
CS 3100
Data Structures and Algorithms 2

Lecture 14: Huffman Encoding

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:
• Chapter 16

Decode the line below into English

(hint: use Google or Wolfram Alpha)

2

·· ·-·· ·· -·- · ·- ·-·· --· --- ·-· ·· - ···· -- ···

Warm Up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

3

·· ·-·· ·· -·- · ·- ·-·· --· --- ·-· ·· - ···· -- ···

Warm Up

Announcements

• PS6 coming soon
• PA3 available!
• Grading update

• PS0-2 grades returned, PS3 coming very soon
• Regrade requests:

§ PS0-2 open through Sunday 3/17pm
§ PS3 and onward: 7 days after release

• Office hours (reminder)
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
• TA office hours posted on our website
• Office hours are not for "checking solutions"

4

Reminders about Greedy Algorithms

Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest

6

Prim’s Algorithm Implementation

7

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
pick a starting node 𝑠 and set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑#:
 PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: minimum cost to connect
𝑢 to nodes in PQ

Prim’s Algorithm

8

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

9

7

∞
5

∞

8

Prim’s Algorithm

9

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

9

7

6

11

8

Prim’s Algorithm

10

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

1

3
11

8

Kruskal’s Algorithm

11

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

The Greedy Choice
for Kruskal’s

Kruskal’s Algorithm

12

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

Time complexity: 𝑂 𝛼 𝑛 ,
where 𝛼 is the “inverse Ackermann function” (extremely slow-growing function)

for all “practical” 𝑛, 𝛼 𝑛 < 5 (e.g., for all 𝑛 < 2$!
"##$"

− 3)

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

Union/Find and Disjoint Sets

13

An Abstract Data Type (ADT) for a collection of sets of any kind of item,
where an item can only belong to one of the sets
• We’ll assume each item is identified by a unique integer value

Need to support the following operations
• void makeSet(int n) // construct n independent sets
• int findSet(int i) // given i, which set does i belong to?
• void union(int i, int j) // merge sets containing i and j

Union/Find and Disjoint Sets

14

Represent Sets As Trees
• Represent each set as a tree
• Identify set by its root node’s ID (its “label”)
• findSet() means tracing up to root
• union() makes one root child of the other root

Two sets After a union

Union/Find and Disjoint Sets

15

Needs to support the following operations
• void makeSet(int n) //construct n independent sets

Solution:
• Store as array of size n. Each location stores label for

that set.

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

16

Needs to support the following operations
• int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where
index and contents match
• Start at index i and repeat:
• If a[i] == i then return i
• Else set i = a[i]

 0 1 2 3 4 5 6 7

 0 1 3 3 5 6 1 7

Union/Find and Disjoint Sets

17

Needs to support the following operations
• void union(int i, int j) //merge sets i and j

Solution: find label for each set (call find() method),
then set one label to point to other
• Label1 = find(i); Label2 = find(j)
• a[Label1] = Label2 //OR a[Label2] = Label1

 0 1 2 3 4 5 6 7

 0 1 3 3 5 6 1 7

Time Complexity: Kruskal’s Algorithm

18

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

• Overall running time: 𝑂 𝐸 	log 𝐸 = 𝑂 𝐸 	log 𝑉
𝐸 ≤ 𝑉 $ ⇒ log 𝐸 = 𝑂 log 𝑉

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

More on Implementation for Kruskal’s

19

Let EL be the set of edges sorted ascending by weight
Consider each vertex to be in a tree of size 1
For each edge e in EL

T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1 != T2) // the nodes are not in the same Tree

Add e to the output set of edges T (which becomes the MST)
Combine trees T1 and T2

Seems simple, no?
• But, how do you keep track of what tree a vertex is in?
• Trees are sets of vertices. Need to findset(v) and “union” two sets

Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest

22

Sam Morse

Engineer
and artist

23

Message Encoding

Problem: need to electronically send a message to two
people at a distance.
Channel for message is binary (either on or off)

24

𝑚

How can we do it?

Take the message, send it over character-by-
character with an encoding

25

wiggle, wiggle, wiggle like a gypsy queen
wiggle, wiggle, wiggle all dressed in green a: 2

d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding

How efficient is this?

