(n-1,k-1)

𝑝1,!

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,!)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,!)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

Finding the Seam

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝/,!) for each pixel 𝑝/,!

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min

Pick smallest from top row, backtrack, removing those pixels

17

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝!,#)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝!,#)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝!,#)

Longest Common Subsequence

18

Given two sequences 𝑋 and 𝑌,
find the length of their longest
common subsequence

Example:
X	=	𝑇𝐺𝐶𝐴𝑇𝐴	
Y	=	𝐴𝑇𝐶𝑇𝐺𝐴𝑇	
𝐿𝐶𝑆	=	𝑇𝐶𝑇𝐴	

Brute force: Compare every
subsequence of 𝑋 with 𝑌
Ω(2$)

19

X = TGCATAT
Y = ATCTGCGT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=TGCATAC
Y=ATCTGCGT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=TGCATAT
Y=ATCTGCGA

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

1. Identify Recursive Structure

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

20

21

X = TGCATAT
Y = ATCTGCGT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X=TGCATAC
Y=ATCTGCGT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X=TGCATAT
Y=ATCTGCGA

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

1. Identify Recursive Structure

Save to M[i,j]

Read from M[i,j]
if present

Top-Down Solution with Memoization

22

LCS-Length(X, Y) // Y is M’s cols.
1. n = length(X)
2. m = length(Y)
3. Create table M[n,m]
4. Assign -1 to all cells M[i,j]
// get value for entire sequences
5. return LCS-recur(X, Y, M, n, m)

LCS-recur(X, Y, M, i, j)
1. if (i == 0 || j == 0) return 0
// have we already calculated this subproblem?
2. if (M[i,j] != -1) return M[i,j]
3. if (X[i] == Y[j])
4. M[i,j] = LCS-recur(X, Y, M, i-1, j-1) + 1
5. else
6. M[i,j] = max(LCS-recur(X, Y, M, i-1, j),
 LCS-recur(X, Y, M, i, j-1))
7. return M[i,j]

We need two functions; one will be recursive.

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem is the (optimal) solutions to a smaller one plus

one “decision”
• Idea:

1. Identify the substructure of the problem
• What are the options for the “last thing” done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

24

3. Solve in a Good Order

25

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

Y = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60X =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)

26

LCS Length Algorithm
LCS-Length(X, Y) // Y for M’s rows, X for its columns
1. n = length(X) // get the # of symbols in X
2. m = length(Y) // get the # of symbols in Y
3. for i = 0 to n M[i,0] = 0 // special case: X0

4. for j = 0 to m M[0,j] = 0 // special case: Y0

5. for i = 1 to n // for all Xi
6. for j = 1 to m // for all Yj

7. if (X[i] == Y[j])
8. M[i,j] = M[i-1,j-1] + 1
9. else M[i,j] = max(M[i-1,j], M[i,j-1])
10. return M[n,m] // return LCS length for Y and X

Run Time?

27

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑌 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑋 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)

Reconstructing the LCS

28

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

𝑌 =
𝑋 =

Reconstructing the LCS

29

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

𝑌 =
𝑋 =

Reconstructing the LCS

30

𝐿𝐶𝑆 𝑖, 𝑗 =
0	 	 	 	 	 if 𝑖 = 0	or	𝑗 = 0	
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
 if symbols matched, print that symbol then go diagonally
else go to largest adjacent

𝑌 =
𝑋 =

31

32

Gerrymandering

• Manipulating electoral district
boundaries to favor one political
party over others

• Coined in an 1812 Political cartoon
• Governor Elbridge Gerry signed a

bill that redistricted Massachusetts
to benefit his Democratic-
Republican Party

33

The Gerrymander

According to the Supreme Court

• Gerrymandering cannot be used to:
– Disadvantage racial/ethnic/religious groups

• It can be used to:
– Disadvantage political parties

34

VA 5th District

35

VA 5th District

36

2018 Election

VA 5th District (today)

37

Gerrymandering Today

• Computers make it
really effective

38

")4

")1

")3

")7

")2

Ivor

Carsley

Courthouse

Berlin

Sebrell

Precinct 3-1

Newville

Yale

Pons

Surry

Eastern

Orbit

Brandon

Chesapeake

Salem

Zuni

Little Zion

Piankatank

Templeton

Westville

Old Mill

Harris Grove

4-B

Bryan

Achilles

Harrison

Stony Creek

Roanes

Henry

Rushmere

Wakefield

Raynor

Precinct 3-1

Harcum

Enon

Bacon's Castle

New Market

Precinct 1-1

Bethel

Eltham

Cumberland

Courthouse

Saluda

Dendron

Claremont

Asbury

Sweet Hall

Precinct 2-1

Reams

Lee Hall

Wilton

Waller Mill

Whitlocks

Magruder

Bartlett

Watkins

Blackwater

Shackleford's

Courthouse

Blackwater

Courthouse

Rives

Chuckatuck

Providence Forge

Windsor

Stonehouse A

White Marsh

Bland

Stonehouse C

Powhatan A

Elko

Old Church

Tunstall

Carrollton

Little Mill

New Hope

Wall's Bridge

Courthouse

Nash

Roberts B

Driver

Seaford

Botetourt

Matoaca

Town Hall

Mars Hill

Rohoic

Dorey

Southern Branch

Church View

Edgehill

Timberneck

Walters

Airport

Thirty Nine

Battlefield

Black Creek

Dare

Cherry Hill

Eanes

Winfrees Store

Burbank

Ebenezer

Jamestown A

Union Branch

King's Fork

Yeates

Dunbar

609

Iron Bridge

Harmony Village

Nansemond River

Ettrick

Kentwood

HayesCourts Bldg

Sullivans

Antioch

Smithfield

4-A

Ecoff

806

Armstrong

Mehfoud

Clay

Spring Grove

Zion Grace

Stryker

Sandston

Bellwood

West Wakefield

Jefferson Park

Bird

Hilton

Yorktown

Gates

Elizabeth Scott

Precinct 5-1

Richard Bland

Deep Creek

Stonehouse B

Berkeley C

Bennetts Creek

413

Warwick

Chickahominy

Machen

Tabb

106

Cold Harbor

Quinton

Rural Point Precinct 1-1

811

Dinwiddie

Rolfe

West Point

812

Harrowgate

Chickahominy River

Drewryville

Manquin

Ocean View School

Greenwood

Downtown

Bland

Kiln Creek

Glen Lea

Ward 2

Phillips

Chesdin

Thirty-Six

903

Reed

410

Davis

River

Urbanna

Berkeley B Part 1

Wilder

Five Forks

Riverside

Bethel

Ten

Western

Jolliff One

Central

Village

Beulah

Donahoe

503

402

101

Wells

910

Ocean View Center

810

Drewry's Bluff

Fifth

Five

Laburnum

Southside

Dutch Gap

Sedley

404

Fourth

Totopotomoy

706

Kiln Creek

203

Bayview School

Palmer

Nelson

Kraft

Nine

703

Harwoods Mill

Atlee

Epes

Ward 4

Roberts C Part 1

Easton

Powhatan C

607

Titustown Center

Deer Park

Cooper

Carver

North Chester

602

Avalon

Lindsay

Lake Cohoon

Waverly

Edgehill

309

South Chester

505

610

Barron Black

412

Third

Queens Lake

Bethel

Smith

Azalea
Belmont

204

Sunray Ii

Second

Ratcliffe

814

Coventry

Willard

Riverview

Hermitage

Fairlawn

Thomas

Powhatan D

707

Watkins

Phenix

Cedar Fork

Aberdeen

Yates

Wythe

Thirty

Denbigh

Falling Creek

Masonic

510

Berkley

Newman

603

Stonewall Jackson

508

Camelot

Salem Church

909

501

Courthouse

301

Fellowship

Powhatan B

Montrose

306

Briarfield

Granby
Wesley

One

802

104

Richneck

St. Julians

509

307

Mallory

Tarrallton

Crestview

111

Adams

Lakeside

Booker

Bassette

Old Dominion

Sanford

308

902

Glenside

Campostella

Hunterdale

102

105

Rosemont

Longan

Twenty

Beach

River Birch

Tuckahoe
112

Shady Grove

302

Staples Mill

Jamestown B

Berkeley

Langley

Harbour View

Wilson

Sarah's Creek

911

First Ward First Precinct

Seventh Ward First Precinct

Phoebus

Berkeley A Part 1

Greendale

East Hampton

Roberts A Part 2

First

Reservoir

Pleasants

Nansemond

Tallwood

Charles

McIntosh

Jenkins

Ward 1

Manchester

Georgetown

Skipwith

Sandy Bottom

Poplar Halls

Second Ward First Precinct

Fourteen

Meadowbrook

604

Precinct 4-1

Churchland

305

Ward 3

Ward 7

Saunders

Seven

Hungary

Taylor Road

Moody

504

304

United Way

Syms

Forrest

Berkeley B Part 2

Johnson

South Norfolk Recreation

Beaufont 908

Fairfield

Maplewood606

Carver

Indian River

Oaklette

Third Ward First Precinct

East Ocean View

City Hall

Crestwood

LongdaleYellow Tavern

Thirty-Four Ingleside

Ward 5Ward 6

Silverwood

Chippenham

213

Bailey Creek

Thirty-Five

Reon

701

Stuart

Tucker Capps

Thirty-Two

Bayside

Hidenwood

Providence

Seventeen

114

Tanglewood

Chamberlayne

206

Boulevard

Nineteen

Mechanicsville
Highland Gardens

211

Thirty-One

Belmont

Sherry Park

Sixteen

Carver School

Bland

Laurel Meadow

Wellesley

Providence

Thirty Seven

Westwood

Sunray I

Brambleton

Thirty Eight

E. W. Chittum School

Northside

Twenty-Five

Dumbarton

Joliff Middle School

Sedgefield

Larrymore

Holllybrook

Chesterfield

705

Roberts A Part 1

Central Gardens

Pebble Creek

Crossroads

702

Taylor Elementary School
Maury

Jones

Newmarket

Twenty-Eight

Fourth Ward First Precinct

113

Beaverdam Creek

Park Place
Ballentine

Twenty-Two

Hanover Grove

Thirteen

Johnson Park

Little Creek

303

Three Chopt

Twenty-Seven

Geneva Park

Windsor

Chrysler Museum

Kecoughtan

Bowling Park

Suburban Park

Maude Trevvett

Highland Springs

Eleven

Sixth Ward First Precinct

Tyler

Young Park

Jefferson

Thirty-Three

207

Rollingwood

Sherwood Rec Center
Lafayette

Twenty-Three

Summit Court
Hilliard

208

Greenwood

Larchmont Library

Fifth Ward First Precinct

Twenty-One

Third Presbyterian

Azalea Gardens

Twenty-Four

Shell

Twenty-Six

Twenty-Nine

South Morrison

Brookland

212
Nine Mile

Arrowhead

Marshall

College Park

South Norfolk

Union Chapel

Oakview

Lafayette-Winona

Hampton Library

Oceanair

Tucker

Norview Methodist

Tanner's Creek

Roberts C Part 2

Lambert's Point

Norfolk Highlands

Newsome Park

Norview Middle School

Magruder

Hunton Y

Jacobs

Larchmont Recreation Center

Monument Hills

Oyster Point

Centerville

Oscar Smith School

Coleman Place SchoolGhent Square

Courtland

Canterbury

Stratford Hall

Tucker House

Reams
Huguenot

Bon Air

4-C Elephants Fork/Westhaven

StudleyStudley

Sussex

Surry

York

Gloucester

Isle of Wight

Henrico

Mathews

New Kent

Prince George

Charles City

James City

Suffolk

Dinwiddie

Chesterfield

Middlesex

Southampton

Hampton

Norfolk

Hanover

Newport News

King William

Lancaster

King and Queen

Poquoson

Portsmouth

Greensville

Richmond city

Chesapeake

Petersburg

Hopewell

WilliamsburgColonial Heights

HB 251 (2012)
Congressional District 3

Gerrymandering Today

• Computers make it
really effective

39

Gerrymandering Today

40

How does it work?

• States are broken into precincts
• All precincts have the same size
• We know voting preferences of each precinct
• Group precincts into districts to maximize the number of districts

won by my party

41

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

Overall: R:217 D:183

vs

How does it work?

• States are broken into precincts
• All precincts have the same size
• We know voting preferences of each precinct
• Group precincts into districts to maximize the number of districts

won by my party

42

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

Overall: R:217 D:183

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

R:125 R:92

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

R:112 R:105

Gerrymandering Problem Statement

• Given:
– A list of precincts: 𝑝!, 𝑝", … , 𝑝#
– Each containing 𝑚 voters

• Output:
– Districts 𝐷!, 𝐷" ⊂ {𝑝!, 𝑝", … , 𝑝#}
– Where 𝐷! = |𝐷"|
– 𝑅 𝐷! > $#

%
	 and	 𝑅 𝐷" > $#

%
• 𝑅(𝐷!) gives number of “Regular Party” voters in 𝐷!
• 𝑅 𝐷! > "#

$
 means 𝐷! is majority “Regular Party”

– “failure” if no such solution is possible

43

𝑚 ⋅
𝑛
2 ⋅
1
2

Valid Gerrymandering!

