
CS 3100
Data Structures and Algorithms 2

Lecture 13: Minimum Spanning Tree Algorithms

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:
• Chapter 21

Announcements

• PS5 due tomorrow
• PA3 coming soon!
• Grading update

• PS0-2 grades returned, PS3 coming very soon
• Regrade requests:

§ PS0-2 open through Sunday 3/17pm
§ PS3 and onward: 7 days after release

• Office hours (reminder)
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
• TA office hours posted on our website
• Office hours are not for "checking solutions"

2

Reminders about Greedy Algorithms

Reminder: Some Terminology

Optimization problems: terminology
• A solution must meet certain constraints:

 A solution is feasible
Example: A possible shortest path must meet these criteria:

 All edges must be in the graph and form a simple path.
• Solutions judged on some criteria:
 Objective function
Example: The sum of edge weights in path is minimum
• One (or more) feasible solutions that scores highest (by the objective

function) is called the optimal solution(s)
The greedy approach is often a good choice for optimization problems

• So is dynamic programming (coming later in the course)

4

Reminder: Greedy Strategy: An Overview

Greedy strategy:
• Build solution by stages, adding one item to the partial solution we’ve found

before this stage
• At each stage, make locally optimal choice based on the greedy choice

(sometimes called the greedy rule or the selection function)
• Locally optimal, i.e. best given what info we have now

• Irrevocable: a choice can’t be un-done
• Sequence of locally optimal choices leads to globally optimal solution (hopefully)

• Must prove this for a given problem!

5

Reminder: We’ve Seen Greedy Graph Algorithms

Dijkstra’s Shortest Path is greedy!
Build solution by adding item to partial solution
• Dijkstra’s: add edge to connect kth vertex, where the edges for the k-1 already

selected show the shortest paths to those k-1 vertices

Greedy choice
• Dijkstra’s: for all vertices connected to one of the k-1 vertices already

processed, choose w where dist(s,w) is the minimum

We did have to prove that this sequence of locally optimal choices
leads to globally optimal solution

6

Summary of the Greedy Approach

Problem must have Optimal Substructure
• Optimal solution to a problem contains optimal solutions to subproblems

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

Greedy approach only considers one subproblem at each stage

7

Change Making Choice Property

Our algorithm’s Greedy choice:
Choose largest coin less than or equal to target value
Leads to optimal solution?
• For standard U.S. coins: Yes, coin chosen must be part of some optimal

solution. We can prove it!
• For “unusual” sets of coins? We saw a counter-example.
• For U.S. postage stamps? Hmm…

8

Interval Scheduling Algorithm

9

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Interval Scheduling Run Time
Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

10

Sort intervals by finish time

StartTime = 0
for each interval (in order of finish time):
 if begin of interval > StartTime:
 add interval to solution
 StartTime = end of interval

Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with your greedy

choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:

• Show: “I can remove any item from your sandwich, and it would be no worse by
replacing it with the same item from my sandwich”

11

Exchange Argument for Earliest End Time

Claim: earliest ending interval is always part of some optimal solution

Let 𝑂𝑃𝑇!,# be an optimal solution for time range [𝑖, 𝑗]
Let 𝑎∗ be the first interval in [𝑖, 𝑗] to finish overall
If 𝑎∗ ∈ 𝑂𝑃𝑇!,# then claim holds
Else if 𝑎∗ ∉ 𝑂𝑃𝑇!,#, let 𝑎 be the first interval to end in 𝑂𝑃𝑇!,#
• By definition 𝑎∗ ends before 𝑎, and therefore does not conflict with any other

events in 𝑂𝑃𝑇",$
• Therefore 𝑂𝑃𝑇",$ − {𝑎} + {𝑎∗} is also an optimal solution
• Thus claim holds

12

Minimum Spanning Trees

Readings: CLRS 21
(but not 21.1)

13

Spanning Tree

14

A tree 𝑇 = (𝑉% , 𝐸%) is a spanning tree for an undirected
graph 𝐺 = (𝑉, 𝐸) if 𝑉% = 𝑉, 𝐸% ⊆ 𝐸

(namely, 𝑇 connects or “spans” all the nodes in 𝐺)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

• All connected graphs have
spanning tree(s)

• All spanning trees have the same
number of nodes (all of them)

• You can construct a spanning tree
by arbitrarily remove edges from
cycles

How many edges
does 𝑇 have?

Spanning Tree: Example

15

Original Graph:

Possible spanning trees:

Minimum Spanning Tree

16

Just constructing any spanning tree is simple

Suppose edges have weights
• Cost of building tracks between two stations
• Distance between two intersections/stops
• Length of wire between boxes in a house
• Cost to connect two nodes in a network

Each spanning tree has a different total cost (sum of edge weights included
in tree)

The Minimum Spanning Tree is the spanning tree with lowest overall cost

Minimum Spanning Tree

17

A tree 𝑇 = (𝑉% , 𝐸%) is a minimum spanning tree for an
undirected graph 𝐺 = (𝑉, 𝐸) if 𝑇 is a spanning tree of

minimal cost

Cost 𝑇 = 7
'∈)!

𝑤(𝑒)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

How many edges
does 𝑇 have?

MST Algorithms

We’ll see two greedy algorithms to find a graph’s MST
• Prim’s algorithm

• Very similar to Dijkstra’s SP algorithm
• Builds a single tree, adding one edge to grow the tree

• Kruskal’s algorithm
• In a forest of trees, add an edge at each step to grow

one tree or to connect two trees (don’t make a cycle)
• Utilizes an interesting data structure for manipulating

sets

Prim’s Algorithm
CLRS in 21.2

1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• At each step, add the node “nearest” to the source into tree 𝑻

Reminder: Dijkstra’s SP Algorithm

21

10

2

6 11

9
5

8

3

7

3

1

8

12

9
10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Initially: At some point later:

TT

Greedy Choice
Property!

1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• At each step, add the node with minimum connecting edge to a node in 𝑇

Prim’s MST Algorithm

22

10

2

6 11

9
5

8

3

7

3

1

8

12

9
10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

9

7

8

∞
5

∞

8

Initially: At some point later:

TT

The Greedy Choice! Same
strategy, but different

greedy choice to solve a
different problem

Prim’s Algorithm

23

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

24

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

25

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

26

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

27

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

28

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

29

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

30

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

31

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

32

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

34

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
• Maintain nodes not in	𝑇 in a min-heap (priority queue)
• Find the next closest node 𝑣 by extracting min from priority queue
• Each time node 𝑣 is added to the tree, update keys for neighbors still in min-heap
• Repeat until no nodes left in min-heap

Prim’s Algorithm Implementation

35

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑. = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑. as the key
pick a starting node 𝑠 and set 𝑑/ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑0:
 PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: minimum cost to connect
𝑢 to nodes in PQ

Prim’s Algorithm

36

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

9

7

∞
5

∞

8

Prim’s Algorithm

37

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

9

7

6

11

8

Prim’s Algorithm

38

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

1

3
11

8

Reminder: Dijkstra’s Algorithm Implementation

39

1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the “nearest” node not yet in 𝑇 to 𝑇

Implementation:
initialize 𝑑. = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑. as the key
set 𝑑/ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑑. +𝑤 𝑣, 𝑢 < 𝑑0:
 PQ. decreaseKey 𝑢, 𝑑. +𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: length of shortest path
𝑠 → 𝑢 using nodes in PQ

Prim’s Algorithm Implementation

40

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑. = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑. as the key
pick a starting node 𝑠 and set 𝑑/ = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑0:
 PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

each node also maintains a
parent, initially NULL

key: minimum cost to connect
𝑢 to nodes in PQ

Implementation (with nodes in the priority queue):
initialize 𝑑! = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑! as the key
pick a starting node 𝑠 and set 𝑑" = 0
while PQ is not empty:
 𝑣 = PQ. extractMin()
 for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:
 if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑#:
 PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
 𝑢. parent = 𝑣

Prim’s Algorithm Running Time

41

𝑂 𝑉
Initialization:

𝑉 iterations
𝑂 log 𝑉
𝐸 iterations total

𝑂 log 𝑉

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉

Same as for Dijkstra’s Shortest Path algorithm!