Each character requires 4 bits
ℓ! = 4

26

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Cost of encoding:

𝐵 𝑇, 𝑓% = Q
%&'('%)*(%

ℓ%𝑓% = 68 ⋅ 4 = 272

Better Solution: Allow for different
characters to have different-size encodings
(high frequency → short code)

a: 2
d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding

More efficient coding

27

𝐵 𝑇, 𝑓% = Q
%&'('%)*(%

ℓ%𝑓%

When this is big

Make this small

Codeword Size

Ch
ar

ac
te

r F
re

qu
en

cy

Morse Code

28
Codeword Size

Ch
ar

ac
te

r F
re

qu
en

cy

Problem with Morse Code

29

Decode:
A A

ET ET
R T
EN T

Ambiguous Decoding

Prefix-Free Code

A prefix-free code is codeword table 𝑇 such that for any
two characters 𝑐", 𝑐#, if 𝑐" ≠ 𝑐# then 𝑐𝑜𝑑𝑒(𝑐") is not a
prefix of 𝑐𝑜𝑑𝑒(𝑐#)

30

g
e
l
i
w
…

0
10
110
1110
11110
…

1111011100011010
w i gg l e

Binary Trees = Prefix-free Codes

I can represent any prefix-free code as a binary tree
I can create a prefix-free code from any binary tree

31

g
e
l
i
w
…

0
10
110
1110
11110
…

g

e

l

i

w

0

0

0

0

0

1

1

1

1

g e l i w

g
e
l
i
w
…

00
01
10
110
111
…

0

0 0
0

1

1
1

1

Goal: Shortest Prefix-Free Encoding

Input: A set of character frequencies {𝑓!}
Output: A prefix-free code 𝑇 which minimizes

𝐵 𝑇, 𝑓! = (
!"#$#!%&$!

ℓ!𝑓!

32

Huffman Coding!!

Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴

are optimal solutions to subproblems
Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest

34

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

35

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

36

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Subproblem of size 𝑛 − 1!

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

37

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

38

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

39

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

40

G:14 E:13 L:9 I:8 W:6 N:3 S:3

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

Huffman Algorithm

Choose the least frequent pair, combine into
a subtree

41

G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

N:3 S:3

6
0 1

Huffman Algorithm
Choose the least frequent pair, combine into
a subtree

42

G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1

Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no

worse by replacing it with the same item from my sandwich”

43

Remember: Interval Scheduling Algorithm

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

44

Remember: Exchange Argument

Claim: earliest ending interval is always part of some optimal solution

Let 𝑂𝑃𝑇$,& be an optimal solution for time range [𝑖, 𝑗]
Let 𝑎∗ be the first interval in [𝑖, 𝑗] to finish overall (greedy choice)
If 𝑎∗ ∈ 𝑂𝑃𝑇$,& then claim holds
Else if 𝑎∗ ∉ 𝑂𝑃𝑇$,&, let 𝑎 be the first interval to end in 𝑂𝑃𝑇$,&
• By definition 𝑎∗ ends before 𝑎, and therefore does not conflict with any other

events in 𝑂𝑃𝑇-,/
• Therefore 𝑂𝑃𝑇-,/ − {𝑎} + {𝑎∗} is also an optimal solution (same number

events)
• Thus claim holds

45

Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
• Optimal Substructure argument

46

Showing Huffman is Optimal

First Step: Show any optimal tree is “full” (each node has either 0 or 2
children)

47

W

R Y

0 1

0

0 1

W

R Y

10

0 1
𝑇 𝑇′

𝑇′ is a “better” tree than 𝑇, because all codes in
red subtree are shorter in 𝑇′, without creating
any longer codes

Huffman Exchange Argument
Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is an optimal
prefix-free code s.t. 𝑐", 𝑐# are siblings
• i.e. codes for 𝑐0, 𝑐$ are the same length and differ only by their last bit

48𝑐0

𝑇!"#

𝑐$

Case 1: Consider some optimal tree 𝑇12). If 𝑐0, 𝑐$ are siblings in this
tree, then claim holds

Huffman Exchange Argument

49

𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

Case 2: Consider some optimal tree 𝑇12), in which 𝑐0, 𝑐$ are not siblings

Let 𝑎, 𝑏 be the two characters of lowest
depth that are siblings
(Why must they exist?)

