CS 3100 Data Structures and Algorithms 2 Lecture 15: Huffman Encoding &

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS 4th edition:

• Chapter 16

Announcements

- PS6 due tomorrow (3/20)
- PA3 due Friday (3/22)
- Grading update
 - Quiz 1 and PS3 have been returned
 - We are currently grading: Quiz 2, PS4, PS5
- Office hours (reminder)
 - Prof Hott Office Hours: Traveling this week
 - Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
 - TA office hours posted on our website
 - Office hours are not for "pre-grading"

Reminders about Greedy Algorithms

Greedy Algorithms

Require two things:

- Optimal Substructure
- Greedy Choice Function

Optimal Substructure:

Optimal Solution to big problem

Choice	Optimal Solution to the rest
--------	------------------------------

• If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems

Greedy Choice Function

• The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:

- Apply the Greedy Choice Function to pick an item
- Identify your subproblem, then solve it

Choose the least frequent pair, combine into a subtree

Subproblem of size n - 1!

12

Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least frequent characters are siblings
 - Exchange argument
- Show that making them siblings and solving the new smaller sub-problem <u>results in</u> an optimal solution
 - Optimal Substructure argument

Showing Huffman is Optimal

First Step: Show any optimal tree is "full" (each node has either 0 or 2 children)

Huffman Exchange Argument

Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings

• i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 1: Consider some optimal tree T_{opt} . If c_1, c_2 are siblings in this tree, then claim holds

Huffman Exchange Argument

Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings

• i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 2: Consider some optimal tree T_{opt} , in which c_1 , c_2 are not siblings

Let *a*, *b* be the two characters of lowest depth that are siblings (Why must they exist?)

Idea: show that swapping c_1 with a does not increase cost of the tree. Similar for c_2 and bAssume: $f_{c1} \leq f_a$ and $f_{c2} \leq f_b$

Case 2: c_1, c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

Case 2: c_1, c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

$$B(T_{opt}) = C + f_{c1}\ell_{c1} + f_a\ell_a \qquad B(T') = C + f_{c1}\ell_a + f_a\ell_{c1}$$

$$\geq 0 \Rightarrow T' \text{ optimal}$$

$$B(T_{opt}) - B(T') = C + f_{c1}\ell_{c1} + f_a\ell_a - (C + f_{c1}\ell_a + f_a\ell_{c1})$$

$$= f_{c1}\ell_{c1} + f_a\ell_a - f_{c1}\ell_a - f_a\ell_{c1}$$

$$= f_{c1}(\ell_{c1} - \ell_a) + f_a(\ell_a - \ell_{c1})$$

$$= (f_a - f_{c1})(\ell_a - \ell_{c1})$$

Case 2: c_1, c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

Case 2:Repeat to swap $c_2, b!$

- Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree
 - a, b =lowest-depth siblings

Idea: show that swapping c_2 with b does not increase cost of the tree. Assume: $f_{c2} \leq f_b$

Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least frequent characters are siblings
 - Exchange argument
- Show that making them siblings and solving the new smaller sub-problem <u>results in</u> an optimal solution
 - Optimal Substructure argument

Proving Optimal Substructure

Goal: show that if x is in an optimal solution, then the rest of the solution is an optimal solution to the subproblem.

Usually by Contradiction:

- Assume that x must be an element of my optimal solution
- Assume that solving the subproblem induced from choice x, then adding in x is not optimal
- Show that removing x from a better overall solution must produce a better solution to the subproblem

Huffman Optimal Substructure

Goal: show that if c_1, c_2 are siblings in an optimal solution, then an optimal prefix free code can be found by using a new character with frequency $f_{c_1} + f_{c_2}$ and then making c_1, c_2 its children.

