
CS 3100
Data Structures and Algorithms 2

Lecture 11: D&C: Median of Medians

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4th edition:

• Section 4.5

Announcements

• PA2 due next Friday, March 1, 2024

• Quizzes 1-2 coming February 29, 2024
• Both quizzes taken the same day

• Information on our class website

• If you have SDAC, please schedule for 1 exam (not a quiz)

• Office hours
• Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p

• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p

• TA office hours posted on our website

• Office hours are not for "checking solutions"

2

Divide and Conquer

Divide:
• Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively

• If the subproblems are “small”:
• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain

solution for original problem

[CLRS Chapter 4]

Quicksort

Like Mergesort:
• Divide and conquer algorithm

• 𝑂(𝑛 log 𝑛) run time (on expectation)

Unlike Mergesort:
• Divide step is the hard part

• Typically faster than Mergesort (often is the basis of sorting algorithms in
standard library implementations)

4

Quicksort

General idea: choose a pivot element, recursively sort two sublists
around that element

Divide: select pivot element 𝑝, Partition(𝑝)

Conquer: recursively sort left and right sublists

Combine: nothing!

5

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

6

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Partition Procedure Summary

1. Choose the pivot 𝑝 to be the first element of the list

2. Initialize two pointers Begin (just after 𝑝), and End (at end of list)

3. While Begin < End:
• If value of Begin < 𝑝, advance Begin to the right

• Otherwise, swap value of Begin value with value of End value, and advance
End to the left

4. If pointers meet at element < 𝑝: swap 𝑝 with pointer position

5. Otherwise, if pointers meet at element > 𝑝: swap 𝑝 with value to
the left

7

Run time? Θ(𝑛)

Conquer Step

8

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Recursively sort Left and Right sublists

Quicksort Run Time (Optimistic)

Then we divide in half each time

9

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

If the pivot is the median:

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + 𝑛 = Θ(𝑛 log 𝑛)

Quicksort Run Time (Worst-Case)

Then we shorten by 1 each time

10

If the pivot is the extreme (min/max):

𝑇 𝑛 = 𝑇(𝑛 − 1) + 𝑛

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

= 𝑛 + 𝑛 − 1 + ⋯ + 2 + 1

=
𝑛 𝑛 + 1

2
= Θ 𝑛2

Good Pivot

What makes a good pivot?
•Roughly even split between left and right
• Ideally: median

Can we find median in linear time?
• Yes! Quickselect algorithm

11

Quickselect Algorithm

Algorithm to compute the 𝑖th order statistic
• 𝑖th smallest element in the list
•1st order statistic: minimum
•𝑛th order statistic: maximum
• Τ(𝑛 2)th order statistic: median

12

Quickselect Algorithm

Finds 𝑖th order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index 𝑖

Divide: select pivot element 𝑝, Partition(𝑝)

Conquer:
• if 𝑖 = index of 𝑝, then we are done and return 𝑝

• if 𝑖 < index of 𝑝 recurse left. Otherwise, recurse right

Combine: Nothing!

13

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

14

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Conquer Step

15

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Correct position of 𝑝

Recurse on sublist that contains index 𝑖

(add index of the pivot to 𝑖 if recursing right)

Quickselect Run Time

Then we divide in half each time

16

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑆 𝑛 = 𝑆
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑆 𝑛 = 𝑂(𝑛)

Quickselect Run Time

Then we shorten by 1 each time

17

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑆 𝑛 = 𝑆 𝑛 − 1 + 𝑛

If the partition is always unbalanced:

𝑆 𝑛 = 𝑂(𝑛2)

How to Choose the Pivot?

18

Good choice: Θ 𝑛

Bad choice: Θ 𝑛2

Good Pivot

What makes a good pivot?
• Roughly even split between left and right

• Ideally: median

19

But this is the problem that
Quickselect is supposed to solve!

