Warm Up

How many ways are there to tile a $2 \times n$ board with dominoes?

How many ways to tile this:

With these?

For Example:

CS 3100

Data Structures and Algorithms 2

 Lecture 16: Dynamic Programming
Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS $4^{\text {th }}$ edition:

- Chapter 14

Announcements

- PS6 due yesterday $(3 / 20)$
- PA3 due tomorrow $(3 / 22)$
- PS7 releasing today, due Wednesday (3/27)
- Grading update
- Next week, the instructors will meet to make decisions about any general grading changes/modifications for Quiz 1. If there are changes, we'll make an announcement.
- We will address Quiz 1 regrade requests after next week's meeting.
- We are currently grading: Quiz 2 Question 1 (the last question to be graded), PS4, PS5.
- Office hours (reminder)
- Prof Hott Office Hours: Traveling this week
- Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
- TA office hours posted on our website
- Office hours are not for "pre-grading"

Warm Up

How many ways are there to tile a $2 \times n$ board with dominoes?
Two ways to fill the final column:

$\operatorname{Tile}(n)=\operatorname{Tile}(n-1)+\operatorname{Tile}(n-2)$

$$
\begin{aligned}
& \operatorname{Tile}(0)=1 \\
& \operatorname{Tile}(1)=1
\end{aligned}
$$

How to compute Tile(n)?

Tile(n): if $n<2$:
return 1
return Tile($n-1$)+Tile($n-2$)

Problem?

Recursion Tree

Computing Tile(n) with Memory

Initialize Memory M

Tile(n):
if $\mathrm{n}<2$:
return 1
if $\mathrm{M}[\mathrm{n}]$ is filled: return $\mathrm{M}[\mathrm{n}]$
$\mathrm{M}[\mathrm{n}]=$ Tile($\mathrm{n}-1$)+Tile($\mathrm{n}-2$) return $\mathrm{M}[\mathrm{n}]$

Computing Tile(n) with Memory - "Top Down"

Initialize Memory M
Tile(n):
if $\mathrm{n}<2$:
return 1
if $\mathrm{M}[\mathrm{n}]$ is filled:
return $\mathrm{M}[\mathrm{n}]$
$\mathrm{M}[\mathrm{n}]=$ Tile($\mathrm{n}-1$)+Tile($\mathrm{n}-2$) return $\mathrm{M}[\mathrm{n}]$

M
1
1
2
3
5
8
13

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify recursive structure of the problem

- What is the "last thing" done?

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory

Generic Divide and Conquer Solution

def myDCalgo(problem):

```
if baseCase(problem):
    solution = solve(problem)
    return solution
for subproblem of problem: \# After dividing
    subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution
```


Generic Top-Down Dynamic Programming Solution

```
mem = {}
def myDPalgo(problem):
    if mem[problem] not blank:
        return mem[problem]
    if baseCase(problem):
        solution = solve(problem)
        mem[problem] = solution
        return solution
    for subproblem of problem:
    subsolutions.append(myDPalgo(subproblem))
    solution = OptimalSubstructure(subsolutions)
    mem[problem] = solution
    return solution
```


Computing Tile (n) with Memory - "Top Down"

Initialize Memory M

Tile(n):
if $\mathrm{n}<2$:
return 1
if $\mathrm{M}[\mathrm{n}]$ is filled: return $\mathrm{M}[\mathrm{n}]$
$\mathrm{M}[\mathrm{n}]=$ Tile($\mathrm{n}-1$)+Tile($\mathrm{n}-2$) return $\mathrm{M}[\mathrm{n}]$

Recursive calls happen in a predictable order

Better Tile (n) with Memory - "Bottom Up"

Tile(n):
Initialize Memory M
$\mathrm{M}[0]=1$
$\mathrm{M}[1]=1$
for $\mathrm{i}=2$ to n : $M[i]=M[i-1]+M[i-2]$
return $\mathrm{M}[\mathrm{n}]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Log Cutting

Given a log of length n
A list (of length n) of prices P ($P[i]$ is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that: $\sum \ell_{i}=n$
to maximize $\sum P\left[\ell_{i}\right]$ Brute Force: $O\left(2^{n}\right)$

Greedy Algorithm

- Greedy algorithms build a solution by picking the best option "right now"
- Select the most profitable cut first

Greedy Algorithm

- Greedy algorithms build a solution by picking the best option "right now"
- Select the "most bang for your buck"
- (best price / length ratio)

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n

$$
\begin{aligned}
& \operatorname{Cut}(n)= \max \left\{\begin{array}{l}
\operatorname{Cut}(n-1)+P[1] \\
\operatorname{Cut}(n-2)+P[2] \\
\ldots \\
\operatorname{Cut}(0)+P[n]
\end{array}\right. \\
& \operatorname{Cut}\left(n-\ell_{k}\right)
\end{aligned}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(0)=0
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(1)=\operatorname{Cut}(0)+P[1]
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(2)=\max \left\{\begin{array}{l}
\operatorname{Cut}(1)+P[1] \\
\operatorname{Cut}(0)+P[2]
\end{array}\right.
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(3)=\max \left\{\begin{array}{l}
\operatorname{Cut}(2)+P[1] \\
\operatorname{Cut}(1)+P[2] \\
\operatorname{Cut}(0)+P[3]
\end{array}\right.
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(4)=\max \left\{\begin{array}{l}
\operatorname{Cut}(3)+P[1] \\
\operatorname{Cut}(2)+P[2] \\
\operatorname{Cut}(1)+P[3] \\
\operatorname{Cut}(0)+P[4]
\end{array}\right.
$$

Log Cutting Pseudocode

Initialize Memory C
Cut(n):
$C[0]=0$
for $\mathrm{i}=1$ to n : // log size
best = 0
for $\mathrm{j}=1$ to i : // last cut best $=\max ($ best, $C[i-j]+P[j])$
$\mathrm{C}[\mathrm{i}]=$ best
return C[n]

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

Initialize Memory C, Choices
Cut(n):
$\mathrm{C}[0]=0$
for $\mathrm{i}=1$ to n :
best $=0$
for $\mathrm{j}=1$ to i : if best $<C[i-j]+P[j]:$
best $=C[i-j]+P[j]$
Choices $[\mathrm{i}]=\mathrm{j}$ Gives the size
$\mathrm{C}[\mathrm{i}]=$ best
return $\mathrm{C}[\mathrm{n}]$

Reconstruct the Cuts

- Backtrack through the choices

Example to demo Choices[] only.
Profit of 20 is not
optimal!

Backtracking Pseudocode

$\mathrm{i}=\mathrm{n}$
while $\mathrm{i}>0$:
print Choices[i]
$\mathrm{i}=\mathrm{i}-$ Choices[i$]$

Our Example: Getting Optimal Solution

- If n were 5
- Best score is 13
- Cut at Choice[n]=2, then cut at Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
- If n were 7
- Best score is 18
- Cut at 1 , then cut at 6

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

