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Decode the line below into English

(hint: use Google or Wolfram Alpha)
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Announcements

• PS6 coming soon
• PA3 available!
• Grading update

• PS0-2 grades returned, PS3 coming very soon
• Regrade requests: 

§ PS0-2 open through Sunday 3/17pm
§ PS3 and onward: 7 days after release

• Office hours (reminder)
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
• TA office hours posted on our website
• Office hours are not for "checking solutions"

4



Reminders about Greedy Algorithms



Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴 

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest
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Prim’s Algorithm Implementation
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
pick a starting node 𝑠 and set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
  if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑#:
   PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
   𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: minimum cost to connect 
𝑢 to nodes in PQ



Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm
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1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Prim’s Algorithm

10

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇
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Kruskal’s Algorithm
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1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not 

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)
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Kruskal’s Algorithm
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Implementation: iterate over each of the edges in the graph (sorted by weight), and 
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

Time complexity: 𝑂 𝛼 𝑛 , 
where 𝛼 is the “inverse Ackermann function” (extremely slow-growing function)

for all “practical” 𝑛, 𝛼 𝑛 < 5 (e.g., for all 𝑛 < 2$!
"##$"

− 3)

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle



Union/Find and Disjoint Sets
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An Abstract Data Type (ADT) for a collection of sets of any kind of item, 
where an item can only belong to one of the sets
• We’ll assume each item is identified by a unique integer value

Need to support the following operations
• void makeSet(int n)  // construct n independent sets
• int findSet(int i)  // given i, which set does i belong to?
• void union(int i, int j) // merge sets containing i and j



Union/Find and Disjoint Sets
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Represent Sets As Trees
• Represent each set as a tree
• Identify set by its root node’s ID (its “label”)
• findSet() means tracing up to root
• union() makes one root child of the other root

Two sets After a union



Union/Find and Disjoint Sets
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Needs to support the following operations
• void makeSet(int n) //construct n independent sets

Solution:
• Store as array of size n. Each location stores label for 

that set.

  0       1       2       3       4       5       6       7

  0       1       2       3       4       5       6       7



Union/Find and Disjoint Sets

16

Needs to support the following operations
• int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where 
index and contents match
• Start at index i and repeat:
• If a[i] == i then return i
• Else set i = a[i]

  0      1        2       3       4       5       6      7

 0  1  3  3  5  6  1  7



Union/Find and Disjoint Sets

17

Needs to support the following operations
• void union(int i, int j) //merge sets i and j

Solution: find label for each set (call find() method), 
then set one label to point to other
• Label1 = find(i); Label2 = find(j)
• a[Label1] = Label2 //OR a[Label2] = Label1

  0       1       2       3       4       5       6      7

 0  1  3  3  5  6  1  7



Time Complexity: Kruskal’s Algorithm
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Implementation: iterate over each of the edges in the graph (sorted by weight), and 
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

• Overall running time: 𝑂 𝐸 	log 𝐸 = 𝑂 𝐸 	log 𝑉
𝐸 ≤ 𝑉 $ ⇒ log 𝐸 = 𝑂 log 𝑉  

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle



More on Implementation for Kruskal’s
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Let EL be the set of edges sorted ascending by weight
Consider each vertex to be in a tree of size 1
For each edge e in EL

T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1 != T2)    // the nodes are not in the same Tree

Add e to the output set of edges T (which becomes the MST)
Combine trees T1 and T2

Seems simple, no?
• But, how do you keep track of what tree a vertex is in?
• Trees are sets of vertices. Need to findset(v) and “union” two sets



Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴 

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest
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Sam Morse

Engineer
and artist
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Message Encoding

Problem: need to electronically send a message to two 
people at a distance.
Channel for message is binary (either on or off)

24
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How can we do it?

Take the message, send it over character-by-
character with an encoding

25

wiggle, wiggle, wiggle like a gypsy queen
wiggle, wiggle, wiggle all dressed in green a: 2

d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character 
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding 



How efficient is this?

Each character requires 4 bits
ℓ! = 4
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wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Cost of encoding:

𝐵 𝑇, 𝑓% = Q
%&'('%)*(	%

ℓ%𝑓% = 68 ⋅ 4 = 272

Better Solution: Allow for different 
characters to have different-size encodings
(high frequency → short code) 

a: 2
d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character 
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding 



More efficient coding
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𝐵 𝑇, 𝑓% = Q
%&'('%)*(	%

ℓ%𝑓%

When this is big

Make this small

Codeword Size
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Morse Code
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Problem with Morse Code
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Decode:
A A

ET ET
R T
EN T

Ambiguous Decoding



Prefix-Free Code

A prefix-free code is codeword table 𝑇 such that for any 
two characters 𝑐", 𝑐#, if 𝑐" ≠ 𝑐# then 𝑐𝑜𝑑𝑒(𝑐") is not a 
prefix of 𝑐𝑜𝑑𝑒(𝑐#)
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Binary Trees = Prefix-free Codes

I can represent any prefix-free code as a binary tree
I can create a prefix-free code from any binary tree

31

g
e
l
i
w
…

0
10
110
1110
11110
…

g

e

l

i

w

0

0

0

0

0

1

1

1

1

g e l i w

g
e
l
i
w
…

00
01
10
110
111
…

0

0 0
0

1

1
1

1



Goal: Shortest Prefix-Free Encoding

Input: A set of character frequencies {𝑓!}
Output: A prefix-free code 𝑇 which minimizes

𝐵 𝑇, 𝑓! = (
!"#$#!%&$	!

ℓ!𝑓!

32

Huffman Coding!!



Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴 

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree

36

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Subproblem of size 𝑛 − 1!



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree

39

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2

Q:1 U:1

2
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
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A:2 D:2

4
0 1



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

N:3 S:3

6
0 1



Huffman Algorithm
Choose the least frequent pair, combine into 
a subtree
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G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1



Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no 

worse by replacing it with the same item from my sandwich”

43



Remember: Interval Scheduling Algorithm

Find event ending earliest, add to solution, 
Remove it and all conflicting events, 
Repeat until all events removed, return solution

44



Remember: Exchange Argument

Claim: earliest ending interval is always part of some optimal solution

Let  𝑂𝑃𝑇$,&  be an optimal solution for time range [𝑖, 𝑗]
Let 𝑎∗ be the first interval in [𝑖, 𝑗] to finish overall (greedy choice)
If 𝑎∗ ∈ 𝑂𝑃𝑇$,&  then claim holds
Else if 𝑎∗ ∉ 𝑂𝑃𝑇$,&, let 𝑎 be the first interval to end in 𝑂𝑃𝑇$,&
• By definition 𝑎∗ ends before 𝑎, and therefore does not conflict with any other 

events in 𝑂𝑃𝑇-,/
• Therefore 𝑂𝑃𝑇-,/ − {𝑎} + {𝑎∗} is also an optimal solution (same number 

events)
• Thus claim holds

45



Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least 

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution
• Optimal Substructure argument

46



Showing Huffman is Optimal

First Step: Show any optimal tree is “full” (each node has either 0 or 2 
children)

47

W

R Y

0 1

0

0 1

W

R Y

10

0 1
𝑇 𝑇′

𝑇′ is a “better” tree than 𝑇, because all codes in 
red subtree are shorter in 𝑇′, without creating 
any longer codes



Huffman Exchange Argument
Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is an optimal 
prefix-free code s.t. 𝑐", 𝑐# are siblings
• i.e. codes for 𝑐0, 𝑐$ are the same length and differ only by their last bit

48𝑐0

𝑇!"#

𝑐$

Case 1: Consider some optimal tree 𝑇12). If 𝑐0, 𝑐$ are siblings in this 
tree, then claim holds



Huffman Exchange Argument
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𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

Case 2: Consider some optimal tree 𝑇12), in which 𝑐0, 𝑐$ are not siblings

Let 𝑎, 𝑏 be the two characters of lowest 
depth that are siblings 
(Why must they exist?)

Idea: show that swapping 𝑐0 with 𝑎 does 
not increase cost of the tree. 
Similar for 𝑐$ and 𝑏
Assume: 𝑓%0 ≤ 𝑓' and 𝑓%$ ≤ 𝑓3

Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is an optimal 
prefix-free code s.t. 𝑐", 𝑐# are siblings
• i.e. codes for 𝑐0, 𝑐$ are the same length and differ only by their last bit



Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()
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𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in 
some optimal tree
𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓' 

𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0



Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()

51

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓' 

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0

𝐵 𝑇12) − 𝐵 𝑇4 = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' − (𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0)

= 𝑓%0ℓ%0 + 𝑓'ℓ' − 𝑓%0ℓ' − 𝑓'ℓ%0
= 𝑓%0(ℓ%0 − ℓ') + 𝑓'(ℓ' − ℓ%0)
= (𝑓'−𝑓%0)(ℓ' − ℓ%0)

≥ 0 ⇒ 𝑇′ optimal

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in 
some optimal tree



Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()
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𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓' 

𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0

𝐵 𝑇12) − 𝐵 𝑇4 = (𝑓'−𝑓%0)(ℓ' − ℓ%0)
≥ 0 ≥ 0

𝐵 𝑇12) − 𝐵 𝑇4 ≥ 0
𝑇′ is also optimal!

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in 
some optimal tree



Case 2:Repeat to swap 𝑐&, 𝑏!

53

𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐$ with 𝑏 does not increase cost of the tree.
Assume: 𝑓%$ ≤ 𝑓3 

𝑏

𝑐0

𝑎

𝑇′′

𝑐$

𝐵 𝑇′ = 𝐶 + 𝑓%$ℓ%$ + 𝑓3ℓ3 𝐵 𝑇′′ = 𝐶 + 𝑓%$ℓ3 + 𝑓3ℓ%$

𝐵 𝑇′ − 𝐵 𝑇44 = (𝑓3−𝑓%$)(ℓ3 − ℓ%$)
≥ 0 ≥ 0

𝐵 𝑇′ − 𝐵 𝑇44 ≥ 0
𝑇′′ is also optimal! Claim holds!

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in 
some optimal tree



Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least 

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution
• Optimal Substructure argument

54



Proving Optimal Substructure

Goal: show that if 𝑥 is in an optimal solution, then the rest of the 
solution is an optimal solution to the subproblem.
Usually by Contradiction:
• Assume that 𝑥 must be an element of my optimal solution
• Assume that solving the subproblem induced from choice 𝑥, then adding in 𝑥 

is not optimal
• Show that removing 𝑥 from a better overall solution must produce a better 

solution to the subproblem



Huffman Optimal Substructure

Goal: show that if 𝑐", 𝑐# are siblings in an optimal solution, then an 
optimal prefix free code can be found by using a new character with 
frequency 𝑓!! + 𝑓!" and then making 𝑐", 𝑐# its children.
By Contradiction:
• Assume that 𝑐0, 𝑐$ are siblings in at least one optimal solution
• Assume that solving the subproblem with this new character, then adding in 
𝑐0, 𝑐$ is not optimal
• Show that removing 𝑐0, 𝑐$ from a better overall solution must produce a 

better solution to the subproblem



Finishing the Proof

Show Recursive Substructure
• Show treating 𝑐0, 𝑐$ as a new “combined” character gives optimal solution

57

Why does solving this smaller problem:

Give an optimal solution to this?:
𝑐! 𝑐"

𝑐! 𝑐"

𝜎



Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 

58

𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹



Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 

59

𝑇

𝑐0

𝜎

𝑐$

𝑇′
𝜎

If this is optimal Then this is optimal

𝑓( = 𝑓!" + 𝑓!#

𝐵 𝑇) = 𝐵 𝑇 − 𝑓!" − 𝑓!#

ℓ!" = ℓ( + 1
ℓ!# = ℓ( + 1



Substructure

60

𝑇

𝑐0

𝜎

𝑐$

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐0

𝑈

𝑐$

Toward contradiction

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 



Substructure
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𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐0

𝑈

𝑐$

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓!" − 𝑓!#
< 𝐵 𝑇 − 𝑓!" − 𝑓!#
= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is 
optimal!

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 



Optimal Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎 
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𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐0

𝜎
𝑐$

𝑐0

𝑈

𝑐$

>
>Contradiction!


