Collaboration Policy: You are encouraged to collaborate with up to 4 other students, but all work submitted must be your own independently written solution. List the computing ids of all of your collaborators in the collabs command at the top of the tex file. Do not share written notes, documents (including Google docs, Overleaf docs, discussion notes, PDFs), or code. Do not seek published or online solutions for any assignments. If you use any published or online resources (which may not include solutions) when completing this assignment, be sure to cite them. Do not submit a solution that you are unable to explain orally to a member of the course staff. Any solutions that share similar text/code will be considered in breach of this policy. Please refer to the syllabus for a complete description of the collaboration policy.

Collaborators: list your collaborators
Sources: list your sources
problem 1 Order class proof using limits
Prove that $n^{k} \in o\left(a^{n}\right)$ for $a>1$. Use the limit definition of the order class. If you find you need to use L'Hôpital's rule, note that $\left(a^{n}\right)^{\prime}=(\log a) a^{n}$.

Solution:

problem 2 FlyMe Airlines
An airline, FlyMe Airlines, is analyzing their network of airport connections. They have a graph $G=(A, E)$ that represents the set of airports A and their flight connections E between them. They define hops $\left(a_{i}, a_{k}\right)$ to be the smallest number of flight connections between two airports. They define maxHops $\left(a_{i}\right)$ to be the number of hops to the airport that is farthest from a_{i}, i.e. $\operatorname{maxHops}\left(a_{i}\right)=\max \left(\operatorname{hops}\left(a_{i}, a_{j}\right)\right) \forall a_{j} \in A$.

The airline wishes to define one or more of their airports to be "Core 1 airports." Each Core 1 airport a_{i} will have a value of max $\operatorname{Hops}\left(a_{i}\right)$ that is no larger than any other airport. You can think of the Core 1 airports as being "in the middle" of FlyMe Airlines' airport network. The worst flight from a Core 1 airport (where "worst" means having a large number of connections) is the same or better than any other airport's worst flight connection (i.e. its maxHops() value).

They also define "Core 2 airports" to be the set of airports that have a maxHops() value that is just 1 more than that of the Core 1 airports. (Why do they care about all this? Delays at Core 1 or Core 2 airports may have big effects on the overall network performance.)

Your problem: Describe an algorithm that finds the set of Core 1 airports and the set of Core 2 airports. Give its time-complexity. The input is $G=(A, E)$, an undirected and unweighted graph, where $e=\left(a_{i}, a_{j}\right) \in E$ means that there is a flight between a_{i} and a_{j}. Base your algorithm design on algorithms we have studied in this unit of the course.

Solution:

problem 3 Counting Shortest Paths
Given a graph $G=(V, E)$, and a starting node s, let $\ell(s, t)$ be the length of the shortest path in terms of number of edges between s and t. Give a clear description of an algorithm that computes the number of distinct paths from s to t that have length exactly $\ell(s, t)$.

Solution:

PROBLEM 4 Coffee
Charlottesville is known for some of its locally-roasted coffees, each with its own unique flavor combination. Suppose a group of coffee enthusiasts are given n samples $c_{1}, c_{2}, \ldots, c_{n}$ of freshlybrewed Charlottesville coffee by a coffee-skeptic. Each sample is either a Milli roast or a Shenandoah Joe roast. The enthusiasts are given each pair $\left(c_{i}, c_{j}\right)$ of coffees to taste, and they must collectively decide whether: (a) both are the same brand of coffee, (b) they are from different brands, or (c) they cannot agree (i.e., they are unsure whether the coffees are the same or different). Note: all n^{2} pairings are tested, including $\left(c_{i}, c_{i}\right),\left(c_{i}, c_{j}\right)$, and $\left(c_{j}, c_{i}\right)$, but not all pairs have "same" or "different" decisions.

At the end of the tasting, suppose the coffee enthusiasts have made m judgments of "same" or "different." Give an algorithm that takes these m judgments and determines whether they are consistent. The m judgments are consistent if there is a way to label each coffee sample c_{i} as either Shenandoah Joe or Milli such that for every taste-comparison $\left(c_{i}, c_{j}\right)$ labeled "same," both c_{i} and c_{j} have the same label, and for every taste-comparison labeled "different," both c_{i} and c_{j} are labeled differently. Your algorithm should run in $O(m+n)$ time. Prove the correctness and running time of your algorithm. Note: you do not need to determine the brand of each sample c_{i}, only whether the coffee enthusiasts are consistent in their labelings.

Solution:

problem 5 Ancient Population Study
Historians are studying the population of the ancient civilization of Algorithmica. Unfortunately, they have only uncovered incomplete information about the people who lived there during Algorithmica's most important century. While they do not have the exact year of birth or year of death for these people, they have a large number of possible facts from ancient records that say when a person lived relative to when another person lived.

These possible facts fall into two forms:

- The first states that one person died before the another person was born.
- The second states that their life spans overlapped, at least partially.

The Algorithmica historians need your help to answer the following questions. First, is the large collection of uncovered possible facts internally consistent? This means that a set of people could have lived with birth and death years that are consistent with all the possible facts they've uncovered. (The ancient records may not be accurate, meaning all the facts taken together cannot possibly be true.) Second, if the facts are consistent, find a sequence of birth and death years for all the people in the set such that all the facts simultaneously hold. (Examples are given below.)

We'll denote the n people as $P_{1}, P_{2}, \ldots, P_{n}$. For each person P_{i}, their birth-year will be b_{i} and their death-year will be d_{i}. (Again, for this problem we do not know and cannot find the exact numeric year value for these.)

The possible facts (input) for this problem will be a list of relationships between two people, in one of two forms:

- P_{i} prec P_{j} (indicates P_{i} died before P_{j} was born)
- P_{i} overlaps P_{j} (indicates their life spans overlapped)

If this list of possible facts is not consistent, your algorithm will return "not consistent". Otherwise, it will return a possible sequence of birth and death years that is consistent with these facts.

Here are some examples:

- The following facts about $n=3$ people are not consistent: P_{1} prec P_{2}, P_{2} prec P_{3}, and P_{3} prec P_{1}.
- The following facts about $n=3$ people are consistent: P_{1} prec P_{2} and P_{2} overlaps P_{3}. Here are two possible sequences of birth and death years:

$$
\begin{aligned}
& b_{1}, d_{1}, b_{2}, b_{3}, d_{2}, d_{3} \\
& b_{1}, d_{1}, b_{3}, b_{2}, d_{2}, d_{3}
\end{aligned}
$$

(Your solution only needs to find one of any of the possible sequences.)
Your answer should include the following. Clearly and precisely explain the graph you'll create to solve this problem, including what the nodes and edges will be in the graph. Explain how you'll use one or more of the algorithms we've studied to solve this graph problem, and explain why this leads to a correct answer. Finally, give the time-complexity of your solution.

Solution:

