CS 3100
 Data Structures and Algorithms 2
 Lecture 19: Longest Common Subsequence

Co-instructors: Robbie Hott and Ray Pettit

 Spring 2024Readings in CLRS $4^{\text {th }}$ edition:

- Chapter 14

Announcements

- PS8 due tomorrow night
- Quizzes 3-4 next week
- If you have SDAC, please schedule ASAP
- Grading updates
- Quiz 2 scores released (mean and median: 70)
- PS grading caught up! (PS4, 5, and 6 released over the weekend)
- Office hours updates
- Prof Hott Office Hours:
- Today 4/2: 2-3pm
- Back to normal starting Friday

Quiz Statistics

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Log Cutting

Given a log of length n
A list (of length n) of prices P ($P[i]$ is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that:
$\sum \ell_{i}=n$
to maximize $\sum P\left[\ell_{i}\right]$
Brute Force: $O\left(2^{n}\right)$

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n

$$
\operatorname{Cut}(n)=\max \left\{\begin{array}{l}
\operatorname{Cut}(n-1)+P[1] \\
\operatorname{Cut}(n-2)+P[2] \\
\ldots \\
\operatorname{Cut}(0)+P[n]
\end{array} \quad \begin{array}{l}
\text { 2. Save sub- } \\
\text { solutions to } \\
\text { memory! }
\end{array}\right.
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

1. Identify the Recursive Structure of the Problem

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0
\end{aligned}
$$

$$
\operatorname{Best}(1, n)=\min \left\{\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
$$

2. Save Subsolutions in Memory

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{}_{\text {Read from } \mathrm{M}[\mathrm{n}]} \\
& \text { Save to } \mathrm{M}[\mathrm{n}] \\
& \operatorname{Best}(1, n)=\min \left[\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
\end{aligned}
$$

3. Select a good order for solving subproblems

Coin Changing: Identify Recursive Structure

Change (n): minimum number of coins needed to give change for n cents
Possibilities for last coin

Coins needed
Change $(n-25)+1 \quad$ if $n \geq 25$

Change $(n-11)+1 \quad$ if $n \geq 11$
Change $(n-10)+1 \quad$ if $n \geq 10$
Change $(n-5)+1 \quad$ if $n \geq 5$

Change $(n-1)+1 \quad$ if $n \geq 1$

Identify Recursive Structure

Change (n): minimum number of coins needed to give change for n cents
Change $(n)=\min \begin{cases}\operatorname{Change}(n-25)+1 & \text { if } n \geq 25 \\ \operatorname{Change}(n-11)+1 & \text { if } n \geq 11 \\ \operatorname{Change}(n-10)+1 & \text { if } n \geq 10 \\ \operatorname{Change}(n-5)+1 & \text { if } n \geq 5 \\ \operatorname{Change}(n-1)+1 & \text { if } n \geq 1\end{cases}$

Correctness: The optimal solution must be contained in one of these configurations

Base Case: Change(0) $=0$

Running time: $O(k n)$
k is number of possible coins

Is this efficient?

Seam Carving

- Removes "least energy seam" of pixels
- https://trekhleb.dev/js-image-carver/

Carved

Identify Recursive Structure

Let $S(i, j)=$ least energy seam from the bottom of the image up to pixel $p_{i, j}$

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)
$S(n, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{n, k}\right) \\ p_{n, k} \\ s(n-1, k)+e\left(p_{n, k}\right) \\ S(n-1, k+1)+e\left(p_{n, k}\right)\end{array}\right.$
$s(n-1, k-1)$
$s(n-1, k)$
$s(n-1, k+1)$

Finding the Seam

Start from bottom of image (row 1), solve up to top
Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel $p_{1, k}$
For $i>2$ find $S(i, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{n, k}\right) \\ S(n-1, k)+e\left(p_{n, k}\right) \\ S(n-1, k+1)+e\left(p_{n, k}\right)\end{array}\right.$
Pick smallest from top row, backtrack, removing those pixels

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:
$\mathrm{X}=\mathrm{TGCATA}$
$\mathrm{Y}=$ ATCTGAT
$L C S=T C T A$

Brute force: Compare every subsequence of X with Y
$\Omega\left(2^{n}\right)$

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\text { Case 1: } X[i]=Y[j] \quad \begin{aligned}
X & =\text { TGCATAT } \\
Y & =\operatorname{ATCTGCGT} \\
\operatorname{LCS}(i, j) & =\operatorname{LCS}(i-1, j-1)+1
\end{aligned}
$$

Case 2: $X[i] \neq Y[j]$

$$
\max \left(\begin{array}{cc}
X=\text { TGCATAC } & X=\operatorname{TGCATAT} \\
Y=\operatorname{ATCTGCG}(A) \\
Y=\operatorname{ATCTGCGT} & \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j)
\end{array}\right), \begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0 \\
\operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) & \text { if } X[i]=Y[j] \\
\operatorname{LCS}(i-1, j-1)+1 & \text { otherwise } \\
\operatorname{Lax}(\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) &
\end{array}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:

1. Identify the substructure of the problem

- What are the options for the "last thing" done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\begin{array}{cc}
X & =\text { TGCATAT } \\
\text { Case 1: } X[i]=Y[j] & Y=A T C T G C G T \\
& L C S(i, j)=\operatorname{LCS}(i-1, j-1)+1 \\
\text { Case 2: } X[i] \neq Y[j] & X=T G C A T A T \\
X=T G C A T A C & Y=A T C T G C G A \\
Y=A T C T G C G T & L C S(i, j)=\operatorname{LCS}(i-1, j)
\end{array}
$$

Top-Down Solution with Memoization

We need two functions; one will be recursive.

LCS-Length(\mathbf{X}, Y) // Y is M's cols.

1. $n=$ length (X)
2. $m=$ length (Y)
3. Create table $M[n, m]$
4. Assign -1 to all cells $M[i, j]$
// get value for entire sequences
5. return LCS-recur(X, Y, M, n, m)

LCS-recur(X, Y, M, i, j)

1. if $(i==0| | j==0)$ return 0
// have we already calculated this subproblem?
2. if ($M[i, j]$! $=-1$) return $M[i, j]$
3. if $(X[i]==Y[j])$
4. $M[i, j]=\operatorname{LCS}-\operatorname{recur}(X, Y, M, i-1, j-1)+1$
5. else
6. $M[i, j]=\max (\operatorname{LCS}-\operatorname{recur}(X, Y, M, i-1, j)$, LCS-recur(X, Y, M, i, j-1))
7. return $M[i, j]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem is the (optimal) solutions to a smaller one plus one "decision"
- Idea:

1. Identify the substructure of the problem

- What are the options for the "last thing" done? What subproblem comes from each?

2. Save the solution to each subproblem in memory
3. Select an order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$
\begin{aligned}
& \operatorname{CCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0\end{cases} \\
& \text { if } X[i]=Y[j] \\
& \text { otherwise }
\end{aligned}
$$

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$ Fill from Top->Bottom, Left->Right (with any preference)

LCS Length Algorithm

LCS-Length(X, Y) // Y for M's rows, X for its columns

1. $\mathrm{n}=$ length $(\mathrm{X}) / /$ get the \# of symbols in X
2. m = length $(Y) / /$ get the \# of symbols in Y
3. for $\mathrm{i}=0$ to $\mathrm{n} \quad \mathrm{M}[\mathrm{i}, 0]=0 \quad / /$ special case: X_{0}
4. for $\mathrm{j}=0$ to $\mathrm{m} \quad \mathrm{M}[0, \mathrm{j}]=0 \quad / /$ special case: Y_{0}
5. for $\mathrm{i}=1$ to n
// for all X_{i}
6. for $\mathrm{j}=1$ to m
7. \quad if ($\mathrm{X}[\mathrm{i}]==\mathrm{Y}[\mathrm{j}])$
8.

$M[i, j]=M[i-1, j-1]+1$
9. else $M[i, j]=\max (M[i-1, j], M[i, j-1])$
10. return $M[n, m] / /$ return LCS length for Y and X

Run Time?

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

+ $Y=$		0	A 1	T 2	$\begin{aligned} & C \\ & 3 \end{aligned}$	$\begin{aligned} & T \\ & 4 \end{aligned}$	$\begin{gathered} G \\ 5 \end{gathered}$	$\begin{aligned} & A \\ & 6 \end{aligned}$	$\begin{aligned} & T \\ & 7 \end{aligned}$
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
	6	0	1	2	2	3	3	4	4

Run Time: $\Theta(n \cdot m)($ for $|X|=n,|Y|=m)$

Reconstructing the LCS

$$
\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

+ $Y=$			$\begin{array}{ll} & A \\ 0 & 1\end{array}$	T	C3	4	G5	A	T
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	24	$2 \leftarrow$	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A	6	0	1	2	2	3	3	4	4

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Supreme Court Associate Justice Anthony Kennedy gave no sign that he has abandoned his view that extreme partisan gerrymandering might violate the Constitution. I Eric Thayer/Getty Images

Supreme Court eyes partisan gerrymandering

Anthony Kennedy is seen as the swing vote that could blunt GOP's map-drawing successes.

SUPREME COURT OF THE UNITED STATES

Syllabus
VIRGINIA HOUSE OF DELEGATES ET AL. v. BETHUNE-HILL ET AL.

APPEAL FROM THE UNITED STATES DISTRICT COURT FOR THE

After the 2010 cens
State's Senate and State's Senate and
districts sued two s districts sued two s cially gerrymander Equal Protection (collectively, the H the bench trial, on where a three-judg unconstitutionally tions for those dist General Assembly to this Court. The Held: The House la ests or in its own ri

SUPREME COURT OF THE UNITED STATES

Syllabus
RUCHO ET AL. v. COMMON CAUSE ET AL.
APPEAL FROM THE UNITED STATES DISTRICT COURT FOR THE MIDDLE DISTRICT OF NORTH CAROLINA

No. 18-422. Argued March 26, 2019-Decided June 27, 2019*
Voters and other plaintiffs in North Carolina and Marvland filed suits challenging thei claimed that the claimed that the
crats, while the crats, while the
discriminated a f the First Am teenth Amendm trict Courts in b fendants appeal Held: Partisan ger yond the reach o (a) In these ca ion of constitut the question is 342. While it is

Next Gerrymanderin in North Carolina: C

A North Carolina court threw out an illegal gerrymander. Now the s state to redraw the state's congres

©゙be Àcu tlorkẽimes

How to Police Gerrymanders? Some Judges Say the Courts Can't.

A North Carolina court, following the lead of the U.S. Supreme Court, ruled that courts don't have the ability to determine if a political map is legal, giving legislators a free pass.

苗 Share full article W

Gerrymandering

- Manipulating electoral district boundaries to favor one political party over others
- Coined in an 1812 Political cartoon
- Governor Elbridge Gerry signed a bill that redistricted Massachusetts to benefit his DemocraticRepublican Party

According to the Supreme Court

- Gerrymandering cannot be used to:
- Disadvantage racial/ethnic/religious groups
- It can be used to:
- Disadvantage political parties

| SUPREME COURT OF THE UNITED STATES |
| :---: | :---: |
| RUCHO ET AL. v. COMMON CAUSE ET AL. |
| Syllabus |
| APPEAL FROM THE UNITED STATES DISTRICT CoURT FOR THE |
| MIDDLE DITTRICT OF NORTH CAROLINA |

VA $5^{\text {th }}$ District

VA $5^{\text {th }}$ District

VA 5th District (today)

Gerrymandering Today

- Computers make it really effective

Gerrymandering Today

- Computers make it really effective

Gerrymandering Today

THE EVOLUTION OF MARYLAND'S THIRD DISTRICT

SOURCE: Shapefiles maintained by Jeffrey B. Lowis, Brandon DeVine, Lincoln Pritcher and Kenneth C. Martis, UCLA. Drawn to scale.
GRAPHIC. The Washington Post. Published May 20, 2014

How does it work?

