CS 3100 Data Structures and Algorithms 2 Lecture 11: D&C: Median of Medians

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS 4th edition:

• Section 4.5

Announcements

- PA2 due next Friday, March 1, 2024
- Quizzes 1-2 coming February 29, 2024
 - Both quizzes taken the same day
 - Information on our class website
 - If you have SDAC, please schedule for 1 exam (not a quiz)
- Office hours
 - Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
 - Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
 - TA office hours posted on our website
 - Office hours are not for "checking solutions"

Divide and Conquer

[CLRS Chapter 4]

Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

• Merge solutions to subproblems to obtain solution for original problem

Quicksort

Like Mergesort:

- Divide and conquer algorithm
- $O(n \log n)$ run time (on expectation)

Unlike Mergesort:

- **Divide** step is the hard part
- Typically faster than Mergesort (often is the basis of sorting algorithms in standard library implementations)

Quicksort

General idea: choose a pivot element, recursively sort two sublists around that element

Divide: select pivot element p, Partition(p)
Conquer: recursively sort left and right sublists
Combine: nothing!

Partition Procedure (Divide Step)

Input: an <u>unordered</u> list, a pivot p

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all $\geq p$ on right

5	7	3	1	2	4	6	8	12	10	9	11
---	---	---	---	---	---	---	---	----	----	---	----

Partition Procedure Summary

- 1. Choose the pivot p to be the first element of the list
- 2. Initialize two pointers Begin (just after p), and End (at end of list)
- 3. While Begin < End:
 - If value of Begin < p, advance Begin to the right
 - Otherwise, swap value of Begin value with value of End value, and advance End to the left
- 4. If pointers meet at element with pointer position
- 5. Otherwise, if pointers meet at element > p: swap p with value to the left

Run time? $\Theta(n)$

Conquer Step

Recursively sort Left and Right sublists

Quicksort Run Time (Optimistic)

If the pivot is the median:

2	1	3	5	6	4	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Then we divide in half each time

 $T(n) = 2T(n/2) + n = \Theta(n \log n)$

Quicksort Run Time (Worst-Case)

If the pivot is the <u>extreme</u> (min/max):

Then we shorten by 1 each time

$$T(n) = T(n - 1) + n$$

= $n + (n - 1) + \dots + 2 + 1$
= $\frac{n(n + 1)}{2} = \Theta(n^2)$

10

Good Pivot

What makes a good pivot?

- Roughly even split between left and right
- Ideally: median
- Can we find median in linear time?
 - Yes! <u>Quickselect algorithm</u>

Quickselect Algorithm

Algorithm to compute the *i*th order statistic

- *i*th smallest element in the list
- 1st order statistic: minimum
- n^{th} order statistic: maximum
- $(n/2)^{\text{th}}$ order statistic: median

Quickselect Algorithm

Finds *i*th order statistic

General idea: choose a pivot element, partition around the pivot, and recurse on sublist containing index *i*

Divide: select pivot element *p*, Partition(*p*)

Conquer:

- if i = index of p, then we are done and return p
- if i < index of p recurse left. Otherwise, recurse right

Combine: Nothing!

Partition Procedure (Divide Step)

Input: an <u>unordered</u> list, a pivot p

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all $\geq p$ on right

5	7	3	1	2	4	6	8	12	10	9	11
---	---	---	---	---	---	---	---	----	----	---	----

Conquer Step

Recurse on sublist that contains index *i* (add index of the pivot to *i* if recursing right)

Quickselect Run Time

If the pivot is always the median:

2	5	1	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we divide in half each time

$$S(n) = S\left(\frac{n}{2}\right) + n$$
$$S(n) = O(n)$$

Quickselect Run Time

If the partition is always unbalanced:

1	5	2	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we shorten by 1 each time

S(n) = S(n-1) + n

 $S(n) = O(n^2)$

How to Choose the Pivot?

Good choice: $\Theta(n)$

Bad choice: $\Theta(n^2)$

Good Pivot

What makes a good pivot?

- Roughly even split between left and right
- Ideally: median

But this is the problem that Quickselect is supposed to solve!

What's next: an algorithm for choosing a "decent" pivot (median of medians)

Good Pivot for Quickselect

What makes a good Pivot for Quickselect?

- Roughly even split between left and right
- Ideally: median

Here's what's next:

- First, median of medians algorithm
 - Finds something close to the median in $\Theta(n)$ time
- Second, we can prove that when its result used with Quickselect's partition, then Quickselect is guaranteed $\Theta(n)$
 - Because we now have a $\Theta(n)$ way to find the median, this guarantees Quicksort will be $\Theta(n \lg n)$
- Notes:
 - We have to do all this for every call to Partition in Quicksort
 - We could just use the value returned by median of medians for Quicksort's Partition

Good Pivot

Decent pivot: both sides of Pivot >30%

Median of Medians

Fast way to select a "good" pivot

Guarantees pivot is greater than \approx 30% of elements and less than \approx 30% of the elements

• I.e. it's in the middle 40% (±20% of the true median)

Main idea: break list into blocks, find the median of each blocks, use the median of those medians

Median of Medians

 Find the median of each chunk (using insertion sort: n=5, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this algorithm, called recursively, on list of medians)

Why is this good?

Why is this good?

