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problem 1 Dynamic Programming

1. If a problem can be defined recursively but its subproblems do not overlap and are not
repeated, then is dynamic programming a good design strategy for this problem? If not, is
there another design strategy that might be better?

Solution:

2. As part of our process for creating a dynamic programming solution, we searched for a good
order for solving the subproblems. Briefly (and intuitively) describe the difference between
a top-down and bottom-up approach.

Solution:

problem 2 Birthday Prank

Prof Hott’s brother-in-law loves pranks, and in the past he’s played the nested-present-boxes
prank. I want to repeat this prank on his birthday this year by putting his tiny gift in a bunch
of progressively larger boxes, so that when he opens the large box there’s a smaller box inside,
which contains a smaller box, etc., until he’s finally gotten to the tiny gift inside. The problem is
that I have a set of n boxes after our recent move and I need to find the best way to nest them
inside of each other. Write a dynamic programming algorithm which, given a f its(bi, bj) function
that determines if box bi fits inside box bj, returns the maximum number of boxes I can nest (i.e.
gives the count of the maximum number of boxes my brother-in-law must open).

Solution:

problem 3 Arithmetic Optimization

You are given an arithmetic expression containing n integers and the only operations are ad-
ditions (+) and subtractions (−). There are no parenthesis in the expression. For example, the
expression might be: 1 + 2 − 3 − 4 − 5 + 6.

You can change the value of the expression by choosing the best order of operations:

((((1 + 2)− 3)− 4)− 5) + 6 = −3
(((1 + 2)− 3)− 4)− (5 + 6) = −15
((1 + 2)− ((3 − 4)− 5)) + 6 = 15
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Give a dynamic programming algorithm that computes the maximum possible value of the
expression. You may assume that the input consists of two arrays: nums which is the list of n
integers and ops which is the list of operations (each entry in ops is either ’+’ or ’-’), where
ops[0] is the operation between nums[0] and nums[1]. Hint: consider a similar strategy to our
algorithm for matrix chaining.

Solution:

problem 4 Stranger Things

The town of Hawkins, Indiana is being overrun by interdimensional beings called Demogor-
gons. The Hawkins lab has developed a Demogorgon Defense Device (DDD) to help protect the
town. The DDD continuously monitors the inter-dimensional ether to perfectly predict all future
Demogorgon invasions.

The DDD allows Hawkins to predict that i days from now ai Demogorgons will attack. The
DDD has a laser gun that is able to eliminate Demogorgons, but the device takes a lot of time to
charge. In general, charging the laser for j days will allow it to eliminate dj Demogorgons.

Example: Suppose (a1, a2, a3, a4) = (1, 10, 10, 1) and (d1, d2, d3, d4) = (1, 2, 4, 8). The best solution
is to fire the laser at times 3, 4 in order to eliminate 5 Demogorgons.

1. Construct an instance of the problem on which the following “greedy” algorithm returns
the wrong answer:

BADLASER((a1, a2, a3, . . . , an), (d1, d2, d3, , . . . , dn)) :
Compute the smallest j such that dj ≥ an, Set j = n if no such j exists

Shoot the laser at time n
if n > j then BADLASER((a1, . . . , an−j), (d1, . . . , dn−j))

Intuitively, the algorithm figures out how many days (j) are needed to kill all the Demogor-
gons in the last time slot. It shoots during that last time slot, and then accounts for the j
days required to recharge for that last slot, and recursively considers the best solution for
the smaller problem of size n − j.

Solution:

2. Given an array holding ai and dj, devise a dynamic programming algorithm that eliminates
the maximum number of Demogorgons. Analyze the running time of your solution. Hint: it
is always optimal to fire during the last time slot.

Solution:


