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• Chapter 16



Announcements

• PS6 due tomorrow (3/20)

• PA3 due Friday (3/22)

• Grading update
• Quiz 1 and PS3 have been returned

• We are currently grading: Quiz 2, PS4, PS5

• Office hours (reminder)
• Prof Hott Office Hours: Traveling this week

• Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p

• TA office hours posted on our website

• Office hours are not for “pre-grading"
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Reminders about Greedy Algorithms



Greedy Algorithms

Require two things:
• Optimal Substructure
• Greedy Choice Function

Optimal Substructure:
• If 𝐴 is an optimal solution to a problem, then the components of 𝐴

are optimal solutions to subproblems

Greedy Choice Function
• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:
• Apply the Greedy Choice Function to pick an item
• Identify your subproblem, then solve it

Optimal Solution to big problem

Choice Optimal Solution to the rest
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1



Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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0 1

Subproblem of size 𝑛 − 1!
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a subtree
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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Huffman Algorithm
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Huffman Algorithm

Choose the least frequent pair, combine into 
a subtree
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Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least 

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution
• Optimal Substructure argument
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Showing Huffman is Optimal

First Step: Show any optimal tree is “full” (each node has either 0 or 2 
children)

14

W

R Y

0 1

0

0 1

W

R Y

10

0 1

𝑇 𝑇′

𝑇′ is a “better” tree than 𝑇, because all codes in 
red subtree are shorter in 𝑇′, without creating 
any longer codes



Huffman Exchange Argument

Claim: if 𝑐1, 𝑐2 are the least-frequent characters, then there is an optimal 
prefix-free code s.t. 𝑐1, 𝑐2 are siblings

• i.e. codes for 𝑐1, 𝑐2 are the same length and differ only by their last bit

15𝑐1

𝑇𝑜𝑝𝑡

𝑐2

Case 1: Consider some optimal tree 𝑇𝑜𝑝𝑡. If 𝑐1, 𝑐2 are siblings in this 

tree, then claim holds



Huffman Exchange Argument
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𝑐2

𝑎

𝑐1

𝑇𝑜𝑝𝑡

𝑏

Case 2: Consider some optimal tree 𝑇𝑜𝑝𝑡, in which 𝑐1, 𝑐2 are not siblings

Let 𝑎, 𝑏 be the two characters of lowest 
depth that are siblings 
(Why must they exist?)

Idea: show that swapping 𝑐1 with 𝑎 does 
not increase cost of the tree. 
Similar for 𝑐2 and 𝑏
Assume: 𝑓𝑐1 ≤ 𝑓𝑎 and 𝑓𝑐2 ≤ 𝑓𝑏

Claim: if 𝑐1, 𝑐2 are the least-frequent characters, then there is an optimal 
prefix-free code s.t. 𝑐1, 𝑐2 are siblings

• i.e. codes for 𝑐1, 𝑐2 are the same length and differ only by their last bit



Case 2: 𝑐1, 𝑐2 are not siblings in 𝑇𝑜𝑝𝑡
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𝑐2

𝑎

𝑐1

𝑇𝑜𝑝𝑡

𝑏

• Claim: the least-frequent characters (𝑐1, 𝑐2), are siblings in 
some optimal tree

𝑎, 𝑏 = lowest-depth siblings

Idea: show that swapping 𝑐1 with 𝑎 does not increase cost of the tree.
Assume: 𝑓𝑐1 ≤ 𝑓𝑎

𝑐2

𝑐1

𝑎

𝑇′

𝑏

𝐵 𝑇𝑜𝑝𝑡 = 𝐶 + 𝑓𝑐1ℓ𝑐1 + 𝑓𝑎ℓ𝑎
𝐵 𝑇′ = 𝐶 + 𝑓𝑐1ℓ𝑎 + 𝑓𝑎ℓ𝑐1



Case 2: 𝑐1, 𝑐2 are not siblings in 𝑇𝑜𝑝𝑡
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𝑎, 𝑏 = lowest-depth siblings

Idea: show that swapping 𝑐1 with 𝑎 does not increase cost of the tree.
Assume: 𝑓𝑐1 ≤ 𝑓𝑎

𝐵 𝑇𝑜𝑝𝑡 = 𝐶 + 𝑓𝑐1ℓ𝑐1 + 𝑓𝑎ℓ𝑎
𝐵 𝑇′ = 𝐶 + 𝑓𝑐1ℓ𝑎 + 𝑓𝑎ℓ𝑐1

𝐵 𝑇𝑜𝑝𝑡 − 𝐵 𝑇′ = 𝐶 + 𝑓𝑐1ℓ𝑐1 + 𝑓𝑎ℓ𝑎 − (𝐶 + 𝑓𝑐1ℓ𝑎 + 𝑓𝑎ℓ𝑐1)

