CS 3100

Data Structures and Algorithms 2 Lecture 15: Huffman Encoding \&

Co-instructors: Robbie Hott and Ray Pettit Spring 2024

Readings in CLRS $4^{\text {th }}$ edition:

- Chapter 16

Announcements

- PS6 due tomorrow (3/20)
- PA3 due Friday (3/22)
- Grading update
- Quiz 1 and PS3 have been returned
- We are currently grading: Quiz 2, PS4, PS5
- Office hours (reminder)
- Prof Hott Office Hours: Traveling this week
- Prof Pettit Office Hours: Mondays and Fridays 2:30-4:00p
- TA office hours posted on our website
- Office hours are not for "pre-grading"

Reminders about Greedy Algorithms

Greedy Algorithms

Optimal Solution to big problem
Require two things:

- Optimal Substructure
- Greedy Choice Function

Optimal Substructure:

- If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
Greedy Choice Function
- The rule for how to choose an item guaranteed be in the optimal solution

Greedy Algorithm Procedure:

- Apply the Greedy Choice Function to pick an item
- Identify your subproblem, then solve it

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Subproblem of size $n-1$!

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Huffman Algorithm

Choose the least frequent pair, combine into a subtree

Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least frequent characters are siblings
- Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
- Optimal Substructure argument

Showing Huffman is Optimal

First Step: Show any optimal tree is "full" (each node has either 0 or 2 children)

T^{\prime} is a "better" tree than T, because all codes in red subtree are shorter in T^{\prime}, without creating any longer codes

Huffman Exchange Argument

Claim: if c_{1}, c_{2} are the least-frequent characters, then there is an optimal prefix-free code s.t. c_{1}, c_{2} are siblings

- i.e. codes for c_{1}, c_{2} are the same length and differ only by their last bit

Case 1: Consider some optimal tree $T_{o p t}$. If c_{1}, c_{2} are siblings in this tree, then claim holds

Huffman Exchange Argument

Claim: if c_{1}, c_{2} are the least-frequent characters, then there is an optimal prefix-free code s.t. c_{1}, c_{2} are siblings

- i.e. codes for c_{1}, c_{2} are the same length and differ only by their last bit

Case 2: Consider some optimal tree $T_{o p t}$, in which c_{1}, c_{2} are not siblings Let a, b be the two characters of lowest
 depth that are siblings (Why must they exist?)

Idea: show that swapping c_{1} with a does not increase cost of the tree.
Similar for c_{2} and b
Assume: $f_{c 1} \leq f_{a}$ and $f_{c 2} \leq f_{b}$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$
$B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a}$

$$
B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}
$$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$

$$
\begin{aligned}
B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1} & +f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1} \\
& \geq 0 \Rightarrow T^{\prime} \text { optimal } \\
B\left(T_{o p t}\right)-B\left(T^{\prime}\right) & =C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a}-\left(C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}\right) \\
& =f_{c 1} \ell_{c 1}+f_{a} \ell_{a}-f_{c 1} \ell_{a}-f_{a} \ell_{c 1} \\
& =f_{c 1}\left(\ell_{c 1}-\ell_{a}\right)+f_{a}\left(\ell_{a}-\ell_{c 1}\right) \\
& =\left(f_{a}-f_{c 1}\right)\left(\ell_{a}-\ell_{c 1}\right)
\end{aligned}
$$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$
$B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}$

$$
\begin{gathered}
B\left(T_{o p t}\right)-B\left(T^{\prime}\right)=\left(f_{a}-f_{c 1}\right)\left(\ell_{a}-\ell_{c 1}\right) \\
\geq 0 \\
B\left(T_{o p t}\right)-B\left(T^{\prime}\right) \geq 0 \\
T^{\prime} \text { is also optimal! }
\end{gathered}
$$

Case 2:Repeat to swap c_{2}, b !

- Claim: the least-frequent characters (c_{1}, c_{2}), are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{2} with b does not increase cost of the tree.
Assume: $f_{c 2} \leq f_{b}$
$B\left(T^{\prime}\right)=C+f_{c 2} \ell_{c 2}+f_{b} \ell_{b}$

$$
B\left(T^{\prime \prime}\right)=C+f_{c 2} \ell_{b}+f_{b} \ell_{c 2}
$$

$$
\begin{gathered}
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right)=\left(f_{b}-f_{c 2}\right)\left(\ell_{b}-\ell_{c 2}\right) \\
\geq 0 \\
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) \geq 0 \\
T^{\prime \prime} \text { is also optimal! Claim holds! }
\end{gathered}
$$

Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least frequent characters are siblings
- Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
- Optimal Substructure argument

Proving Optimal Substructure

Goal: show that if x is in an optimal solution, then the rest of the solution is an optimal solution to the subproblem.
Usually by Contradiction:

- Assume that x must be an element of my optimal solution
- Assume that solving the subproblem induced from choice x, then adding in x is not optimal
- Show that removing x from a better overall solution must produce a better solution to the subproblem

Huffman Optimal Substructure

Goal: show that if c_{1}, c_{2} are siblings in an optimal solution, then an optimal prefix free code can be found by using a new character with frequency $f_{c_{1}}+f_{c_{2}}$ and then making c_{1}, c_{2} its children.
By Contradiction:

- Assume that c_{1}, c_{2} are siblings in at least one optimal solution
- Assume that solving the subproblem with this new character, then adding in c_{1}, c_{2} is not optimal
- Show that removing c_{1}, c_{2} from a better overall solution must produce a better solution to the subproblem

Finishing the Proof

Show Recursive Substructure

- Show treating c_{1}, c_{2} as a new "combined" character gives optimal solution

Why does solving this smaller problem:

Give an optimal solution to this?:

Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

F

Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

If this is optimal

Then this is optimal

$$
B\left(T^{\prime}\right)=B(T)-f_{c 1}-f_{c 2}
$$

Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Toward contradiction
Suppose T is not optimal
Let U be a lower-cost tree
$B(U)<B(T)$

Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ
 optimal!

Optimal Substructure

Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Let’s Talk About Memory

Why using lots of memory is "bad"

Using too much memory forces you to use slow memory
Memory == \$\$
May have too little memory for the algorithm to even run
Lots of memory => not parallelizable
Contention for the memory
Memory <= time
Von Neumann bottleneck
Cache coherency
Fast memory is expensive

Von Neumann Bottleneck

Named for John von Neumann Inventor of modern computer architecture Other notable influences include:

- Mathematics
- Physics
- Economics
- Computer Science

Von Neumann Bottleneck

Reading from memory is VERY slow

Big memory = slow memory
Solution: hierarchical memory
Takeaway for Algorithms: Memory is time, more memory is a lot more time

Caching Problem

Cache misses are very expensive
When we load something new into cache, we must eliminate something already there
We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

Input:

- $k=$ size of the cache
- $M=\left[m_{1}, m_{2}, \ldots m_{n}\right]=$ memory access pattern

Output:

- "schedule" for the cache (list of items in the cache at each time) which minimizes cache fetches

Example

Example

\section*{| | A |
| :--- | :--- |
| | A |
| B | B |
| C | C |
| | |
 A B C D A D E A D B A E C EA}

Example

\section*{	A	A	A
B	B	B	
C	C	C	
			 A B C D A D E A D B A E C E A}

Example

Example

Example

Our Problem vs Reality

Assuming we know the entire access pattern
Cache is Fully Associative
Counting \# of fetches (not necessarily misses)
"Reduced" Schedule: Address only loaded on the cycle it's required

- Reduced $==$ Unreduced (by number of fetches)

$A B C D A D E A D B A E C E A$

Greedy Algorithms

Require Optimal Substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Greedy choice property

Belady evict rule:

- Evict the item accessed farthest in the future

Evict C
A B C D A D E A D B A E C E A

Greedy choice property

Belady evict rule:

- Evict the item accessed farthest in the future

Evict B
A B C D A D EA D B A E C E A

Greedy choice property

Belady evict rule:

- Evict the item accessed farthest in the future

| A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| B | B | B | B | B | B | E | E | E | E |
| C | C | C | D |