- States are broken into precincts
- All precincts have the same size
- We know voting preferences of each precinct
- Group precincts into districts to maximize the number of districts won by my party

Overall: R:217 D:183

R:65	R:45
D:35	D:55
$R: 60$	$R: 47$
$D: 40$	$D: 53$

How does it work?

- States are broken into precincts
- All precincts have the same size
- We know voting preferences of each precinct
- Group precincts into districts to maximize the number of districts won by my party

Overall: R:217 D:183

$R: 65$	$R: 45$
$D: 35$	$D: 55$
$R: 60$	$R: 47$
$D: 40$	$D: 53$

Gerrymandering Problem Statement

- Given:
- A list of precincts: $p_{1}, p_{2}, \ldots, p_{n}$
- Each containing m voters
- Output:
- Districts $D_{1}, D_{2} \subset\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$
- Where $\left|D_{1}\right|=\left|D_{2}\right|$
$-R\left(D_{1}\right)>\frac{m n}{4} \quad$ and $\quad R\left(D_{2}\right)>\frac{m n}{4}$
- $R\left(D_{i}\right)$ gives number of "Regular Party" voters in D_{i}
- $R\left(D_{i}\right)>\frac{\mathrm{mn}}{4}$ means D_{i} is majority "Regular Party"
- "failure" if no such solution is possible

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Consider the last precinct

Define Recursive Structure

$$
\begin{array}{ll}
S(j, k, x, y)=\text { True } \begin{array}{l}
\text { if from among the first } \boldsymbol{j} \text { precincts: } \\
\boldsymbol{k} \text { are assigned to } D_{1}
\end{array} \\
n \times n \times m n \times m n \quad \begin{array}{l}
\text { exactly } \boldsymbol{x} \text { vote for } \mathrm{R} \text { in } D_{1} \\
\text { exactly } \boldsymbol{y} \text { vote for } \mathrm{R} \text { in } D_{2}
\end{array}
\end{array}
$$

4D Dynamic Programming!!!
True here means that this is a valid state of the world; not a valid

Gerrymander!

Two ways to satisfy $S(j, k, x, y)$:
\(\left.\begin{array}{l}D_{1}

k-1 precincts

x-R\left(p_{j}\right) voters for \mathrm{R}\end{array}\right) \quad\)| $S(j, k, x, y)=$ True if: |
| :--- |
| from among the first j precincts |
| k are assigned to D_{1} |
| exactly x vote for R in D_{1} |
| exactly y vote for R in D_{2} |
| $-k$ precincts |

Final Algorithm

$S(j, k, x, y)=S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)$
Initialize $S(0,0,0,0)=$ True for $j=1, \ldots, n$: for $k=1, \ldots, \min \left(j, \frac{n}{2}\right)$: for $x=0, \ldots, j m$: for $y=0, \ldots, j m$: $S(j, k, x, y)=$

$$
S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)
$$

Search for True entry at $S\left(n, \frac{n}{2},>\frac{m n}{4},>\frac{m n}{4}\right)$

Where is Solution?

Run Time

$S(j, k, x, y)=S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)$
Initialize $S(0,0,0,0)=$ True
n for $j=1, \ldots, n$:
$\frac{n}{2}$ for $k=1, \ldots, \min \left(j, \frac{n}{2}\right)$:
$n m$ for $x=0, \ldots, j m$:
$n m$ for $y=0, \ldots, j m$:
$S(j, k, x, y)=$
$\Theta\left(n^{4} m^{2}\right)$

$$
S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)
$$

Search for True entry at $S\left(n, \frac{n}{2},>\frac{m n}{4},>\frac{m n}{4}\right)$

$\Theta\left(n^{4} m^{2}\right)$

- Input: list of precincts (size n), number of voters (integer m)
- Runtime depends on the value of m, not size of m
- Run time is exponential in size of input
- Input size is $n+|m|=n+\log m$
- Note: Gerrymandering is NP-Complete