= 𝑓𝑐1ℓ𝑐1 + 𝑓𝑎ℓ𝑎 − 𝑓𝑐1ℓ𝑎 − 𝑓𝑎ℓ𝑐1

= 𝑓𝑐1(ℓ𝑐1 − ℓ𝑎) + 𝑓𝑎(ℓ𝑎 − ℓ𝑐1)

= (𝑓𝑎−𝑓𝑐1)(ℓ𝑎 − ℓ𝑐1)

≥ 0 ⇒ 𝑇′ optimal

• Claim: the least-frequent characters (𝑐1, 𝑐2), are siblings in 
some optimal tree



Case 2: 𝑐1, 𝑐2 are not siblings in 𝑇𝑜𝑝𝑡
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𝑐2

𝑎

𝑐1

𝑇𝑜𝑝𝑡

𝑏

𝑎, 𝑏 = lowest-depth siblings

Idea: show that swapping 𝑐1 with 𝑎 does not increase cost of the tree.
Assume: 𝑓𝑐1 ≤ 𝑓𝑎

𝑐2

𝑐1

𝑎

𝑇′

𝑏

𝐵 𝑇𝑜𝑝𝑡 = 𝐶 + 𝑓𝑐1ℓ𝑐1 + 𝑓𝑎ℓ𝑎
𝐵 𝑇′ = 𝐶 + 𝑓𝑐1ℓ𝑎 + 𝑓𝑎ℓ𝑐1

𝐵 𝑇𝑜𝑝𝑡 − 𝐵 𝑇′ = (𝑓𝑎−𝑓𝑐1)(ℓ𝑎 − ℓ𝑐1)
≥ 0 ≥ 0

𝐵 𝑇𝑜𝑝𝑡 − 𝐵 𝑇′ ≥ 0

𝑇′ is also optimal!

• Claim: the least-frequent characters (𝑐1, 𝑐2), are siblings in 
some optimal tree



Case 2:Repeat to swap 𝑐2, 𝑏!
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𝑐2

𝑐1

𝑎

𝑇′

𝑏

𝑎, 𝑏 = lowest-depth siblings

Idea: show that swapping 𝑐2 with 𝑏 does not increase cost of the tree.
Assume: 𝑓𝑐2 ≤ 𝑓𝑏

𝑏

𝑐1

𝑎

𝑇′′

𝑐2

𝐵 𝑇′ = 𝐶 + 𝑓𝑐2ℓ𝑐2 + 𝑓𝑏ℓ𝑏 𝐵 𝑇′′ = 𝐶 + 𝑓𝑐2ℓ𝑏 + 𝑓𝑏ℓ𝑐2

𝐵 𝑇′ − 𝐵 𝑇′′ = (𝑓𝑏−𝑓𝑐2)(ℓ𝑏 − ℓ𝑐2)

≥ 0 ≥ 0

𝐵 𝑇′ − 𝐵 𝑇′′ ≥ 0

𝑇′′ is also optimal! Claim holds!

• Claim: the least-frequent characters (𝑐1, 𝑐2), are siblings in 
some optimal tree



Showing Huffman is Optimal

Overview:
• Show that there is an optimal tree in which the least 

frequent characters are siblings
• Exchange argument

• Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution
• Optimal Substructure argument
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Proving Optimal Substructure

Goal: show that if 𝑥 is in an optimal solution, then the rest of the 
solution is an optimal solution to the subproblem.

Usually by Contradiction:
• Assume that 𝑥 must be an element of my optimal solution

• Assume that solving the subproblem induced from choice 𝑥, then adding in 𝑥
is not optimal

• Show that removing 𝑥 from a better overall solution must produce a better 
solution to the subproblem



Huffman Optimal Substructure

Goal: show that if 𝑐1, 𝑐2 are siblings in an optimal solution, then an 
optimal prefix free code can be found by using a new character with 
frequency 𝑓𝑐1 + 𝑓𝑐2 and then making 𝑐1, 𝑐2 its children.

By Contradiction:
• Assume that 𝑐1, 𝑐2 are siblings in at least one optimal solution

• Assume that solving the subproblem with this new character, then adding in 
𝑐1, 𝑐2 is not optimal

• Show that removing 𝑐1, 𝑐2 from a better overall solution must produce a 
better solution to the subproblem



Finishing the Proof

Show Recursive Substructure
• Show treating 𝑐1, 𝑐2 as a new “combined” character gives optimal solution
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Why does solving this smaller problem:

Give an optimal solution to this?:

𝑐1 𝑐2

𝑐1 𝑐2

𝜎



Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎
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𝑐1 𝑐2

𝑐1 𝑐2

𝜎

𝐹′

𝐹



Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎
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𝑇

𝑐1

𝜎

𝑐2

𝑇′

𝜎

If this is optimal Then this is optimal

𝑓𝜎 = 𝑓𝑐1 + 𝑓𝑐2

𝐵 𝑇′ = 𝐵 𝑇 − 𝑓𝑐1 − 𝑓𝑐2

ℓ𝑐1 = ℓ𝜎 + 1
ℓ𝑐2 = ℓ𝜎 + 1



Substructure
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𝑇

𝑐1

𝜎

𝑐2

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐1

𝑈

𝑐2

Toward contradiction

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎



Substructure
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𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐1

𝑈

𝑐2

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓𝑐1 − 𝑓𝑐2

< 𝐵 𝑇 − 𝑓𝑐1 − 𝑓𝑐2

= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is 
optimal!

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎



Optimal Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎
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𝑐1 𝑐2

𝑐1 𝑐2

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐1

𝜎

𝑐2

𝑐1

𝑈

𝑐2

>
>

Contradiction!



Let’s Talk About Memory
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Why using lots of memory is “bad”

Using too much memory forces you to use slow memory

Memory == $$

May have too little memory for the algorithm to even run

Lots of memory => not parallelizable

Contention for the memory

Memory <= time 

Von Neumann bottleneck

Cache coherency

Fast memory is expensive
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Von Neumann Bottleneck

Named for John von Neumann

Inventor of modern computer architecture

Other notable influences include:
• Mathematics 

• Physics

• Economics 

• Computer Science
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Von Neumann Bottleneck

Reading from memory is VERY slow

Big memory = slow memory

Solution: hierarchical memory

Takeaway for Algorithms: Memory is time, more memory is a lot more 
time

33

CPU, 
registers

Cache
Disk

If not look here

Hopefully your 
data in here

Hope it’s not here

Access time: 
1 cycle

Access time: 
10 cycles

Access time: 
1,000,000 cycles



Caching Problem

Cache misses are very expensive

When we load something new into cache, we must eliminate 
something already there

We want the best cache “schedule” to minimize the number of misses
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Caching Problem Definition

Input: 
• 𝑘 = size of the cache

• 𝑀 = 𝑚1, 𝑚2, …𝑚𝑛 = memory access pattern

Output: 
• “schedule” for the cache (list of items in the cache at each time) which 

minimizes cache fetches
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Example

36

A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A

B

C



Example
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Example
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Example
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A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A

B

C

We must evict 
something to make 
room for D

A

B

C

A

B

C

A

B

C



Example
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D

B

C

If we evict AA

B

C

A

B

C

A

B

C

A

B

C



Example
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A

B

D

If we evict CA

B

C

A

B

C

A

B

C

A

B

C



Our Problem vs Reality

Assuming we know the entire access pattern

Cache is Fully Associative

Counting # of fetches (not necessarily misses)

“Reduced” Schedule: Address only loaded on the cycle it’s required
• Reduced == Unreduced (by number of fetches)
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A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A

B

C

A

B

C

A

B

C

A

B

C

D

B

C

D

B

C

A

B

C

A

B

C

Unreduced

Reduced
Leaving A in longer does 
not save fetches



Greedy Algorithms

Require Optimal Substructure
• Solution to larger problem contains the solution to a smaller one

• Only one subproblem to consider!

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Greedy choice property

Belady evict rule:
• Evict the item accessed farthest in the future

44
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Greedy choice property

Belady evict rule:
• Evict the item accessed farthest in the future
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Greedy choice property

Belady evict rule:
• Evict the item accessed farthest in the future
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Greedy choice property

Belady evict rule:
• Evict the item accessed farthest in the future
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Greedy choice property

Belady evict rule:
• Evict the item accessed farthest in the future
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4 Cache Misses



Greedy Algorithms

Require Optimal Substructure
• Solution to larger problem contains the solution to a smaller one

• Only one subproblem to consider!

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses

For each 𝑚𝑖 ∈ 𝑀:

if 𝑚𝑖 ∈ 𝑐𝑎𝑐ℎ𝑒:

print 𝑐𝑎𝑐ℎ𝑒

else:

𝑚 = furthest-in-future from cache

evict 𝑚, load 𝑚𝑖

print 𝑐𝑎𝑐ℎ𝑒
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𝑂(𝑘)

𝑛 times

𝑂(𝑘)

𝑂(𝑘)

𝑂(𝑘𝑛)

𝑂(1)

𝑂(𝑘)
𝑂(𝑘𝑛2)



Exchange argument

Shows correctness of a greedy algorithm

Idea:
• Show exchanging an item from an arbitrary optimal solution with your greedy 

choice makes the new solution no worse

• How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse by 

replacing it with the same item from my sandwich”
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Belady Exchange Lemma

Let 𝑆𝑓𝑓 be the schedule chosen by our greedy algorithm

Let 𝑆𝑖 be a schedule which agrees with 𝑆𝑓𝑓 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆𝑖+1 which agrees with 𝑆𝑓𝑓 for the first 
𝑖 + 1 memory accesses, and has no more misses than 𝑆𝑖
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖))

52

𝑆∗

Agrees with 
𝑆𝑓𝑓 on first 0 

accesses

𝑆1 𝑆2
Agrees with 
𝑆𝑓𝑓 on first  

access

Agrees with 
𝑆𝑓𝑓 on first 2  

accesses

… 𝑆𝑓𝑓
Agrees with 
𝑆𝑓𝑓 on all 𝑛

accesses

Lemma Lemma Lemma Lemma
Optimal

Greedy 



Belady Exchange Proof Idea

53

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1

First 𝑖 accesses

Must agree with 𝑆𝑓𝑓

Need to fill in the rest 
of 𝑆𝑖+1 to have no 

more misses than 𝑆𝑖



𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same
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𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆𝑖 nor 𝑆𝑓𝑓
evict from the cache, use the same cache for 𝑆𝑖+1

𝑓𝑒 𝑓𝑒

𝑆𝑖+1 Cache after 𝑖 𝑓𝑒

𝑑 𝑑

𝑑



𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same

55

𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆𝑖 and 
𝑆𝑓𝑓 evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆𝑖+1

𝑆𝑖+1 Cache after 𝑖 𝑑𝑒



𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same

56

𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆𝑖 evicts 𝑒 and 𝑆𝑓𝑓
evicts 𝑓 from the cache

𝑆𝑖 Cache after 𝑖 + 1 𝑆𝑓𝑓 Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒



Case 3

57

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1

First 𝑖 accesses

Must agree with 𝑆𝑓𝑓

Need to fill in the rest 
of 𝑆𝑖+1 to have no 

more misses than 𝑆𝑖



Case 3

58

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑚𝑡

First 𝑖 accesses

First place 𝑆𝑖 involves 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚𝑡 = 𝑒

59

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑒

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚𝑡 = 𝑒

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

60

𝑆𝑖 Cache after 𝑡 − 1 𝑆𝑖+1 Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆𝑖 must load 𝑒 into 
the cache, assume it 
evicts 𝑥

𝑆𝑖+1 will load 𝑓 into 
the cache, evicting 𝑥

𝑆𝑖+1 behaved exactly the same as 𝑆𝑖 between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

The caches now match!

𝑥 𝑥

𝑒 𝑓



Case 3, 𝑚𝑡 = 𝑓

61

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑓

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚𝑡 = 𝑓

Cannot Happen!

62

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑓

First place 𝑆𝑖 uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!



Case 3, 𝑚𝑡 = 𝑥 ≠ 𝑒, 𝑓

63

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑥

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚𝑡 = 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

64

𝑆𝑖 Cache after 𝑡 − 1 𝑆𝑖+1 Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆𝑖 loads 𝑥 into the 
cache, it must be 
evicting 𝑓

𝑆𝑖+1 will load 𝑥 into 
the cache, evicting 𝑒

𝑆𝑖+1 behaved exactly the same as 𝑆𝑖 between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

𝑥 𝑥

The caches now match!



Use Lemma to show Optimality

65

𝑆∗

Agrees with 
𝑆𝑓𝑓 on first 0 

accesses

𝑆1 𝑆2
Agrees with 
𝑆𝑓𝑓 on first  

access

Agrees with 
𝑆𝑓𝑓 on first 2  

accesses

… 𝑆𝑓𝑓
Agrees with 
𝑆𝑓𝑓 on all 𝑛

accesses

Lemma Lemma Lemma Lemma