Evict D
A B C D A D E A D B A E C E A

Greedy choice property

Belady evict rule:

- Evict the item accessed farthest in the future

A	A	A	A	A	A	A	A	A	A	A	A	A
B	B	B	B	B	B	E	E	E	E	E	E	E
C	C	C	D	D	D	D	D	D	B	B	B	B

Evict B

Greedy choice property

Belady evict rule:

- Evict the item accessed farthest in the future

| A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | B | B | B | B | B | E | E | E | E | E | E | E | E | E |
| C | C | C | D | D | D | D | D | D | B | B | B | C | C | C |

4 Cache Misses

Greedy Algorithms

Require Optimal Substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

Initialize cache $=$ first k accesses

$$
O(k)
$$

For each $m_{i} \in M$:
if $m_{i} \in$ cache: print cache
else:

$$
O(k)
$$

$m=$ furthest-in-future from cache evict m, load m_{i} print cache

Exchange argument

Shows correctness of a greedy algorithm
Idea:

- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Belady Exchange Lemma

Let $S_{f f}$ be the schedule chosen by our greedy algorithm
Let S_{i} be a schedule which agrees with $S_{f f}$ for the first i memory accesses. We will show: there is a schedule S_{i+1} which agrees with $S_{f f}$ for the first
$i+1$ memory accesses, and has no more misses than S_{i}
(i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$)

Belady Exchange Proof Idea

First i accesses

"- -
Need to fill in the rest of S_{i+1} to have no more misses than S_{i}
Must agree with $S_{f f}$

Proof of Lemma

Goal: find S_{i+1} s.t. misses $\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

| S_{i} Cache after i | d | e | f |
| :--- | :--- | :--- | :--- |$=$| $S_{f f}$ Cache after i | d | e | f |
| :--- | :--- | :--- | :--- |

Consider access $m_{i+1}=d$
Case 1: if d is in the cache, then neither S_{i} nor $S_{f f}$ evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. misses $\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

Consider access $m_{i+1}=d$
Case 2: if d isn't in the cache, and both S_{i} and $S_{f f}$ evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. misses $\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

Consider access $m_{i+1}=d$
Case 3: if d isn't in the cache, S_{i} evicts e and $S_{f f}$ evicts f from the cache

Case 3

First i accesses

Must agree with $S_{f f}$
$S_{f f} \square \square \square \square \square \square \square \square$

Case 3

First i accesses

First place S_{i} involves e or f

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f 3 options: $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{e}$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{f}$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{x} \neq \boldsymbol{e}, \boldsymbol{f}$

Case 3, $m_{t}=e$

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f 3 options: $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{e}$ or $m_{t}=f$ or $m_{t}=x \neq e, f$

Case $3, m_{t}=e$

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

S_{i} must load e into the cache, assume it

S_{i+1} will load f into the cache, evicting x evicts x

The caches now match!
S_{i+1} behaved exactly the same as S_{i} between i and t, and has the same cache after t, therefore $\operatorname{misses}\left(S_{i+1}\right)=\operatorname{misses}\left(S_{i}\right)$

Case 3, $m_{t}=f$

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f 3 options: $m_{t}=e$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{f}$ or $m_{t}=x \neq e, f$

Case 3, $m_{t}=f$

Cannot Happen!

Case $3, m_{t}=x \neq e, f$

First i accesses

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f 3 options: $m_{t}=e$ or $m_{t}=f$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{x} \neq \boldsymbol{e}, \boldsymbol{f}$

Case $3, m_{t}=x \neq e, f$

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

S_{i} loads x into the cache, it must be evicting f

The caches now match!

S_{i+1} behaved exactly the same as S_{i} between i and t, and has the same cache after t, therefore $\operatorname{misses}\left(S_{i+1}\right)=\operatorname{misses}\left(S_{i}\right)$

Use Lemma to show Optimality

$S_{\text {Agrees with }}^{*}$

Agrees with
$S_{f f}$ on first 0
accesses

Agrees with
access first

$S_{f f}$ on first 2
accesses