Using indirect
heaps

Kruskal’s MST Algorithm

Readings: CLRS first part of 21.2

42

Kruskal’s Algorithm

43

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

The Greedy Choice
for Kruskal’s

Kruskal’s Algorithm

44

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

45

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

46

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

47

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

48

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

49

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

50

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

51

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

52

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

53

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

54

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so do not include

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Kruskal’s Algorithm

55

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty set of edges 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle. (Stop when we’ve added 𝑛 − 1 edges.)

Now 𝑛 − 1 edges have
been added.
All nodes are connected.
Algorithm is done!

Kruskal’s Algorithm

57

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

Time complexity: 𝑂 𝛼 𝑛 ,
where 𝛼 is the “inverse Ackermann function” (extremely slow-growing function)

for all “practical” 𝑛, 𝛼 𝑛 < 5 (e.g., for all 𝑛 < 21!
"##$"

− 3)

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

Time Complexity: Kruskal’s Algorithm

58

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

• Overall running time: 𝑂 𝐸 	log 𝐸 = 𝑂 𝐸 	log 𝑉
𝐸 ≤ 𝑉 1 ⇒ log 𝐸 = 𝑂 log 𝑉

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

More on Implementation for Kruskal’s

59

Let EL be the set of edges sorted ascending by weight
Consider each vertex to be in a tree of size 1
For each edge e in EL

T1 = tree ID for vertex head(e)
T2 = tree ID for vertex tail(e)
if (T1 != T2) // the nodes are not in the same Tree

Add e to the output set of edges T (which becomes the MST)
Combine trees T1 and T2

Seems simple, no?
• But, how do you keep track of what tree a vertex is in?
• Trees are sets of vertices. Need to findset(v) and “union” two sets

Union/Find and Disjoint Sets

60

An Abstract Data Type (ADT) for a collection of sets of any kind of item,
where an item can only belong to one of the sets
• We’ll assume each item is identified by a unique integer value

Need to support the following operations
• void makeSet(int n) // construct n independent sets
• int findSet(int i) // given i, which set does i belong to?
• void union(int i, int j) // merge sets containing i and j

Represent Sets As Trees

61

In our implementation, we’ll represent each set as a tree
Identify set by its root node’s ID (its “label”)
• findSet() means tracing up to root
• union() makes one root child of the other root

Two sets After a union

Union/Find and Disjoint Sets

62

Needs to support the following operations
• void makeSet(int n) //construct n independent sets

Solution:
• Store as array of size n. Each location stores label for

that set.

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

63

Needs to support the following operations
• int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where
index and contents match
• Start at index i and repeat:
• If a[i] == i then return i
• Else set i = a[i]

 0 1 2 3 4 5 6 7

 0 1 3 3 5 6 1 7

Union/Find and Disjoint Sets

64

Needs to support the following operations
• void union(int i, int j) //merge sets i and j

Solution: find label for each set (call find() method),
then set one label to point to other
• Label1 = find(i); Label2 = find(j)
• a[Label1] = Label2 //OR a[Label2] = Label1

 0 1 2 3 4 5 6 7

 0 1 3 3 5 6 1 7

Practice

66

MST

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8

1

Can you do Prim’s MST on This?

67

MST

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8

1

v1
{v1, v4}
{v1, v2}
{v4, v3}
{v4, v7}
{v7, v6}
{v7, v5}

v1

v4

v2

v3

v7v6

v5

Can you do Kruskal’s MST on This?

v4

v7

v2

v3 v5

v6

v1

2

2

5

4

7

1 10

4 6

3

8

1

MST and Kruskal’s Example

v4

v7

v2

v3 v5

v6

v1

2

2

5

4

7

1 10

4 6

3

8

1

v1

v4

v2

v3

v7
v6

v5

Cost(MST) = 16

Disjoint Sets and Find/Union
Algorithms
Readings: CLRS 19.3

70

Union/Find and Disjoint Sets

71

An Abstract Data Type (ADT) for a collection of sets of any kind of item,
where an item can only belong to one of the sets
• We’ll assume each item is identified by a unique integer value

Need to support the following operations
• void makeSet(int n) // construct n independent sets
• int findSet(int i) // given i, which set does i belong to?
• void union(int i, int j) // merge sets containing i and j

Represent Sets As Trees

72

In our implementation, we’ll represent each set as a tree
Identify set by its root node’s ID (its “label”)
• findSet() means tracing up to root
• union() makes one root child of the other root

Two sets After a union

Union/Find and Disjoint Sets

73

Needs to support the following operations
• void makeSet(int n) //construct n independent sets

Solution:
• Store as array of size n. Each location stores label for

that set.

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

74

Needs to support the following operations
• int findSet(int i) //given i, which set does i belong to?

Solution: Trace around array until we find place where
index and contents match
• Start at index i and repeat:
• If a[i] == i then return i
• Else set i = a[i]

 0 1 2 3 4 5 6 7

 0 1 3 3 5 6 1 7

Union/Find and Disjoint Sets

75

Needs to support the following operations
• void union(int i, int j) //merge sets i and j

Solution: find label for each set (call find() method),
then set one label to point to other
• Label1 = find(i); Label2 = find(j)
• a[Label1] = Label2 //OR a[Label2] = Label1

 0 1 2 3 4 5 6 7

 0 1 3 3 5 6 1 7

Union/Find and Disjoint Sets

76

Example:
• union(4,5)
• union(6,7)
• union(1,2)
• union(5,6)
• find(1); find(4); find(6)

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Example Using MST Example

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8
1

v1

v4

v2

v3

v7v6

v5

78

Union/Find and Disjoint Sets

79

Time-complexity, where n is size of array?

makeSet()
• Linear: just create array and fill it with values

find()
• Linear if have to trace a long way to get to label
• Constant if lucky and input is the label (root note) or near it

union()
• Constant to change the label BUT…
• Could be linear to find the two labels first.

Optimization 1: Union by rank

80

Two Sets: Union’d under 0: Union’d under 3:

Optimization 1: Union by rank

81

Easy to implement!!
What’s “rank” here?

• Upper bound on height of a node in our
set’s tree

Union by rank:
• Make the root with smaller rank point to

the root with larger rank

Optimization 2: Path Compression

82

Nothing special about tree’s structure,
as long as we can trace back to root
Idea: as we do a find,
each node we visit gets
updated to point
directly to root
Later finds will be faster

Optimization 2: Path Compression

83

Also easy to implement
• CLRS code uses recursion à
• Or would loop and keep a list

def find_set(x):
 path = []
 while x != x.p:
 path.append(x)
 x = x.p
 for n in path:
 n.p = x.p
 return x.p

Complexity for Kruskal’s

84

Union-by-rank and path compression yields m operations in Θ 𝑚 ∗ 𝛼 𝑛
• where 𝛼 𝑛 a VERY slowly growing function. (See textbook for details)
• m is the number of times you run the operation. So constant time, for each

operation

So overall Kruskal’s with path compression:
 Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 1 = Θ(𝐸 ∗ log 𝑉) //now the heap is slowest part

Originally:
 Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 𝑉 = Θ 𝐸 ∗ 𝑉 = 𝑶 𝑽𝟑 //Assumed find and union linear time

Summary

85

What did we learn?

86

Minimum Spanning Trees
Prim’s Algorithm
• Very similar to Dijkstra’s SP algorithm
• Different greedy choice to add next edge to tree

Kruskal’s Algorithm
Find-union
• How to implement
• How to optimize
• How it affects runtime of Kruskal’s algorithm.

