CS 3100

Data Structures and Algorithms 2
Lecture 10: D&C: CPP & Matrix Multiply

Co-instructors: Robbie Hott and Ray Pettit
Spring 2024

Readings in CLRS 4t edition:
* Section 4.5

Announcements

PS4 due tomorrow
 PA2 due next Friday, March 1, 2024
* Quizzes 1-2 coming February 29, 2024

* Both quizzes taken the same day
* |f you have SDAC, please schedule for 1 exam (not a quiz)

e Office hours
* Prof Hott Office Hours: Mondays 11a-12p, Fridays 10-11a and 2-3p
* Prof Pettit Office Hours: Mondays and Wednesdays 2:30-4:00p
* TA office hours posted on our website
e Office hours are not for "checking solutions"

Divide and Conquer

[CLRS Chapter 4]

Divide:
* Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
* If the suproblems are “large”:
* Solve each subproblem recursively

* If the subproblems are “small”:
* Solve them directly (base case)

Combine:

* Merge solutions to subproblems to obtain
solution for original problem

Closest Pair of Points

Given: A list of points © @

Return: Pair of points with
smallest distance apart @

@ZV\\O3 r\\

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points 8
based on x-coordinate L

Conquer: Recursively compute the closest pair @
of points in each list @ d 2l

Combine: L d] - a5
* Construct list of points in the boundary , v
* Sort runway points by y-coordinate
 Compare each point in runway to 15 points @ N
above it and save the closest pair
e Qutput closest pair among left, right, and @) N ?

runway points

.

LeftPoin\ts RightPoints
|

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Looks like another O(n logn)

algorithm — combine step is still ® @
too expensive

Combine:
* Construct list of points in poundary
e Sort runway points by y-coordinate
 Compare each point in runway to 15 points
above it and save the closest pair
e Qutput closest pair among left, right, and @
. L7b< A ‘Q
runway points » P Q)

T 2T[5) 466y S plnd

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

Construct list of points in the boundary

Sort runway points by y-coordinate = =———)
Compare each point in runway to 15 points

above it and save the closest pair

Output closest pair among left, right, and

runway points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

* List of points sorted according to y-
coordinate

Sorting runway points by y-
coordinate now becomes a merge

Listing Points in the Boundary

LeftPoints:
Closest Pair: (1,5

Sorted Point

RightPoints: O
Closest Pair: (4,6), d4¢ ®

Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Runway Points: [8,7,6,5,2]

Both of these lists can be computed (®
by d Single Pass over the lists LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Construct list of points in the boundary

e Sort runway points by y-coordinate

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points

=)

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair_
of points in each list and each list sorted by y-

coordinate -

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points and y-sorted list

Closest Pair of Points: Divide and Conquer

@(n log n) Initialization: Sort points by x-coordinate

What is the running time?

O(nlogn) ol)
2T (n/2)
T(n)
1 A A
T(n) = 2T(n/2) +0(n) | W
O(n)
Case 2 of Master’s Theorem:
T(n) = B(nlogn) 0(1)

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list and each list sorted by y-
coordinate

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

 Compare each point in runway to 15 points
above it and save the closest pair

e Qutput closest pair among left, right, and
runway points and y-sorted list

Matrix Multiplication

n —

m 2 3 [12| 4] |6
nl4 5 6|x]|8] [10| |12
7 8 9l 4 6| 18

2+16+42 4+20+48 6+ 24+ 54

\—

60 72 84° Ny s A
132 162 192| | ~
Run time? 0(n3) 204 252 300

Lower Bound? Q(n?) u

Matrix Multiplication Divide and Conquer

Multiply n X n matrices (4 and B)
Divide:

12

Matrix Multiplication Divide and Conquer

Multiply n X n matrices (4 and B)

Y1 e

Combine:

45 = [faBua £ AigBaa] Aribiz + haBra
Ap1B11+Az2B51 Az1Bip + A58,

Runtime? T(n) = 8T (;) +4 (E) gc?;ftiocfns

13

Matrix Multiplication Divide and Conquer

T(n) = 8T (2) +4 (ﬁ)

2

2
n

2

2

T(n)=8T()+n2

a=8>b=2,f(n) =n?
Case 1!
nlogpa — plog, 8 — 3

T(n) = 0(n?)
Can we do better?

14

Matrix Multiplication Divide and Conquer

Multiply n X n matrices (4 and B)

Aqq] A B{ 4] By,
A= > | B=[—F ——
A21 }\AZ'Z J LBz,l } By2 |

AB = A1,1B1,1 + Al,ZBZ,l A1,1B1,2 + Al,ZBZ,ZI

AZ,lBl,l + AZ,ZBZ,l AZ,lBl,Z + AZ,ZBZ,Z

ldea: Use a Karatsuba-like technique on this

15

Strassen’s Algorithm

Multiply n X n matrices (4 and B)

Apq] Aq2 B14] Bi, |

A= > < B=[—— ——

A, 4] i A4;, | {Bz,1] By, |
Calculate: Find AB:

Q1 = (A1 +A5,)(By1 + By) N
1+ Az)Py + By _ (@K Q- @9+ @ @1

(3 = A1,1 (B1,2 - Bz,z)

Q4 = Az2(B21— By,1) 7 Multiplications 18 Additions
Qs = (A11 +A12)B2 5

n n
Qs = (A1 — A11)(Bia + By) T(n) =7T (E) + 18 T

Q7 = (A1,2 — AZ,Z)(BZ,l + B, ;) 16

Strassen’s Algorithm

T(n) = 7T(;) | an

9
a=7b=2f(n) =§n2
—_ =
Case 1!
nlogb a — nlogz 7 ~ 12807

—

o= .|
T(Tl) — @(nlogz 7) ~ @(n2.807)

17

|
-1000000

800000 /

600000 /
/ vl
-400000 .

=200000

\ f
\ ;

45 —-!zlg!'éaﬁ———-‘—:ﬂ 50 60 70 80 90 100

Is This the Fastest?

3.0 ;

| Best possible is still unknown
29 -
2a L Strassen Pan BESt |OW€F bOundZ .Q.(le)
ot Bini et al.
2.7 i
2.6 —

i Schonhage Romani
257 Coppersmith, Winograd Strassen
2.4 Coppersmith, Winograd Stothers (2 37|S-)'L

Williams N
! T T TS B IR L I B L+ Year W 19

1950 1960 1970 1980 1990 2000 2010

Divide and Conquer Algorithms (Thus Far)

Mergesort What they have in common:
Divide: Very easy (i.e. 0(1))

Naive Multiplication
Combine: More complex (2(n))

Karatsuba Multiplication
Closest Pair of Points
Strassen’s Algorithm

20

Like Mergesort:

* Divide and conquer algorithm
* O(nlogn) run time (on expectation)

Unlike Mergesort:
* Divide step is the hard part

 Typically faster than Mergesort (often is the basis of sorting algorithms in
standard library implementations)

21

General idea: choose a pivot element, recursively sort two sublists
around that element

Divide: select pivot element p, Partition(p)
Conquer: recursively sort left and right sublists
Combine: nothing!

22

Partition Procedure (Divide Step)

Input: an unordered list, a2 pivot p

. 5 7 3 (12 10| 1 2 4 9 6 | 11

Goal: All elements on left, all = p on right

— — ~,

23

Partition Procedure

Initialize two pointers and End

B o -

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

92
~N
w
[HEY
N
(B
o
[HRY
N
H
o]
(o))}

92
~
w
(B
N
[EEY
o
[EEY
N
D
(\o)
0))

92
~
w
[HEY
N
[HRY
o
[ERY
N
D
X0
(O))]

92
~N
w
[HEY
N
[HY
o
[HY
N
H
\o)
(o))}

H B E B
—
Belelele

Swap!

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

5 7 3 |12 (10 | 1 2

4

5 7 3 |11 (10 | 1 2

4

10 | 1 2

<

5 7 3 6 | 10 | 1 2

Partition Procedure

If value < p, move right
Else swap value with End value, move End Left
Stop when = End @

5 7 3 6 | 10

4
J

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ ‘
. 5 7 3 6 4 1

ppnnnns o

Remaining item: where do we place the pivot?

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ ‘
. 5 7 3 6 4 1

Case 1: meet at element < p
Swap p with

Partition Procedure

If value < p, move right

Else swap value with End value, move End Left

Stop when = End @ ‘
. 5 7 3 6 4 1

W]«] [

Case 2: meet at element > p

Swap p with

Partition Procedure Summary

1. Choose the pivot p to be the first element of the list

2. Initialize two pointers (just after p), and End (at end of list)
3. While < End:
 |Ifvalue of < p, advance to the right
e Otherwise, swap value of value with value of End value, and advance

End to the left
4. If pointers meet at element : swap p with
5. Otherwise, if pointers meet at element > p: swap p with

Run time? 0O(n)

31

Conquer Step

|
All elements < p All elements > p

Exactly where it belongs!

Recursively sort and Right sublists

32

Quicksort Run Time (Optimistic)

If the pivot is the median:

T B T T I

Then we divide in half each time

T(n) =2T(n/2) +n = B(nlogn)

33

Quicksort Run Time (Worst-Case)

If the pivot is the extreme (min/max):

clefa e lef 7o oo [n]x

Then we shorten by 1 each time

Tm)=Tn—1)+n
=n+m-1)++2+1
nn+ 1)
-

= 0(n?) .

Quicksort on a Nearly Sorted List

First element always yields unbalanced pivot

2]]efs o7 s]s]w]u]n)
Then we shorten by 1 each time
T(n) = 0(n?)

35

How to Choose the Pivot?

Good choice: O(nlogn)

Bad choice: O(n?)

What makes a good pivot? Tl)= 2 T(5)+ OV
* Roughly even split between left and right
* |deally: median

Can we find median in linear time?
* Yes! Quickselect algorithm

Quickselect Algorithm

Algorithm to compute the it" order statistic
* ith smallest element in the list
15t order statistic: minimum
* nth order statistic: maximum
* (n/2)% order statistic: median

38

Quickselect Algorithm

Finds ith order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index i

Divide: select pivot element p, Partition(p)

Conquer:
 if i = index of p, then we are done and return p
* if i <index of p recurse left. Otherwise, recurse right

Combine: Nothing!

39

Partition Procedure (Divide Step)

Input: an unordered list, a2 pivot p

. 5 7 3 (12 10| 1 2 4 9 6 | 11

Goal: All elements on left, all = p on right

40

Conquer Step

|
All elements < p All elements > p

Correct position of p

Recurse on sublist that contains index i
(add index of the pivot to i if recursing right)

41

CLRS Pseudocode for Quickselect

return RANDOMIZED-SELECT (A, p,q — 1,1)
else return RANDOMIZED-SELECT(A,q + 1,r,i — k)

A — the list

RANDOMIZED-SELECT (A, p,r,1) p — index of first item

. r —index of last item
1 lfp ==T i —find ith smallestitem
2 return A[p] g — pivot location
3 g = RANDOMIZED-PARTITION (4, p,r) k= numberon left + 1
4 k=qg—p+1 [Inumber of elements in left sub-list + 1
5 ifi == // the pivot value is the answer
6 return A[q] VAR
7 elseifi <k L]
8
9

/[note adjustment to 1 when recursing on right side

Note: In CLRS, they’re using a partition that randomly chooses the pivot element.
That’s why you see “Randomized” in the names here. Ignore that for the moment. 42

Quickselect Run Time

If the pivot is always the median:

T B T [+ I

Then we divide in half each time

S(n) =S(g)+n

S(n) =0(n)

43

Quickselect Run Time

If the partition is always unbalanced:

clefa e lef 7o oo [n]x

Then we shorten by 1 each time

Sn)=S(n—1) +n

S(n) = 0(n?)

44

How to Choose the Pivot?

Good choice: O(n)

Bad choice: O(n?)

Good Pivot

What makes a good pivot? Q.
* Roughly even split between left and right QO ’
e |deally: median ' -ifb

But this is the problem that

Quickselect is supposed to solve!

What’s next: an algorithm for choosing a “decent” pivot (median of medians)

46

Good Pivot for Quickselect

What makes a good Pivot for Quickselect? @
* Roughly even split between left and right 0 ¢
* |deally: median .S Q
N
Here’s what’s next: 0

* First, median of medians algorithm
* Finds something close to the median in ©(n) time
* Second, we can prove that when its result used with Quickselect’s partition, then

Quickselect is guaranteed ©(n)
* Because we now have a O(n) way to find the median, this guarantees Quicksort will be ©(nlgn)

* Notes:
* We have to do all this for every call to Partition in Quicksort
* We could just use the value returned by median of medians for Quicksort’s Partition

47

Good Pivot

Decent pivot: both sides of Pivot >30%

>30%

O Select Pivot from
r this range

>30% 48

Median of Medians

Fast way to select a “good” pivot

Guarantees pivot is greater than =30% of elements and less
than =£30% of the elements

e |.e. it’s in the middle 40% (£20% of the true median)

Main idea: break list into blocks, find the median of each
blocks, use the median of those medians

49

Median of Medians

1. Break list into chunks of size 5

List could be long, many
more than 5 chunks!

2. Find the median of each chunk

(using insertion sort: n=5, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this
algorithm, called recursively, on list of medians)

\

List could be long, many
more than 5 medians!

50

Why is this good?

Each chunk sorted, chunks ordered by their medians

N

MedianofMedians
is Greater than all
of these A A A A A

N N\ N\ N N

| List could be long, so not

[E} / a small number!

Why is this good?

MedianofMedians
is larger than all AN A
of these '} A A A A

f

[n/5]
Elements smaller than L n .
— . | — _ > -
MedianofMedians: s ([z [5” 2) = 10 6 elements

Number of lists to the “left”

Exclude list on the endpoint,

52

and “middle” list

Why is this good?

MedianofMedians
is larger than all
of these

Elements smaller than
MedianofMedians:

Elements greater than
MedianofMedians:

N\ AN AN AN
A AN AN N\ N\
< < < <
A JAN JAN N N\
A N\ N\ N\ N\
\ J
|
[n/5]
3(— i —2)23—n—6elements
5 10
3(1-E —2)23—n—6elements
2 |5 10

53

Back to: Quickselect

Divide: select an element p using Median of Medians, Partition(p)

M(n) + ©0(n)

median of medians algorithm

partition algorithm

54

Divide: select an element p using Median of Medians, Partition(p)

M(n) + ©0(n)

Conquer: if i = index of p, done, if i <index of p recurse left. Else
recurse right (with index i — p)

m
<s(=)
Combine: Nothing! 10

) + M(n) + 0(n)

55

Median of Medians

1. Break list into blocks of size 5 O(n)

2. Find the median of each chunk O(n)

3. Return median of medians (using Quickselect) ¢ (g)
[]

Mn)=S (g) + 0(n)

56

r—\|\1
ol S

S(n) < S()+M(n) + 0(n)

+S (g) +0(n)

2n
+ S5 <1—0> + @(Tl)

I
A
H|\1 r—\|\1
olsS ol S

|
WA
N ~—

IA
)
N
=l 2

Master theorem Case 3!

S(n) = 0(n)

M(n) =S (g) + 0(n)

CLRS gives a more rigorous proof!

+ @(Tl) Because S(n) = Q(n) See p. 203 for more details

S(n) =0(n)

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

Using Quickselect, always pivot about the median

anoppnE

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

58

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

Using Quickselect, always pivot about the median

anoppnE

T(n) =2T(n/2) + O(n)

T(n) = 0(nlogn)

59

A Worthwhile Choice?

Using Quickselect to pick median guarantees ©(n logn) worst-case run-time

Approach has very large constants
* If you really want ®(nlogn), better off using MergeSort

More efficient approach: Random pivot
* Very small constant (very fast algorithm)
* Expectedtorunin ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

60

Quicksort Running Time

If the pivot is always (n/10)™ order statistic:

Tn)=Tn/10)+ TO9n/10) + O(n)

61

Quicksort Running Time

T(n) =T(n/10) +T(9n/10) + ©(n)

. O(n)
/\
n/10 I /10 0(n)
/\ /\

Quicksort Running Time

If the pivot is always (n/10)™ order statistic:

Tn)=Tn/10)+ TO9n/10) + O(n)
= 0O(nlogn)

This is true if the pivot is any (n/k)™ order statistic for any

constant k > 1 (as long as the size of the smaller listis a

constant fraction of the full list, we get ®(nlogn) running time)

Quicksort Running Time

If the pivot is always d™ order statistic:

Then we shorten by d each time

Tn)=Tn—d)+n
= 0(n?)

What'’s the probability of this occurring (for a random pivot)?

64

Probability of Always Choosing d'! Order Statistic

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: %

e M 1 d
Probability second pivot is among d smallest: —

Probability all pivots are among d smallest:

Very small probability!

d d d d
EX n_dx n_de---xﬁx1=(gx(g—l)x---xl) = =

I
(=Y
p—

65

Formal Argument for n log n Average

We will focus on counting the number of comparisons

For simplicity: suppose all elements are distinct

Quicksort only compares against a pivot

* Element i only compared to element j if one of them was the
pivot

66

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
— Why? Otherwise | would not know their order
— Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot 67

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1234567.9 10 | 11 | 12

Consider the sorted version of the list

Assuming pivot is chosen

PI‘[WC compare 1 and 12] = E uniformly at random

Elements only compared if 1 or 12 was chosen as the
first pivot since otherwise they are in different sublists

68

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Z-B 4 5 6 7 8 9 | 10 | 11 | 12

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be in right sublist and will be
processed in future invocation of Quicksort

Pr[we compare i and j| = Pr[we compare i and j in Quicksort([p + 1, ...,n])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Z-B 4 5 6 7 8 9 | 10 | 11 | 12

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be
processed in future invocation of

[p + 1, ...,n] denotes the right
sublist (in some order) that we are

recursively sorting

Pr[we compare i and j| = Pr[we compare i and j in Quicksort([p + 1, ...,n])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Case 2: Pivot greater than j
Then sublist [i,i + 1, ..., j] will be in left sublist and will be
processed in future invocation of Quicksort

Pr[we compare i and j| = Pr[we compare i and j in Quicksort(|1, ..., p|)

Formal Argument for n log n Average

What is the probability of comparing two given elements?

123456.89101112

Case 3.1: Pivot contained in[i + 1,...,j — 1]
Then i and j are in different sublists and will never be
compared

Pr[we compareiand j] =0

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1234.6789101112

i J

Case 3.2: Pivot is either i orj
Then we will always compare i and j

Pr[we compareiand j] =1

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Case 1: Pivot less than i
Pr[we compare i and j] = Pr[we compare i and j in Quicksort(|[p + 1, ...,n])
Case 2: Pivot greater than j
Pr[we compare i and j] = Pr[we compare i and j in Quicksort([1, ..., p])
Case 3: Pivotin [i,i + 1, ...,]]

2
Pr[we compare i and j| = Pr[i orj is selected as pivot] =j —Tr 1

Formal Argument for n log n Average

Probability of comparing element i with element j:

2
b and il =
r[we compare i and] T+l

75

Formal Argument for n log n Average

Probability of comparing element i with element j:

2
j—i+1

Pr{we compare i and j]| =

Expected number of comparisons:

—1 n-—1

n
1<2 Zl
k k

=1 1 =1 k=1

n—1n-—i
2
_ k+1
l k=1 [
Substitution:
k =j—1 76

n-—1

S

=
Il

Formal Argument for n log n Average

Substitution:
k=j—1i

Intuition (not proof!):

|3
1

Formal Argument for n log n Average

Z_{i —z+1:22 Z

=1 k=1

qu
|

n—1
= 2 Z O(logn) = O(nlogn)
i=1

1
Useful fact: 2 e O(logn)

M'
i1

78

	Slide 1: CS 3100 Data Structures and Algorithms 2 Lecture 10: D&C: CPP & Matrix Multiply
	Slide 2: Announcements
	Slide 3: Divide and Conquer
	Slide 4: Closest Pair of Points
	Slide 5: Closest Pair of Points: Divide and Conquer
	Slide 6: Closest Pair of Points: Divide and Conquer
	Slide 7: Closest Pair of Points: Divide and Conquer
	Slide 8: Listing Points in the Boundary
	Slide 9: Closest Pair of Points: Divide and Conquer
	Slide 10: Closest Pair of Points: Divide and Conquer
	Slide 11: Matrix Multiplication
	Slide 12: Matrix Multiplication Divide and Conquer
	Slide 13: Matrix Multiplication Divide and Conquer
	Slide 14: Matrix Multiplication Divide and Conquer
	Slide 15: Matrix Multiplication Divide and Conquer
	Slide 16: Strassen’s Algorithm
	Slide 17: Strassen’s Algorithm
	Slide 18
	Slide 19: Is This the Fastest?
	Slide 20: Divide and Conquer Algorithms (Thus Far)
	Slide 21: Quicksort
	Slide 22: Quicksort
	Slide 23: Partition Procedure (Divide Step)
	Slide 24: Partition Procedure
	Slide 25: Partition Procedure
	Slide 26: Partition Procedure
	Slide 27: Partition Procedure
	Slide 28: Partition Procedure
	Slide 29: Partition Procedure
	Slide 30: Partition Procedure
	Slide 31: Partition Procedure Summary
	Slide 32: Conquer Step
	Slide 33: Quicksort Run Time (Optimistic)
	Slide 34: Quicksort Run Time (Worst-Case)
	Slide 35: Quicksort on a Nearly Sorted List
	Slide 36: How to Choose the Pivot?
	Slide 37: Good Pivot
	Slide 38: Quickselect Algorithm
	Slide 39: Quickselect Algorithm
	Slide 40: Partition Procedure (Divide Step)
	Slide 41: Conquer Step
	Slide 42: CLRS Pseudocode for Quickselect
	Slide 43: Quickselect Run Time
	Slide 44: Quickselect Run Time
	Slide 45: How to Choose the Pivot?
	Slide 46: Good Pivot
	Slide 47: Good Pivot for Quickselect
	Slide 48: Good Pivot
	Slide 49: Median of Medians
	Slide 50: Median of Medians
	Slide 51: Why is this good?
	Slide 52: Why is this good?
	Slide 53: Why is this good?
	Slide 54: Back to: Quickselect
	Slide 55: Quickselect
	Slide 56: Median of Medians
	Slide 57: Quickselect
	Slide 58: Phew! Back to Quicksort
	Slide 59: Phew! Back to Quicksort
	Slide 60: A Worthwhile Choice?
	Slide 61: Quicksort Running Time
	Slide 62: Quicksort Running Time
	Slide 63: Quicksort Running Time
	Slide 64: Quicksort Running Time
	Slide 65: Probability of Always Choosing d t h Order Statistic
	Slide 66: Formal Argument for n l o g n Average
	Slide 67: Formal Argument for n l o g n Average
	Slide 68: Formal Argument for n l o g n Average
	Slide 69: Formal Argument for n l o g n Average
	Slide 70: Formal Argument for n l o g n Average
	Slide 71: Formal Argument for n l o g n Average
	Slide 72: Formal Argument for n l o g n Average
	Slide 73: Formal Argument for n l o g n Average
	Slide 74: Formal Argument for n l o g n Average
	Slide 75: Formal Argument for n l o g n Average
	Slide 76: Formal Argument for n l o g n Average
	Slide 77: Formal Argument for n l o g n Average
	Slide 78: Formal Argument for n l o g n Average