What’s next: an algorithm for choosing a “decent” pivot (median of medians)

Good Pivot for Quickselect

What makes a good Pivot for Quickselect?
• Roughly even split between left and right
• Ideally: median

Here’s what’s next:
• First, median of medians algorithm

• Finds something close to the median in Θ(𝑛) time

• Second, we can prove that when its result used with Quickselect’s partition, then
Quickselect is guaranteed Θ(𝑛)
• Because we now have a Θ(𝑛) way to find the median, this guarantees Quicksort will be Θ(𝑛 lg 𝑛)

• Notes:
• We have to do all this for every call to Partition in Quicksort
• We could just use the value returned by median of medians for Quicksort’s Partition

20

Good Pivot

Decent pivot: both sides of Pivot >30%

21

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

Fast way to select a “good” pivot

Guarantees pivot is greater than ≈30% of elements and less
than ≈30% of the elements

• I.e. it’s in the middle 40% (±20% of the true median)

Main idea: break list into blocks, find the median of each
blocks, use the median of those medians

22

Median of Medians

1. Break list into chunks of size 5

23

2. Find the median of each chunk
 (using insertion sort: n=5, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this
 algorithm, called recursively, on list of medians)

List could be long, many
more than 5 chunks!

List could be long, many
more than 5 medians!

Why is this good?

Each chunk sorted, chunks ordered by their medians

24

<
<

<
<

<
<

<
<

<
<

<
<

< <
<

<
<

<
<

<
<

< <

MedianofMedians
is Greater than all

of these

𝑛

5

5

List could be long, so not
a small number!

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Why is this good?

25

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

Τ𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Number of lists to the “left”
Exclude list on the endpoint,

and “middle” list

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Why is this good?

26

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

3
1

2
⋅

𝑛

5
− 2 ≥

3𝑛

10
− 6 elements

Τ𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Elements greater than
MedianofMedians:

Back to: Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

27

𝑀 𝑛 + Θ(𝑛)

median of medians algorithm

partition algorithm

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left. Else
recurse right (with index 𝑖 − 𝑝)

Combine: Nothing!

28

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑀 𝑛 + Θ(𝑛)

𝑀 𝑛 + Θ(𝑛)

Median of Medians

1. Break list into blocks of size 5

29

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(𝑛)

Θ(𝑛)

𝑆
𝑛

5

𝑀 𝑛 = 𝑆
𝑛

5
+ Θ(𝑛)

Quickselect

30

𝑀 𝑛 = 𝑆
𝑛

5
+ Θ(𝑛)𝑆 𝑛 ≤ 𝑆

7𝑛

10
+ 𝑀 𝑛 + Θ(𝑛)

= 𝑆
7𝑛

10
+ 𝑆

𝑛

5
+ Θ(𝑛)

𝑆 𝑛 = O(𝑛)

= 𝑆
7𝑛

10
+ 𝑆

2𝑛

10
+ Θ(𝑛)

≤ 𝑆
9𝑛

10
+ Θ(𝑛)

Master theorem Case 3!

Because 𝑆 𝑛 = Ω(𝑛)

𝑆 𝑛 = Θ(𝑛)

CLRS gives a more rigorous proof!
See p. 203 for more details

Phew! Back to Quicksort

31

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

32

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + Θ(𝑛)

𝑇 𝑛 = Θ(𝑛 log 𝑛)

A Worthwhile Choice?

Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) worst-case run-time

Approach has very large constants
• If you really want Θ(𝑛 log 𝑛), better off using MergeSort

More efficient approach: Random pivot
• Very small constant (very fast algorithm)

• Expected to run in Θ(𝑛 log 𝑛) time

• Why? Unbalanced partitions are very unlikely

33

Quicksort Running Time

34

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)

If the pivot is always (Τ𝑛 10)th order statistic:

Quicksort Running Time

35

𝑛

𝑇(𝑛) = 𝑇 Τ𝑛 10 + 𝑇 Τ9𝑛 10 + Θ(𝑛)

Τ𝑛 10 Τ9𝑛 10

Τ𝑛 100 Τ9𝑛 100 Τ9𝑛 100 Τ81𝑛 100

… … … …

1
1

1
1

1

1
1

1

Θ 𝑛

Θ(log 𝑛)

Θ 𝑛

Θ 𝑛

Quicksort Running Time

36

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)

= Θ 𝑛 log 𝑛

If the pivot is always (Τ𝑛 10)th order statistic:

This is true if the pivot is any Τ𝑛 𝑘 th order statistic for any
constant 𝑘 > 1 (as long as the size of the smaller list is a

constant fraction of the full list, we get Θ 𝑛 log 𝑛 running time)

Quicksort Running Time

Then we shorten by 𝑑 each time

37

1 5 2 3 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

= Θ(𝑛2)

What’s the probability of this occurring (for a random pivot)?

Probability of Always Choosing 𝒅𝐭𝐡 Order Statistic

We must consistently select pivot from within the first 𝑑 terms

38

Probability first pivot is among 𝑑 smallest:
𝑑

𝑛

Probability second pivot is among 𝑑 smallest:
𝑑

𝑛−𝑑

Probability all pivots are among 𝑑 smallest:

𝑑

𝑛
×

𝑑

𝑛 − 𝑑
×

𝑑

𝑛 − 2𝑑
× ⋯ ×

𝑑

2𝑑
× 1 =

𝑛

𝑑
×

𝑛

𝑑
− 1 × ⋯ × 1

−1

=
1
𝑛
𝑑

!

Very small probability!

Maximum Sum Continuous Subarray

The maximum-sum subarray of a given array of integers 𝐴 is the
interval [𝑎, 𝑏] such that the sum of all values in the array between 𝑎
and 𝑏 inclusive is maximal.

Given an array of 𝑛 integers (may include both positive and negative
values), give a 𝑂(𝑛 log 𝑛) algorithm for finding the maximum-sum
subarray.

52

Divide and Conquer Θ(𝑛 log 𝑛)

53

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively

Solve on Left

Recursively
Solve on Right

Divide and Conquer Θ(𝑛 log 𝑛)

54

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively

Solve on Left
19

Recursively
Solve on Right

25Find Largest
sum that spans

the cut

2-13-6-3-716 -20-42-37135-128

Largest sum
that ends here

+ Largest sum
that starts here

Divide and Conquer Θ(𝑛 log 𝑛)

55

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively

Solve on Left
19

Recursively
Solve on Right

25Find Largest
sum that spans

the cut
19

2-13-6-3-716 -20-42-37135-128

Return the Max of
Left, Right, Center

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

Divide and Conquer Summary

Divide
• Break the list in half

Conquer
• Find the best subarrays on the left and right

Combine
• Find the best subarray that “spans the divide”

• I.e. the best subarray that ends at the divide concatenated with the best that
starts at the divide

Generic Divide and Conquer Solution

def myDCalgo(problem):

 if baseCase(problem):

 solution = solve(problem) #brute force if necessary

 return solution

 subproblems = Divide(problem)

 for sub in subproblems:

 subsolutions.append(myDCalgo(sub))

 solution = Combine(subsolutions)

 return solution

57

MSCS Divide and Conquer Θ(𝑛 log 𝑛)

def MSCS(list):

 if list.length < 2:

 return list[0] #list of size 1 the sum is maximal

 {listL, listR} = Divide (list)

 for list in {listL, listR}:

 subSolutions.append(MSCS(list))

 solution = max(solnL, solnR, span(listL, listR))

 return solution

58

Types of “Divide and Conquer”

Divide and Conquer
• Break the problem up into several subproblems of roughly equal size,

recursively solve

• E.g. Karatsuba, Closest Pair of Points, Mergesort…

Decrease and Conquer
• Break the problem into a single smaller subproblem, recursively solve

• E.g. Quickselect, Binary Search

Pattern So Far

Typically looking to divide the problem by some fraction
(½, ¼ the size)

Not necessarily always the best!
• Sometimes, we can write faster algorithms by finding unbalanced divides.

Chip and Conquer

Divide
• Make a subproblem of all but the last element

Conquer
• Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
• Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

Combine
• New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
• New best on the left:

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

25 Find Largest
sum ending at

the cut
22

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

25 Find Largest
sum ending at

the cut
0

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

25 Find Largest
sum ending at

the cut
0

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

25 Find Largest
sum ending at

the cut
25

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

19 Find Largest
sum ending at

the cut
17

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

19 Find Largest
sum ending at

the cut
0

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively
Solve on Left

13 Find Largest
sum ending at

the cut
12

Chip and Conquer

Divide
• Make a subproblem of all but the last element

Conquer
• Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
• Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

Combine
• New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
• New best on the left:

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

Was unbalanced better?

Old:
• We divided in Half
• We solved 2 different problems:

• Find the best overall on BOTH the left/right
• Find the best which end/start on BOTH the left/right respectively

• Linear time combine

New:
• We divide by 1, n-1
• We solve 2 different problems:

• Find the best overall on the left ONLY
• Find the best which ends on the left ONLY

• Constant time combine

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

𝑇 𝑛 = 1𝑇 𝑛 − 1 + 1

𝑇 𝑛 = Θ(𝑛 log 𝑛)

𝑇 𝑛 = Θ(𝑛)

YES

MSCS Problem - Redux

Solve in 𝑂(𝑛) by increasing the problem size by 1 each time.

Idea: Only include negative values if the positives on both sides of it are
“worth it”

Θ(𝑛) Solution

72

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Begin here

Remember two values: Best So Far Best ending here
5 5

Θ(𝑛) Solution

73

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 13

Θ(𝑛) Solution

74

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 9

Θ(𝑛) Solution

75

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 12

Θ(𝑛) Solution

76

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 19

Θ(𝑛) Solution

77

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 4

Θ(𝑛) Solution

78

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 14

Θ(𝑛) Solution

79

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 0

Θ(𝑛) Solution

80

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 17

Θ(𝑛) Solution

81

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
25 25

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 11: D&C: Median of Medians
	Slide 2: Announcements
	Slide 3: Divide and Conquer
	Slide 4: Quicksort
	Slide 5: Quicksort
	Slide 6: Partition Procedure (Divide Step)
	Slide 7: Partition Procedure Summary
	Slide 8: Conquer Step
	Slide 9: Quicksort Run Time (Optimistic)
	Slide 10: Quicksort Run Time (Worst-Case)
	Slide 11: Good Pivot
	Slide 12: Quickselect Algorithm
	Slide 13: Quickselect Algorithm
	Slide 14: Partition Procedure (Divide Step)
	Slide 15: Conquer Step
	Slide 16: Quickselect Run Time
	Slide 17: Quickselect Run Time
	Slide 18: How to Choose the Pivot?
	Slide 19: Good Pivot
	Slide 20: Good Pivot for Quickselect
	Slide 21: Good Pivot
	Slide 22: Median of Medians
	Slide 23: Median of Medians
	Slide 24: Why is this good?
	Slide 25: Why is this good?
	Slide 26: Why is this good?
	Slide 27: Back to: Quickselect
	Slide 28: Quickselect
	Slide 29: Median of Medians
	Slide 30: Quickselect
	Slide 31: Phew! Back to Quicksort
	Slide 32: Phew! Back to Quicksort
	Slide 33: A Worthwhile Choice?
	Slide 34: Quicksort Running Time
	Slide 35: Quicksort Running Time
	Slide 36: Quicksort Running Time
	Slide 37: Quicksort Running Time
	Slide 38: Probability of Always Choosing d t h Order Statistic
	Slide 52: Maximum Sum Continuous Subarray
	Slide 53: Divide and Conquer n log n
	Slide 54: Divide and Conquer n log n
	Slide 55: Divide and Conquer n log n
	Slide 56: Divide and Conquer Summary
	Slide 57: Generic Divide and Conquer Solution
	Slide 58: MSCS Divide and Conquer n log n
	Slide 59: Types of “Divide and Conquer”
	Slide 60: Pattern So Far
	Slide 61: Chip and Conquer
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Chip and Conquer
	Slide 70: Was unbalanced better?
	Slide 71: MSCS Problem - Redux
	Slide 72: n Solution
	Slide 73: n Solution
	Slide 74: n Solution
	Slide 75: n Solution
	Slide 76: n Solution
	Slide 77: n Solution
	Slide 78: n Solution
	Slide 79: n Solution
	Slide 80: n Solution
	Slide 81: n Solution