Idea: show that swapping 𝑐0 with 𝑎 does
not increase cost of the tree.
Similar for 𝑐$ and 𝑏
Assume: 𝑓%0 ≤ 𝑓' and 𝑓%$ ≤ 𝑓3

Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is an optimal
prefix-free code s.t. 𝑐", 𝑐# are siblings
• i.e. codes for 𝑐0, 𝑐$ are the same length and differ only by their last bit

Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()

50

𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in
some optimal tree
𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓'

𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0

Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()

51

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓'

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0

𝐵 𝑇12) − 𝐵 𝑇4 = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' − (𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0)

= 𝑓%0ℓ%0 + 𝑓'ℓ' − 𝑓%0ℓ' − 𝑓'ℓ%0
= 𝑓%0(ℓ%0 − ℓ') + 𝑓'(ℓ' − ℓ%0)
= (𝑓'−𝑓%0)(ℓ' − ℓ%0)

≥ 0 ⇒ 𝑇′ optimal

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in
some optimal tree

Case 2: 𝑐%, 𝑐& are not siblings in 𝑇'()

52

𝑐$

𝑎

𝑐0

𝑇!"#

𝑏

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐0 with 𝑎 does not increase cost of the tree.
Assume: 𝑓%0 ≤ 𝑓'

𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝐵 𝑇12) = 𝐶 + 𝑓%0ℓ%0 + 𝑓'ℓ' 𝐵 𝑇′ = 𝐶 + 𝑓%0ℓ' + 𝑓'ℓ%0

𝐵 𝑇12) − 𝐵 𝑇4 = (𝑓'−𝑓%0)(ℓ' − ℓ%0)
≥ 0 ≥ 0

𝐵 𝑇12) − 𝐵 𝑇4 ≥ 0
𝑇′ is also optimal!

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in
some optimal tree

Case 2:Repeat to swap 𝑐&, 𝑏!

53

𝑐$

𝑐0

𝑎

𝑇′

𝑏

𝑎, 𝑏 =	lowest-depth siblings
Idea: show that swapping 𝑐$ with 𝑏 does not increase cost of the tree.
Assume: 𝑓%$ ≤ 𝑓3

𝑏

𝑐0

𝑎

𝑇′′

𝑐$

𝐵 𝑇′ = 𝐶 + 𝑓%$ℓ%$ + 𝑓3ℓ3 𝐵 𝑇′′ = 𝐶 + 𝑓%$ℓ3 + 𝑓3ℓ%$

𝐵 𝑇′ − 𝐵 𝑇44 = (𝑓3−𝑓%$)(ℓ3 − ℓ%$)
≥ 0 ≥ 0

𝐵 𝑇′ − 𝐵 𝑇44 ≥ 0
𝑇′′ is also optimal! Claim holds!

• Claim: the least-frequent characters (𝑐$, 𝑐%), are siblings in
some optimal tree

Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
• Optimal Substructure argument

54

Proving Optimal Substructure

Goal: show that if 𝑥 is in an optimal solution, then the rest of the
solution is an optimal solution to the subproblem.
Usually by Contradiction:
• Assume that 𝑥 must be an element of my optimal solution
• Assume that solving the subproblem induced from choice 𝑥, then adding in 𝑥

is not optimal
• Show that removing 𝑥 from a better overall solution must produce a better

solution to the subproblem

Huffman Optimal Substructure

Goal: show that if 𝑐", 𝑐# are siblings in an optimal solution, then an
optimal prefix free code can be found by using a new character with
frequency 𝑓!! + 𝑓!" and then making 𝑐", 𝑐# its children.
By Contradiction:
• Assume that 𝑐0, 𝑐$ are siblings in at least one optimal solution
• Assume that solving the subproblem with this new character, then adding in
𝑐0, 𝑐$ is not optimal
• Show that removing 𝑐0, 𝑐$ from a better overall solution must produce a

better solution to the subproblem

Finishing the Proof

Show Recursive Substructure
• Show treating 𝑐0, 𝑐$ as a new “combined” character gives optimal solution

57

Why does solving this smaller problem:

Give an optimal solution to this?:
𝑐! 𝑐"

𝑐! 𝑐"

𝜎

Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

58

𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

59

𝑇

𝑐0

𝜎

𝑐$

𝑇′
𝜎

If this is optimal Then this is optimal

𝑓(= 𝑓!" + 𝑓!#

𝐵 𝑇) = 𝐵 𝑇 − 𝑓!" − 𝑓!#

ℓ!" = ℓ(+ 1
ℓ!# = ℓ(+ 1

Substructure

60

𝑇

𝑐0

𝜎

𝑐$

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐0

𝑈

𝑐$

Toward contradiction

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

Substructure

61

𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐0

𝑈

𝑐$

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓!" − 𝑓!#
< 𝐵 𝑇 − 𝑓!" − 𝑓!#
= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is
optimal!

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

Optimal Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐$, 𝑐% as children to 𝜎

62

𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐0

𝜎
𝑐$

𝑐0

𝑈

𝑐$

>
>Contradiction!

