
Problem Set 4 yourid
data structures and algorithms 2 - fall 2023 due november 3, 2023 at 11:59 pm

Collaboration Policy: You are encouraged to collaborate with up to 4 other students, but all work submitted must be your
own independently written solution. List the computing ids of all of your collaborators in the collabs command at the top
of the tex file. Do not share written notes, documents (including Google docs, Overleaf docs, discussion notes, PDFs), or
code. Do not seek published or online solutions for any assignments. If you use any published or online resources (which
may not include solutions) when completing this assignment, be sure to cite them. Do not submit a solution that you are
unable to explain orally to a member of the course staff. Any solutions that share similar text/code will be considered in
breach of this policy. Please refer to the syllabus for a complete description of the collaboration policy.

Collaborators: list your collaborators
Sources: list your sources

problem 1 Dynamic Programming

1. If a problem can be defined recursively but its subproblems do not overlap and are not
repeated, then is dynamic programming a good design strategy for this problem? If not, is
there another design strategy that might be better?

Solution:

2. As part of our process for creating a dynamic programming solution, we searched for a good
order for solving the subproblems. Briefly (and intuitively) describe the difference between
a top-down and bottom-up approach.

Solution:

problem 2 Birthday Prank

Prof Hott’s brother-in-law loves pranks, and in the past he’s played the nested-present-boxes
prank. I want to repeat this prank on his birthday this year by putting his tiny gift in a bunch
of progressively larger boxes, so that when he opens the large box there’s a smaller box inside,
which contains a smaller box, etc., until he’s finally gotten to the tiny gift inside. The problem is
that I have a set of n boxes after our recent move and I need to find the best way to nest them
inside of each other. Write a dynamic programming algorithm which, given a f its(bi, bj) function
that determines if box bi fits inside box bj, returns the maximum number of boxes I can nest (i.e.
gives the count of the maximum number of boxes my brother-in-law must open).

Solution:

problem 3 Arithmetic Optimization

You are given an arithmetic expression containing n integers and the only operations are ad-
ditions (+) and subtractions (−). There are no parenthesis in the expression. For example, the
expression might be: 1 + 2 − 3 − 4 − 5 + 6.

You can change the value of the expression by choosing the best order of operations:

((((1 + 2)− 3)− 4)− 5) + 6 = −3
(((1 + 2)− 3)− 4)− (5 + 6) = −15
((1 + 2)− ((3 − 4)− 5)) + 6 = 15



yourid PS 4 - 2

Give a dynamic programming algorithm that computes the maximum possible value of the
expression. You may assume that the input consists of two arrays: nums which is the list of n
integers and ops which is the list of operations (each entry in ops is either ’+’ or ’-’), where
ops[0] is the operation between nums[0] and nums[1]. Hint: consider a similar strategy to our
algorithm for matrix chaining.

Solution:

problem 4 Stranger Things

The town of Hawkins, Indiana is being overrun by interdimensional beings called Demogor-
gons. The Hawkins lab has developed a Demogorgon Defense Device (DDD) to help protect the
town. The DDD continuously monitors the inter-dimensional ether to perfectly predict all future
Demogorgon invasions.

The DDD allows Hawkins to predict that i days from now ai Demogorgons will attack. The
DDD has a laser gun that is able to eliminate Demogorgons, but the device takes a lot of time to
charge. In general, charging the laser for j days will allow it to eliminate dj Demogorgons.

Example: Suppose (a1, a2, a3, a4) = (1, 10, 10, 1) and (d1, d2, d3, d4) = (1, 2, 4, 8). The best solution
is to fire the laser at times 3, 4 in order to eliminate 5 Demogorgons.

1. Construct an instance of the problem on which the following “greedy” algorithm returns
the wrong answer:

BADLASER((a1, a2, a3, . . . , an), (d1, d2, d3, , . . . , dn)) :
Compute the smallest j such that dj ≥ an, Set j = n if no such j exists

Shoot the laser at time n
if n > j then BADLASER((a1, . . . , an−j), (d1, . . . , dn−j))

Intuitively, the algorithm figures out how many days (j) are needed to kill all the Demogor-
gons in the last time slot. It shoots during that last time slot, and then accounts for the j
days required to recharge for that last slot, and recursively considers the best solution for
the smaller problem of size n − j.

Solution:

2. Given an array holding ai and dj, devise a dynamic programming algorithm that eliminates
the maximum number of Demogorgons. Analyze the running time of your solution. Hint: it
is always optimal to fire during the last time slot.

Solution:


