
How many ways are there to tile a

2 × 𝑛 board with dominoes?

1

How many ways to tile this:

With these?

Warm Up

For Example:

CS 3100
Data Structures and Algorithms 2

Lecture 16: Dynamic Programming

Co-instructors: Robbie Hott and Tom Horton

Fall 2023
Readings in CLRS 4th edition:

• Chapter 14

CS 3100
Data Structures and Algorithms 2

Lecture 16: Dynamic Programming

Announcements

• PS6 due yesterday (3/20)
• PA3 due tomorrow (3/22)
• PS7 releasing today, due Wednesday (3/27)
• Grading update

– Next week, the instructors will meet to make decisions about any general grading
changes/modifications for Quiz 1. If there are changes, we’ll make an announcement.

– We will address Quiz 1 regrade requests after next week’s meeting.
– We are currently grading: Quiz 2 Question 1 (the last question to be graded), PS4, PS5.

• Office hours (reminder)
• Prof Hott Office Hours: Traveling this week
• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
• TA office hours posted on our website
• Office hours are not for “pre-grading"

3

Warm Up

4

Two ways to fill the final column:

𝑛 − 1

𝑛 − 2

𝑇𝑖𝑙𝑒 𝑛 = 𝑇𝑖𝑙𝑒 𝑛 − 1 + 𝑇𝑖𝑙𝑒(𝑛 − 2)

𝑇𝑖𝑙𝑒 0 = 1
𝑇𝑖𝑙𝑒 1 = 1

How many ways are there to tile a 2 × 𝑛 board with dominoes?

How to compute 𝑇𝑖𝑙𝑒(𝑛)?

5

Tile(n):
if n < 2:

return 1
return Tile(n-1)+Tile(n-2)

Problem?

Recursion Tree

6

Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!

Run time: Ω(2𝑛)

Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory

7

Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

M

0

1

2

3

4

5

6

Technique: “memoization” (note no “r”)

Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”

8

Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to

smaller ones

• Idea:
1. Identify recursive structure of the problem

• What is the “last thing” done?

9
𝑛 − 1 𝑛 − 2

Dynamic Programming

• Requires Optimal Substructure

– Solution to larger problem contains the (optimal) solutions to
smaller ones

• Idea:

1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory

10

Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)

return solution
for subproblem of problem: # After dividing

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)

return solution
11

Generic Top-Down Dynamic Programming Solution

mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution

12

Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”

13

Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Recursive calls happen in a predictable order

Better 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Bottom Up”

14

Tile(n):
Initialize Memory M
M[0] = 1
M[1] = 1
for i = 2 to n:

M[i] = M[i-1] + M[i-2]
return M[n]

M

0

1

2

3

4

5

6

Dynamic Programming

• Requires Optimal Substructure

– Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:

1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively

• “Bottom Up”: Iteratively solve smallest to largest

15

Log Cutting

17

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖)
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ1, … , ℓ𝑘 such that:
σℓ𝑖 = 𝑛

to maximize σ𝑃[ℓ𝑖] Brute Force: 𝑂(2𝑛)

Greedy Algorithm

18

Greedy: Lengths: 5, 1
Profit: 51

Better: Lengths: 2, 4
Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

• Greedy algorithms build a solution by picking the best option
“right now”

– Select the most profitable cut first

Greedy Algorithm

• Greedy algorithms build a solution by picking the best option
“right now”

– Select the “most bang for your buck”

• (best price / length ratio)

19

1 18 24 36 50

54321Length:

Price:
Greedy: Lengths: 5, 1

Profit: 51

Better: Lengths: 2, 4
Profit: 54

50

6

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively

• “Bottom Up”: Iteratively solve smallest to largest

20

1. Identify Recursive Structure

21

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ𝑘

𝐶𝑢𝑡(𝑛 − ℓ𝑘)

𝐶𝑢𝑡 𝑛 = max

𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively

• “Bottom Up”: Iteratively solve smallest to largest

22

3. Select a Good Order for Solving Subproblems

23

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 0 = 0

0

3. Select a Good Order for Solving Subproblems

24

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 1 = 𝐶𝑢𝑡 0 + 𝑃[1]

1

3. Select a Good Order for Solving Subproblems

25

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 2 = max
𝐶𝑢𝑡 1 + 𝑃 1
𝐶𝑢𝑡 0 + 𝑃 2

2

3. Select a Good Order for Solving Subproblems

26

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 3 = max
𝐶𝑢𝑡 2 + 𝑃 1
𝐶𝑢𝑡 1 + 𝑃 2
𝐶𝑢𝑡 0 + 𝑃[3]

3

3. Select a Good Order for Solving Subproblems

27

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max

𝐶𝑢𝑡 3 + 𝑃[1]
𝐶𝑢𝑡 2 + 𝑃 2
𝐶𝑢𝑡 1 + 𝑃 3
𝐶𝑢𝑡 0 + 𝑃[4]

4

Log Cutting Pseudocode

28

Initialize Memory C
Cut(n):

C[0] = 0
for i=1 to n: // log size

best = 0
for j = 1 to i: // last cut

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]
Run Time: 𝑂(𝑛2)

How to find the cuts?

• This procedure told us the profit, but not the cuts themselves

• Idea: remember the choice that you made, then backtrack

29

Remember the choice made

30

Initialize Memory C, Choices
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
Choices[i]=j

C[i] = best
return C[n]

Gives the size
of the last cut

Reconstruct the Cuts

31

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

• Backtrack through the choices

7621

Example to demo
Choices[] only.
Profit of 20 is not
optimal!

Backtracking Pseudocode

i = n

while i > 0:

print Choices[i]

i = i – Choices[i]

32

Our Example: Getting Optimal Solution

i 0 1 2 3 4 5 6 7 8 9 10

C[i] 0 1 5 8 10 13 17 18 22 25 30

Choice[i] 0 1 2 3 2 2 6 1 2 3 10

33

• If n were 5
• Best score is 13
• Cut at Choice[n]=2, then cut at

Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
• If n were 7

• Best score is 18
• Cut at 1, then cut at 6

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively

• “Bottom Up”: Iteratively solve smallest to largest

34