Back to: Quickselect

Divide: select an element *p* using Median of Medians, Partition(*p*)

Quickselect

Divide: select an element *p* using Median of Medians, Partition(*p*)

 $M(n) + \Theta(n)$

Conquer: if i = index of p, done, if i < index of p recurse left. Else recurse right (with index i - p) $\leq S\left(\frac{7n}{10}\right)$

Combine: Nothing!

$$S(n) \leq S\left(\frac{7n}{10}\right) + M(n) + \Theta(n)$$

Median of Medians

$$M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$

Quickselect

$$S(n) \leq S\left(\frac{7n}{10}\right) + M(n) + \Theta(n) \qquad M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$
$$= S\left(\frac{7n}{10}\right) + S\left(\frac{n}{5}\right) + \Theta(n)$$
$$= S\left(\frac{7n}{10}\right) + S\left(\frac{2n}{10}\right) + \Theta(n)$$
$$\leq S\left(\frac{9n}{10}\right) + \Theta(n) \qquad \text{Because } S(n) = \Omega(n) \qquad \text{CLRS gives a more rigorous proof!}$$
See p. 203 for more details

Master theorem Case 3!

S(n) = O(n)

Phew! Back to Quicksort

Divide: Select a pivot element, and <u>partition</u> about the pivot

Using Quickselect, always pivot about the median

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

Divide: Select a pivot element, and <u>partition</u> about the pivot

Using Quickselect, always pivot about the median

2	1	3	5	6	4	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

 $T(n) = 2T(n/2) + \Theta(n)$

 $T(n) = \Theta(n \log n)$

A Worthwhile Choice?

Using Quickselect to pick median guarantees $\Theta(n \log n)$ worst-case run-time

Approach has very large constants

• If you really want $\Theta(n \log n)$, better off using MergeSort

More efficient approach: Random pivot

- Very small constant (very fast algorithm)
- Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

If the pivot is always $(n/10)^{\text{th}}$ order statistic:

$T(n) = T(n/10) + T(9n/10) + \Theta(n)$

If the pivot is always $(n/10)^{\text{th}}$ order statistic:

$$T(n) = T(n/10) + T(9n/10) + \Theta(n)$$
$$= \Theta(n \log n)$$

This is true if the pivot is any $(n/k)^{\text{th}}$ order statistic for any constant k > 1 (as long as the size of the smaller list is a <u>constant fraction</u> of the full list, we get $\Theta(n \log n)$ running time)

If the pivot is always d^{th} order statistic:

1	5	2	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we shorten by d each time

$$T(n) = T(n - d) + n$$
$$= \Theta(n^2)$$

What's the probability of this occurring (for a <u>random</u> pivot)?

Probability of Always Choosing *d*th **Order Statistic**

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: $\frac{d}{n}$

Probability second pivot is among d smallest: $\frac{d}{n-d}$

Probability all pivots are among d smallest:

$$\frac{d}{n} \times \frac{d}{n-d} \times \frac{d}{n-2d} \times \dots \times \frac{d}{2d} \times 1 = \left(\frac{n}{d} \times \left(\frac{n}{d} - 1\right) \times \dots \times 1\right)^{-1} = \frac{1}{\left(\frac{n}{d}\right)}$$

Very small probability!

Maximum Sum Continuous Subarray

The maximum-sum subarray of a given array of integers A is the interval [a, b] such that the sum of all values in the array between a and b inclusive is maximal.

Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Return the Max of Left, Right, Center

Divide and Conquer Summary

Divide

• Break the list in half

Conquer

• Find the best subarrays on the left and right

Combine

- Find the best subarray that "spans the divide"
- I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Generic Divide and Conquer Solution

```
def myDCalgo(problem):
      if baseCase(problem):
            solution = solve(problem) #brute force if necessary
            return solution
      subproblems = Divide(problem)
      for sub in subproblems:
            subsolutions.append(myDCalgo(sub))
      solution = Combine(subsolutions)
      return solution
```

MSCS Divide and Conquer $\Theta(n \log n)$

def MSCS(list):

```
if list.length < 2:
       return list[0] #list of size 1 the sum is maximal
{listL, listR} = Divide (list)
for list in {listL, listR}:
       subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution
```

Types of "Divide and Conquer"

Divide and Conquer

- Break the problem up into several subproblems of roughly equal size, recursively solve
- E.g. Karatsuba, Closest Pair of Points, Mergesort...

Decrease and Conquer

- Break the problem into a single smaller subproblem, recursively solve
- E.g. Quickselect, Binary Search

Pattern So Far

Typically looking to divide the problem by some fraction $(\frac{1}{2}, \frac{1}{4}$ the size)

Not necessarily always the best!

• Sometimes, we can write faster algorithms by finding unbalanced divides.

Chip and Conquer

Divide

• Make a subproblem of all but the last element

Conquer

- Find best subarray on the left (BSL(n-1))
- Find the best subarray ending at the divide (BED(n-1))

Combine

- New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New best on the left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Chip and Conquer

Divide

• Make a subproblem of all but the last element

Conquer

- Find best subarray on the left (BSL(n-1))
- Find the best subarray ending at the divide (BED(n-1))

Combine

- New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New best on the left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Was unbalanced better? YES

Old:

- We divided in Half
- We solved 2 different problems:
 - Find the best overall on BOTH the left/right
 - Find the best which end/start on BOTH the left/right respectively
- Linear time combine

New:

- We divide by 1, n-1
- We solve 2 different problems:
 - Find the best overall on the left ONLY
 - Find the best which ends on the left ONLY
- Constant time combine

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

 $T(n) = \Theta(n \log n)$

$$T(n) = \mathbf{1}T(n-1) + \mathbf{1}$$

 $T(n) = \Theta(n)$

MSCS Problem - Redux

Solve in O(n) by increasing the problem size by 1 each time. Idea: Only include negative values if the positives on both sides of it are "worth it"

Remember two values:

Best ending here 19

Remember two values:

Best ending here 14

Remember two values:

Best ending here 25