By Contradiction:

- Assume that c_1, c_2 are siblings in at least one optimal solution
- Assume that solving the subproblem with this new character, then adding in c_1, c_2 is not optimal
- Show that removing c_1, c_2 from a better overall solution must produce a better solution to the subproblem

Finishing the Proof

Show Recursive Substructure

• Show treating c_1, c_2 as a new "combined" character gives optimal solution

Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

B(U) < B(T)

Optimal Substructure

Let's Talk About Memory

Why using lots of memory is "bad"

Using too much memory forces you to use slow memory

Memory == \$\$

May have too little memory for the algorithm to even run

Lots of memory => not parallelizable

Contention for the memory

Memory <= time

Von Neumann bottleneck

Cache coherency

Fast memory is expensive

Von Neumann Bottleneck

Named for John von Neumann

Inventor of modern computer architecture

Other notable influences include:

- Mathematics
- Physics
- Economics
- Computer Science

Von Neumann Bottleneck

Reading from memory is VERY slow

Big memory = slow memory

Solution: hierarchical memory

Takeaway for Algorithms: Memory is time, more memory is a lot more time

Caching Problem

Cache misses are very expensive

When we load something new into cache, we must eliminate something already there

We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

Input:

- k = size of the cache
- $M = [m_1, m_2, ..., m_n] = memory access pattern$

Output:

• "schedule" for the cache (list of items in the cache at each time) which minimizes cache fetches

$\begin{bmatrix} A & A \\ B & B \\ C & C \\ \hline A & B & C & D & A & D & E & A & D & B & A & E & C & E & A \\ \checkmark & \checkmark & \checkmark & \checkmark & \checkmark$

$\begin{array}{c|cc} A & A \\ B \\ C & C \\ \hline C & C \\ \hline A & B \\ \hline \checkmark & \checkmark & \checkmark & \downarrow & \downarrow \\ \hline \end{array}$

Our Problem vs Reality

Assuming we know the entire access pattern

Cache is Fully Associative

Counting # of fetches (not necessarily misses)

"Reduced" Schedule: Address only loaded on the cycle it's required

• Reduced == Unreduced (by number of fetches)

Greedy Algorithms

Require Optimal Substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

- 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

Belady evict rule:

Belady evict rule:

Belady evict rule:

Belady evict rule:

Belady evict rule:

• Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

Require Optimal Substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

- 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

```
Initialize cache = first k accesses
                                       O(k)
For each m_i \in M:
                       n times
     if m_i \in cache:
print cache
O(k)
O(k)
       else:
              m = furthest-in-future from cache
                                                           O(kn)
              evict m_i load m_i
                                    0(1)
              print cache
                              O(k)
```


Exchange argument

Shows correctness of a greedy algorithm

Idea:

- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Belady Exchange Lemma

Let S_{ff} be the schedule chosen by our greedy algorithm Let S_i be a schedule which agrees with S_{ff} for the first *i* memory accesses. We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i + 1 memory accesses, and has no more misses than S_i (i.e. $misses(S_{i+1}) \leq misses(S_i)$)

Belady Exchange Proof Idea

First *i* accesses

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \le misses(S_i)$

Since S_i agrees with S_{ff} for the first *i* accesses, the state of the cache at access i + 1 will be the same

$$S_i$$
 Cache after i d e f S_{ff} Cache after i d e f

Consider access $m_{i+1} = d$

Case 1: if d is in the cache, then neither S_i nor S_{ff} evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \le misses(S_i)$

Since S_i agrees with S_{ff} for the first *i* accesses, the state of the cache at access i + 1 will be the same

Case 2: if d isn't in the cache, and both S_i and S_{ff} evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \le misses(S_i)$

Since S_i agrees with S_{ff} for the first *i* accesses, the state of the cache at access i + 1 will be the same

Case 3: if d isn't in the cache, S_i evicts e and S_{ff} evicts f from the cache

$$S_i$$
 Cache after $i+1$ d f \neq S_{ff} Cache after $i+1$ e d

3 options: $m_t = e$ or $m_t = f$ or $m_t = x
eq e, f$

58

Case 3, $m_t = e$

 m_t = the first access after i + 1 in which S_i deals with e or f3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

59

Case 3, $m_t = e$

Goal: find
$$S_{i+1}$$
 s.t. $misses(S_{i+1}) \le misses(S_i)$

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Case 3, $m_t = f$

 m_t = the first access after i + 1 in which S_i deals with e or f3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

61

Case 3, $m_t = f$

Cannot Happen!

Case 3, $m_t = x \neq e$, f

 m_t = the first access after i + 1 in which S_i deals with e or f3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

63

Case 3, $m_t = x \neq e$, f

Goal: find
$$S_{i+1}$$
 s.t. $misses(S_{i+1}) \le misses(S_i)$

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Use Lemma to show Optimality

