
CS 3100
Data Structures and Algorithms 2

Lecture 10: D&C: Closest Pair of Points
(Horton’s version of slides)

Co-instructors:  Robbie Hott and Tom Horton
Fall 2023

Readings in CLRS 4th edition:
• Four pages from CLRS 3rd edition on CPP (on our schedule webpage)



Warm Up
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Given any 5 points on the unit 
square, show there’s always a pair 

distance ≤ !
!

 apart
1

1
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2
If points 𝑝#, 𝑝$ in same quadrant, then 𝛿 𝑝#, 𝑝$ ≤ $

$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

Warm Up Solution
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• At a local grocery store,
early in the Covid-19 pandemic

• The pigeonhole principle 
enforcing social distancing!
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Announcements

• This slide set:
– Some Master Theorem examples
– Closest-pair of points -- which is PA2!

• Upcoming dates
– PS2 due September 29 (Friday) at 11:59pm
– PA2 due October 8 (Sunday) at 11:59pm
– Quizzes 1 and 2 Thursday October 5 in class

• Course email (comes to both professors and head TAs):

  cs3100@cshelpdesk.atlassian.net
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Review In-Class Activity
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Master Theorem Example 1

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛!"#! $	&') for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛!"#! $)
• Case 2: if 𝑓 𝑛 = Θ(𝑛!"#! $), then 𝑇 𝑛 = Θ(𝑛!"#! $ log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛!"#! $(') for some constant 𝜀 > 0, and if 𝑎𝑓 )
*
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )
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𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

Case 2
Θ 𝑛89:! ! log 𝑛 = Θ(𝑛 log 𝑛)



Master Theorem Example 2
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𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

Case 1
Θ 𝑛89:! ; = Θ(𝑛!)

Case 1: if 𝑓 𝑛 = 𝑂(𝑛!"#! $	&') for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛!"#! $)
Case 2: if 𝑓 𝑛 = Θ(𝑛!"#! $), then 𝑇 𝑛 = Θ(𝑛!"#! $ log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛!"#! $(') for some constant 𝜀 > 0, and if 𝑎𝑓 )
*
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Master Theorem Example 3
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𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

Case 1
Θ 𝑛89:! < ≈ Θ(𝑛=.?@?)

Case 1: if 𝑓 𝑛 = 𝑂(𝑛!"#! $	&') for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛!"#! $)
Case 2: if 𝑓 𝑛 = Θ(𝑛!"#! $), then 𝑇 𝑛 = Θ(𝑛!"#! $ log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛!"#! $(') for some constant 𝜀 > 0, and if 𝑎𝑓 )
*
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Master Theorem Example 4
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𝑇 𝑛 = 2𝑇
𝑛
2
+ 15𝑛<

Case 3

Case 1: if 𝑓 𝑛 = 𝑂(𝑛!"#! $	&') for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛!"#! $)
Case 2: if 𝑓 𝑛 = Θ(𝑛!"#! $), then 𝑇 𝑛 = Θ(𝑛!"#! $ log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛!"#! $(') for some constant 𝜀 > 0, and if 𝑎𝑓 )
*
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Master Theorem Example 4
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𝑇 𝑛 = 2𝑇
𝑛
2
+ 15𝑛<

Case 3
Θ 𝑛<

Case 1: if 𝑓 𝑛 = 𝑂(𝑛!"#! $	&') for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛!"#! $)
Case 2: if 𝑓 𝑛 = Θ(𝑛!"#! $), then 𝑇 𝑛 = Θ(𝑛!"#! $ log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛!"#! $(') for some constant 𝜀 > 0, and if 𝑎𝑓 )
*
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

Important: For Case 3, need to additionally check 
that 2𝑓 ⁄𝑛 2 ≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 
sufficiently large 𝑛 

2𝑓 ⁄𝑛 2 = 30 ⁄𝑛 2 < =
30
8
𝑛< ≤

1
4
15𝑛<



Master Theorem Example 5
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𝑇 𝑛 = 16𝑇
𝑛
4
+ 15𝑛=.?

Case 1: if 𝑓 𝑛 = 𝑂(𝑛!"#! $	&') for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛!"#! $)
Case 2: if 𝑓 𝑛 = Θ(𝑛!"#! $), then 𝑇 𝑛 = Θ(𝑛!"#! $ log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛!"#! $(') for some constant 𝜀 > 0, and if 𝑎𝑓 )
*
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Master Theorem Example 6
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𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛 log 𝑛

Case 1: if 𝑓 𝑛 = 𝑂(𝑛!"#! $	&') for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛!"#! $)
Case 2: if 𝑓 𝑛 = Θ(𝑛!"#! $), then 𝑇 𝑛 = Θ(𝑛!"#! $ log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛!"#! $(') for some constant 𝜀 > 0, and if 𝑎𝑓 )
*
≤ 𝑐𝑓(𝑛) for some constant 

 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Robbie’s Yard
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Robbie’s Yard
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There has to be an easier way!
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Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how 
wide can the robot be?

1
2

3

4
5

6

7

8

ROBO

mulcher

3000
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Closest Pair of Points
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1
2

3

4
5

6

7

8

Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart



Closest Pair of Points: Naïve
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1
2

3

4
5

6

7

8

Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart

𝑂(𝑛!)Algorithm:
Test every pair of points, 
return the closest.

We can do better!
Θ(𝑛 log 𝑛)



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: How?
At median x coordinate

20

Conquer: 

Combine: 



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 

21



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
Return min of Left and 
Right pairs Problem? ?
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Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
2 Cases:

?

1. Closest Pair is 
completely in Left or 
Right

2. Closest Pair Spans our 
“Cut”

Need to test points 
across the cut

23



Spanning the Cut

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿A

𝛿B
Compare all points 
within 𝛿 = min{𝛿A , 𝛿B} 
of the cut.
 (In the “runway”)

2𝛿How many are there?
24



Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points across 
the cut

𝛿A

𝛿B

2𝛿

Slow approach Compare 
all points within 𝛿 =
min{𝛿!, 𝛿"} of the cut.

How many are there?

𝑇 𝑛 = 2𝑇
𝑛
2
+

𝑛
2

$

25
= Θ 𝑛$



Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿A

𝛿B

2𝛿

We don’t need to test all 
pairs!

Don’t need to test points 
that are > 𝛿 from one 
another
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Our Strategy for Combine Step

• Before we go into details, let’s explain our strategy
– Our goal: find the pair crossing the cut that has distance < 𝛿

and whose distance is the minimum of such pairs
• We want to avoid the following Θ 𝑛! 	approach:
– For each point in the runway, compare to all others in the runway to see if 

they cross the cut and are closer than 𝛿
• We’re going to find an approach that’s Θ 𝑛 :
– For each point in the runway, compare to 𝒌 near-by points in the runway 

to see if they cross the cut and are closer than 𝛿
– Doesn’t matter what 𝑘 is. As long as it’s a constant!
– Here are 2 ways to find a valid 𝑘, both based on geometry
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#1: Showing k=15 is Valid
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Reducing Search Space
Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

2 ⋅ 𝛿

𝛿
2

𝛿
2

Divide the “runway” into 
square cubbies of size C

!
 

Each cubby will have at most 1 
point!
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Reducing Search Space

30

2 ⋅ 𝛿

7

How many cubbies could 
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to 
≤ 15 other points

Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

Divide the “runway” into 
square cubbies of size C

!
 



#2: Showing k=7 is Valid
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Reducing Search Space

Combine: 
Need to test points across 
the cut
Claim #1:  if two points are 
the closest pair that cross 
the cut, then you can 
surround them in a box 
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿

Let’s draw some examples.

32

𝛿



Reducing Search Space

Claim #1:  if two points are the 
closest pair that cross the cut, then 
you can surround them in a box 
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿
Assume you’re checking in increasing 
y-order, and you’ve reached the first 
point of the closest pair.
Do you have to look at all points 
above it to be guaranteed to find the 
other point and the minimum 
distance?

33

No!
• Imagine you drew a box with its 

bottom at point’s y-coordinate.
• See Claim #1.
• Claim #2: only 8 points can be in the 

box.

𝛿



Spanning the Cut

1 2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned our “Cut”

𝛿+

𝛿,

2𝛿

Consider points in runway in 
increasing y-order.

For a given point p, we can prove the 
8th point and beyond is more than 𝛿 
from p.
    (pp. 1041-2 in CLRS 3rd edition PDF)

So for each point in runway, check 
next 7 points in y-order.

34 𝚯 𝒏

Only 
check 
next 7



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list
 Base case? 

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list
 Base case? 

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points

But sorting is an 𝑂 𝑛 log 𝑛  
algorithm – combine step is still 
too expensive! We need 𝑂(𝑛)



Closest Pair of Points: Divide and Conquer

Possible Solution #1 to this? Maintain 
additional information in the recursion
• Minimum distance among pairs of 

points in the list
• List of points sorted according to 
𝑦-coordinate

Instead of sorting runway points by 
𝑦-coordinate, use this index by y 
coordinate?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list
 Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list
 Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points

Possible Solution #2 to this?
• Merge sorted list of points by 𝑦-

coordinate and construct list of points 
in the runway (sorted by 𝑦-coordinate)

• Compare each point in runway to 7 or 
15 points above it and save the closest 
pair

• Output closest pair among left, right, 
and runway points



Closest Pair of Points: Divide and Conquer

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem 
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Somehow access runway points in increasing 

y-coordinate order
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points



CPP and PA2

• You’ve got the algorithm strategy!
• There’s trickiness in the details to avoid 𝜔(𝑛) in processing the 

runway
• Advice: write the 𝜃(𝑛!) solution to check you D&C solution for 

correctness
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