CS 3100

Data Structures and Algorithms 2
Lecture 10: D\&C: Closest Pair of Points (Horton's version of slides)

Co-instructors: Robbie Hott and Tom Horton Fall 2023

Readings in CLRS $4^{\text {th }}$ edition:

- Four pages from CLRS $3^{\text {rd }}$ edition on CPP (on our schedule webpage)

Warm Up

Given any 5 points on the unit square, show there's always a pair distance $\leq \frac{\sqrt{2}}{2}$ apart

1

Warm Up Solution

If points p_{1}, p_{2} in same quadrant, then $\delta\left(p_{1}, p_{2}\right) \leq \frac{\sqrt{2}}{2}$
Given 5 points, two must share the same quadrant

Pigeonhole Principle!

- At a local grocery store, early in the Covid-19 pandemic
- The pigeonhole principle enforcing social distancing!

Announcements

- This slide set:
- Some Master Theorem examples
- Closest-pair of points -- which is PA2!
- Upcoming dates
- PS2 due September 29 (Friday) at 11:59pm
- PA2 due October 8 (Sunday) at 11:59pm
- Quizzes 1 and 2 Thursday October 5 in class
- Course email (comes to both professors and head TAs):

cs3100@cshelpdesk.atlassian.net

Review In-Class Activity

Master Theorem Example 1

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

- Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
- Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

Case 2

$$
\Theta\left(n^{\log _{2} 2} \log n\right)=\Theta(n \log n)
$$

Master Theorem Example 2

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=4 T\left(\frac{n}{2}\right)+5 n
$$

Case 1

$$
\Theta\left(n^{\log _{2} 4}\right)=\Theta\left(n^{2}\right)
$$

Master Theorem Example 3

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=3 T\left(\frac{n}{2}\right)+8 n
$$

Case 1

$$
\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.585}\right)
$$

Master Theorem Example 4

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=2 T\left(\frac{n}{2}\right)+15 n^{3}
$$

Case 3

Master Theorem Example 4

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right.$) for some constant $\varepsilon>0$, and if $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=2 T\left(\frac{n}{2}\right)+15 n^{3}
$$

Case 3
$\Theta\left(n^{3}\right)$

Important: For Case 3, need to additionally check that $2 f(n / 2) \leq c f(n)$ for constant $c<1$ and sufficiently large n

$$
2 f(n / 2)=30(n / 2)^{3}=\frac{30}{8} n^{3} \leq \frac{1}{4}\left(15 n^{3}\right)
$$

Master Theorem Example 5

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=16 T\left(\frac{n}{4}\right)+15 n^{1.5}
$$

Master Theorem Example 6

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1: if $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
Case 2: if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
Case 3: if $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

$$
T(n)=2 T\left(\frac{n}{2}\right)+n \log n
$$

Robbie's Yard

Robbie's Yard

There has to be an easier way!

Constraints: Trees and Plants

Need to find: Closest Pair of Trees - how wide can the robot be?

Closest Pair of Points

Given:
A list of points
Return:
Pair of points with smallest distance apart
(1)
(5)
(2)
(4)
(6)
(7)
(3)

Closest Pair of Points: Naïve

Given:
A list of points
Return:
Pair of points with smallest distance apart

Algorithm: $O\left(n^{2}\right)$
Test every pair of points, return the closest.

We can do better!

Closest Pair of Points: D\&C

Closest Pair of Points: D\&C

Divide:

At median x coordinate

Conquer:
Recursively find closest pairs from Left and Right

Combine:

Closest Pair of Points: D\&C

Divide:

At median x coordinate

Conquer:

Recursively find closest pairs from Left and Right

Combine:
Return min of Left and Right pairs Problem?

Closest Pair of Points: D\&C

Combine:

2 Cases:

1. Closest Pair is completely in Left or Right
2. Closest Pair Spans our "Cut"

Need to test points across the cut

Spanning the Cut

Combine:

2. Closest Pair Spanned our "Cut"

Need to test points across the cut

Compare all points within $\delta=\min \left\{\delta_{L}, \delta_{R}\right\}$ of the cut.
(In the "runway")
How many are there?

Spanning the Cut

Combine:

2. Closest Pair Spanned our "Cut"

Need to test points across the cut

Slow approach Compare all points within $\delta=$ $\min \left\{\delta_{L}, \delta_{R}\right\}$ of the cut.

How many are there?

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+\left(\frac{n}{2}\right)^{2} \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

Spanning the Cut

Combine:

2. Closest Pair Spanned our "Cut"

Need to test points across the cut

We don't need to test all pairs!

Don't need to test points that are $>\delta$ from one another

Our Strategy for Combine Step

- Before we go into details, let's explain our strategy
- Our goal: find the pair crossing the cut that has distance $<\delta$ and whose distance is the minimum of such pairs
- We want to avoid the following $\Theta\left(n^{2}\right)$ approach:
- For each point in the runway, compare to all others in the runway to see if they cross the cut and are closer than δ
- We're going to find an approach that's $\Theta(n)$:
- For each point in the runway, compare to \boldsymbol{k} near-by points in the runway to see if they cross the cut and are closer than δ
- Doesn't matter what k is. As long as it's a constant!
- Here are 2 ways to find a valid k, both based on geometry
\#1: Showing $k=15$ is Valid

Reducing Search Space

Combine:
2. Closest Pair Spanned our "Cut"

Need to test points across the cut

Divide the "runway" into square cubbies of size $\frac{\delta}{2}$

Each cubby will have at most 1 point!

Reducing Search Space

Combine:
2. Closest Pair Spanned our "Cut"

Need to test points across the cut

Divide the "runway" into square cubbies of size $\frac{\delta}{2}$ How many cubbies could contain a point $<\delta$ away?
Each point compared to ≤ 15 other points

Reducing Search Space

Combine:

Need to test points across the cut

Claim \#1: if two points are the closest pair that cross the cut, then you can surround them in a box that's $2 \cdot \delta$ wide by δ tall.

Let's draw some examples.

Reducing Search Space

Assume you're checking in increasing y-order, and you've reached the first point of the closest pair.
Do you have to look at all points above it to be guaranteed to find the other point and the minimum distance?

No!

- Imagine you drew a box with its bottom at point's y-coordinate.
- See Claim \#1.
- Claim \#2: only 8 points can be in the box.

Spanning the Cut

Combine:

2. Closest Pair Spanned our "Cut"

Consider points in runway in increasing y-order.

For a given point p, we can prove the $8^{\text {th }}$ point and beyond is more than δ from p.
(pp. 1041-2 in CLRS $3^{\text {rd }}$ edition PDF)
So for each point in runway, check

LeftPoints next 7 points in y-order.

$$
\Theta(n)
$$

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

But sorting is an $O(n \log n)$ algorithm - combine step is still too expensive! We need $O(n)$

- Construct list of points in (x-coordinate within dista

- Sort runway points by y-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Possible Solution \#1 to this? Maintain additional information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to y-coordinate

Instead of sorting runway points by y-coordinate, use this index by y coordinate?

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair of points in each list

Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by y-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Possible Solution \#2 to this?

- Merge sorted list of points by y coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Closest Pair of Points: Divide and Conquer

What is the running time?
$\Theta(n \log n)$

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

Case 2 of Master's Theorem $T(n)=\Theta(n \log n)$
$\Theta(n \log n)$ Initialization: Sort points by x-coordinate
$\Theta(1)$
$2 T(n / 2)$
Conquer: Recursively compute the closest pair of points in each list

Combine:

- Somehow access runway points in increasing y-coordinate order
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

CPP and PA2

- You've got the algorithm strategy!
- There's trickiness in the details to avoid $\omega(n)$ in processing the runway
- Advice: write the $\theta\left(n^{2}\right)$ solution to check you $D \& C$ solution for correctness