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

44

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

45

World Two

World One

Consider the last precinct

46

𝐷/
𝑘 precincts
𝑥 voters for R

𝐷0
𝑛 − 𝑘 − 1 precincts
𝑦 voters for R

𝑝1

𝐷/
𝑘 + 1 precincts
𝑥 + 𝑅(𝑝1) voters for R

𝐷0
𝑛 − 𝑘 precincts
𝑦 + 𝑅(𝑝1) voters for R

If we assign
𝑝1to 𝐷/

If we assign
𝑝1to 𝐷0

After assigning the
first 𝑛 − 1 precincts

𝑝$, 𝑝%, … , 𝑝!&$

Valid gerrymandering if:
𝑘 + 1 = !

%
,

 𝑥 + 𝑅 𝑝! , 𝑦 >
'!
(

Valid gerrymandering if:
 n − 𝑘 = !

%
,

 𝑥, 𝑦 + 𝑅 𝑝! > '!
(

𝐷!
𝑘 + 1 precincts
𝑥 + 𝑅(𝑝*) voters for R

𝐷!
𝑘 precincts
𝑥	voters for R

𝐷"
𝑛 − 𝑘 − 1 precincts
𝑦	voters for R

𝐷"
𝑛 − 𝑘	precincts
𝑦 + 𝑅(𝑝*)	voters for R

Define Recursive Structure

𝑆 𝑗, 𝑘, 𝑥, 𝑦 =

47

True if from among the first 𝒋 precincts:
 𝒌 are assigned to 𝐷&
 exactly 𝒙 vote for R in 𝐷&
 exactly 𝒚 vote for R in 𝐷'

4D Dynamic Programming!!!

𝑛	×	𝑛	×	𝑚𝑛	×	𝑚𝑛

True here means that
this is a valid state of
the world; not a valid

Gerrymander!

48

Two ways to satisfy 𝑆 𝑗, 𝑘, 𝑥, 𝑦 :
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if:
 from among the first 𝑗 precincts
 𝑘 are assigned to 𝐷$
 exactly 𝑥 vote for R in 𝐷$
 exactly 𝑦 vote for R in 𝐷%

𝐷/
𝑘 precincts
𝑥 voters for R

𝐷0
𝑗 − 𝑘 precincts
𝑦 voters for R

𝐷/
𝑘 − 1 precincts
𝑥 − 𝑅(𝑝.) voters for R

𝐷0
𝑗 − 𝑘 precincts
𝑦 voters for R

𝐷/
𝑘 precincts
𝑥 voters for R

𝐷0
𝑗 − 1 − 𝑘 precincts
𝑦 − 𝑅(𝑝.) voters for R

𝑝.

Then assign
𝑝.to 𝐷/

Then assign
𝑝.to 𝐷0

𝑝.

OR

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝% , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝%

Final Algorithm

Initialize 𝑆(0,0,0,0) = True
for 𝑗 = 1,… , 𝑛:
 for 𝑘 = 1,… ,min(𝑗, 3

'
):

 for 𝑥 = 0,… , 𝑗𝑚:
 for 𝑦 = 0,… , 𝑗𝑚:
 𝑆 𝑗, 𝑘, 𝑥, 𝑦 =

𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝4 , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝4
Search for True entry at 𝑆(𝑛, 3

'
, > 53

6
, > 53

6
)

49

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝% , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝%

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if:
 from among the first 𝑗 precincts
 𝑘 are assigned to 𝐷$
 exactly 𝑥 vote for R in 𝐷$
 exactly 𝑦 vote for R in 𝐷%

Where is Solution?

50

Initialize 𝑆(0,0,0,0) = True
for 𝑗 = 1,… , 𝑛:
 for 𝑘 = 1,… ,min(𝑗, 3

'
):

 for 𝑥 = 0,… , 𝑗𝑚:
 for 𝑦 = 0,… , 𝑗𝑚:
 𝑆 𝑗, 𝑘, 𝑥, 𝑦 =

𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝4 , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝4
Search for True entry at 𝑆(𝑛, 3

'
, > 53

6
, > 53

6
)

Run Time

51

𝑛
𝑛
2
𝑛𝑚
𝑛𝑚

Θ(𝑛&𝑚')

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝% , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝%

Θ(𝑛=𝑚>)

• Input: list of precincts (size 𝑛), number of voters (integer 𝑚)
• Runtime depends on the value of 𝑚, not size of 𝑚
– Run time is exponential in size of input
– Input size is 𝑛 + 𝑚 = 𝑛 + log𝑚

• Note: Gerrymandering is NP-Complete

52

